Virome Analysis Reveals Diverse and Divergent RNA Viruses in Wild Insect Pollinators in Beijing, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Processing
2.2. Total RNA Extraction and Sequencing
2.3. Sequence Assembly and Virus Detection
2.4. Phylogenetic Analyses
2.5. Identification of Virus Hosts
2.6. Strand-Specific Detection of Novel Viruses
3. Results
3.1. Identification of Known Viruses in Wild Pollinators
3.2. Identification of Novel RNA Viruses
3.3. Identification of Complementary Strand of Novel Viruses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fijen, T.P.M.; Scheper, J.A.; Boom, T.M.; Janssen, N.; Raemakers, I.; Kleijn, D. Insect pollination is at least as important for marketable crop yield as plant quality in a seed crop. Ecol. Lett. 2018, 21, 1704–1713. [Google Scholar] [CrossRef] [PubMed]
- Ollerton, J.; Winfree, R.; Tarrant, S. How many flowering plants are pollinated by animals? Oikos 2011, 120, 321–326. [Google Scholar] [CrossRef]
- Corlett, R.T. Flower visitors and pollination in the Oriental (Indomalayan) Region. Biol. Rev. 2004, 79, 497–532. [Google Scholar] [CrossRef] [PubMed]
- Garibaldi, L.A.; Steffan-Dewenter, I.; Winfree, R.; Aizen, M.A.; Bommarco, R.; Cunningham, S.A.; Kremen, C.; Carvalheiro, L.G.; Harder, L.D.; Afik, O.; et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 2013, 339, 1608–1611. [Google Scholar] [CrossRef]
- Vasiliev, D.; Greenwood, S. Pollinator biodiversity and crop pollination in temperate ecosystems, implications for national pollinator conservation strategies: Mini review. Sci. Total Environ. 2020, 744, 140880. [Google Scholar] [CrossRef] [PubMed]
- Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W.E. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 2010, 25, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Powney, G.D.; Carvell, C.; Edwards, M.; Morris, R.K.A.; Roy, H.E.; Woodcock, B.A.; Isaac, N.J.B. Widespread losses of pollinating insects in Britain. Nat. Commun. 2019, 10, 1018. [Google Scholar] [CrossRef]
- Cameron, S.A.; Sadd, B.M. Global trends in bumble bee health. Annu. Rev. Entomol. 2020, 65, 209–232. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, E.A.D.; Mulhauser, B.; Mulot, M.; Mutabazi, A.; Glauser, G.; Aebi, A. A worldwide survey of neonicotinoids in honey. Science 2017, 358, 109–111. [Google Scholar] [CrossRef] [Green Version]
- Weaver, D.B.; Cantarel, B.L.; Elsik, C.G.; Boncristiani, D.L.; Evans, J.D. Multi-tiered analyses of honey bees that resist or succumb to parasitic mites and viruses. BMC Genom. 2021, 22, 720. [Google Scholar] [CrossRef]
- Dolezal, A.G.; Carrillo-Tripp, J.; Judd, T.M.; Allen Miller, W.; Bonning, B.C.; Toth, A.L. Interacting stressors matter: Diet quality and virus infection in honeybee health. R. Soc. Open Sci. 2019, 6, 181803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santamaria, J.; Villalobos, E.M.; Brettell, L.E.; Nikaido, S.; Graham, J.R.; Martin, S. Evidence of Varroa-mediated deformed wing virus spillover in Hawaii. J. Invertebr. Pathol. 2018, 151, 126–130. [Google Scholar] [CrossRef] [PubMed]
- Ratti, V.; Kevan, P.G.; Eberl, H.J. A mathematical model of the honeybee-varroa destructor-acute bee paralysis virus system with seasonal effects. Bull. Math. Biol. 2015, 77, 1493–1520. [Google Scholar] [CrossRef] [PubMed]
- Harwood, G.P.; Dolezal, A.G. Pesticide-virus interactions in honey bees: Challenges and opportunities for understanding drivers of bee declines. Viruses 2020, 12, 566. [Google Scholar] [CrossRef]
- Giacobino, A.; Molineri, A.I.; Pacini, A.; Fondevila, N.; Pietronave, H.; Rodriguez, G.; Palacio, A.; Bulacio Cagnolo, N.; Orellano, E.; Salto, C.E.; et al. Varroa destructor and viruses association in honey bee colonies under different climatic conditions. Environ. Microbiol. Rep. 2016, 8, 407–412. [Google Scholar] [CrossRef]
- Di Prisco, G.; Pennacchio, F.; Caprio, E.; Boncristiani, H.F., Jr.; Evans, J.D.; Chen, Y. Varroa destructor is an effective vector of Israeli acute paralysis virus in the honeybee, Apis mellifera. J. Gen. Virol. 2011, 92 Pt 1, 151–155. [Google Scholar] [CrossRef]
- Ryabov, E.V.; Wood, G.R.; Fannon, J.M.; Moore, J.D.; Bull, J.C.; Chandler, D.; Mead, A.; Burroughs, N.; Evans, D.J. A virulent strain of deformed wing virus (DWV) of honeybees (Apis mellifera) prevails after Varroa destructor-mediated, or in vitro, transmission. PLoS Pathog. 2014, 10, e1004230. [Google Scholar] [CrossRef] [Green Version]
- Klatt, B.K.; Holzschuh, A.; Westphal, C.; Clough, Y.; Smit, I.; Pawelzik, E.; Tscharntke, T. Bee pollination improves crop quality, shelf life and commercial value. Proc. Biol. Sci. 2014, 281, 20132440. [Google Scholar] [CrossRef]
- Saez, A.; Morales, J.M.; Morales, C.L.; Harder, L.D.; Aizen, M.A. The costs and benefits of pollinator dependence: Empirically based simulations predict raspberry fruit quality. Ecol. Appl. 2018, 28, 1215–1222. [Google Scholar] [CrossRef] [Green Version]
- Martin, C.D.; Fountain, M.T.; Brown, M.J.F. Varietal and seasonal differences in the effects of commercial bumblebees on fruit quality in strawberry crops. Agric. Ecosyst. Environ. 2019, 281, 124–133. [Google Scholar] [CrossRef]
- Shi, M.; Lin, X.D.; Tian, J.H.; Chen, L.J.; Chen, X.; Li, C.X.; Qin, X.C.; Li, J.; Cao, J.P.; Eden, J.S.; et al. Redefining the invertebrate RNA virosphere. Nature 2016, 540, 539–543. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Lin, X.D.; Chen, X.; Tian, J.H.; Chen, L.J.; Li, K.; Wang, W.; Eden, J.S.; Shen, J.J.; Liu, L.; et al. The evolutionary history of vertebrate RNA viruses. Nature 2018, 556, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Remnant, E.J.; Shi, M.; Buchmann, G.; Blacquiere, T.; Holmes, E.C.; Beekman, M.; Ashe, A. A diverse range of novel RNA viruses in geographically distinct honey bee populations. J. Virol. 2017, 91, e00158-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, J.M.K.; Anderson, D.L.; Durr, P.A. Metagenomic analysis of Varroa-free Australian honey bees (Apis mellifera) shows a diverse Picornavirales virome. J. Gen. Virol. 2018, 99, 818–826. [Google Scholar] [CrossRef] [PubMed]
- Levin, S.; Sela, N.; Erez, T.; Nestel, D.; Pettis, J.; Neumann, P.; Chejanovsky, N. New viruses from the ectoparasite mite varroa destructor infesting Apis mellifera and Apis cerana. Viruses 2019, 11, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cornman, R.S. Relative abundance and molecular evolution of Lake Sinai Virus (Sinaivirus) clades. PeerJ 2019, 7, e6305. [Google Scholar] [CrossRef] [Green Version]
- Daughenbaugh, K.; Martin, M.; Brutscher, L.; Cavigli, I.; Garcia, E.; Lavin, M.; Flenniken, M. Honey bee infecting lake sinai viruses. Viruses 2015, 7, 3285–3309. [Google Scholar] [CrossRef] [Green Version]
- Francois, S.; Antoine-Lorquin, A.; Kulikowski, M.; Frayssinet, M.; Filloux, D.; Fernandez, E.; Roumagnac, P.; Froissart, R.; Ogliastro, M. Characterisation of the viral community associated with the Alfalfa Weevil (Hypera postica) and its host plant, Alfalfa (Medicago sativa). Viruses 2021, 13, 791. [Google Scholar] [CrossRef]
- Kevill, J.L.; de Souza, F.S.; Sharples, C.; Oliver, R.; Schroeder, D.C.; Martin, S.J. DWV-A lethal to honey bees (Apis mellifera): A colony level survey of DWV variants (A, B, and C) in England, Wales, and 32 states across the US. Viruses 2019, 11, 426. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.Q.; Zhang, Y.; Han, R.C. The high-throughput production of dsRNA against sacbrood virus for use in the honey bee Apis cerana (Hymenoptera: Apidae). Virus Genes 2016, 52, 698–705. [Google Scholar] [CrossRef]
- McMahon, D.P.; Furst, M.A.; Caspar, J.; Theodorou, P.; Brown, M.J.F.; Paxton, R.J. A sting in the spit: Widespread cross-infection of multiple RNA viruses across wild and managed bees. J. Anim. Ecol. 2015, 84, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Genersch, E.; Yue, C.; Fries, I.; de Miranda, J.R. Detection of Deformed wing virus, a honey bee viral pathogen, in bumble bees (Bombus terrestris and Bombus pascuorum) with wing deformities. J. Invertebr. Pathol. 2006, 91, 61–63. [Google Scholar] [CrossRef] [PubMed]
- Tlak Gajger, I.; Simenc, L.; Toplak, I. The first detection and genetic characterization of four different honeybee viruses in wild bumblebees from Croatia. Pathogens 2021, 10, 808. [Google Scholar] [CrossRef] [PubMed]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.D.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [Green Version]
- Rombel, I.T.; Sykes, K.F.; Rayner, S.; Johnston, S.A. ORF-FINDER: A vector for high-throughput gene identification. Gene 2002, 282, 33–41. [Google Scholar] [CrossRef]
- Marchler-Bauer, A.; Derbyshire, M.K.; Gonzales, N.R.; Lu, S.N.; Chitsaz, F.; Geer, L.Y.; Geer, R.C.; He, J.; Gwadz, M.; Hurwitz, D.I.; et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 2015, 43, D222–D226. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.C. MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 2004, 5, 113. [Google Scholar] [CrossRef] [Green Version]
- Capella-Gutierrez, S.; Silla-Martinez, J.M.; Gabaldon, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009, 25, 1972–1973. [Google Scholar] [CrossRef] [PubMed]
- Darriba, D.; Posada, D.; Kozlov, A.M.; Stamatakis, A.; Morel, B.; Flouri, T. ModelTest-NG: A new and scalable tool for the selection of DNA and protein evolutionary models. Mol. Biol. Evol. 2020, 37, 291–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozlov, A.M.; Darriba, D.; Flouri, T.; Morel, B.; Stamatakis, A. RAxML-NG: A fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 2019, 35, 4453–4455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craggs, J.K.; Ball, J.K.; Thomson, B.J.; Irving, W.L.; Grabowska, A.M. Development of a strand-specific RT-PCR based assay to detect the replicative form of hepatitis C virus RNA. J. Virol. Methods 2001, 94, 111–120. [Google Scholar] [CrossRef]
- Wolf, Y.I.; Silas, S.; Wang, Y.; Wu, S.; Bocek, M.; Kazlauskas, D.; Krupovic, M.; Fire, A.; Dolja, V.V.; Koonin, E.V. Doubling of the known set of RNA viruses by metagenomic analysis of an aquatic virome. Nat. Microbiol. 2020, 5, 1262–1270. [Google Scholar] [CrossRef]
- Charlebois, R.L.; Sathiamoorthy, S.; Logvinoff, C.; Gisonni-Lex, L.; Mallet, L.; Ng, S.H.S. Sensitivity and breadth of detection of high-throughput sequencing for adventitious virus detection. NPJ Vaccines 2020, 5, 61. [Google Scholar] [CrossRef]
- Traniello, I.M.; Bukhari, S.A.; Kevill, J.; Ahmed, A.C.; Hamilton, A.R.; Naeger, N.L.; Schroeder, D.C.; Robinson, G.E. Meta-analysis of honey bee neurogenomic response links Deformed wing virus type A to precocious behavioral maturation. Sci. Rep. 2020, 10, 3101. [Google Scholar] [CrossRef] [Green Version]
- Brettell, L.E.; Schroeder, D.C.; Martin, S.J. RNAseq of Deformed wing virus and other honey bee-associated viruses in eight insect taxa with or without Varroa infestation. Viruses 2020, 12, 1229. [Google Scholar] [CrossRef]
- Caesar, L.; Cibulski, S.P.; Canal, C.W.; Blochtein, B.; Sattler, A.; Haag, K.L. The virome of an endangered stingless bee suffering from annual mortality in southern Brazil. J. Gen. Virol. 2019, 100, 1153–1164. [Google Scholar] [CrossRef]
- Chen, G.; Wang, S.; Jia, S.; Feng, Y.; Hu, F.; Chen, Y.; Zheng, H. A new strain of virus discovered in china specific to the parasitic mite varroa destructor poses a potential threat to honey bees. Viruses 2021, 13, 679. [Google Scholar] [CrossRef]
- Bartomeus, I.; Stavert, J.R.; Ward, D.; Aguado, O. Historical collections as a tool for assessing the global pollination crisis. Philos. Trans. R. Soc. B Biol. Sci. 2018, 374, 20170389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshioka, A.; Mishima, Y.; Fukasawa, K. Pollinators and other flying insects inside and outside the fukushima evacuation zone. PLoS ONE 2015, 10, e0140957. [Google Scholar] [CrossRef]
- Singh, R.; Levitt, A.L.; Rajotte, E.G.; Holmes, E.C.; Ostiguy, N.; Vanengelsdorp, D.; Lipkin, W.I.; Depamphilis, C.W.; Toth, A.L.; Cox-Foster, D.L. RNA viruses in hymenopteran pollinators: Evidence of inter-Taxa virus transmission via pollen and potential impact on non-Apis hymenopteran species. PLoS ONE 2010, 5, e14357. [Google Scholar] [CrossRef] [PubMed]
- Radzevičiūtė, R.; Theodorou, P.; Husemann, M.; Japoshvili, G.; Kirkitadze, G.; Zhusupbaeva, A.; Paxton, R.J. Replication of honey bee-associated RNA viruses across multiple bee species in apple orchards of Georgia, Germany and Kyrgyzstan. J. Invertebr. Pathol. 2017, 146, 14–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manley, R.; Boots, M.; Wilfert, L. Emerging viral disease risk to pollinating insects: Ecological, evolutionary and anthropogenic factors. J. Appl. Ecol. 2015, 52, 331–340. [Google Scholar] [CrossRef]
- Gisder, S.; Genersch, E. Viruses of commercialized insect pollinators. J. Invertebr. Pathol. 2017, 147, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Dalmon, A.; Gayral, P.; Decante, D.; Klopp, C.; Bigot, D.; Thomasson, M.; Herniou, E.A.; Alaux, C.; Le Conte, Y. Viruses in the invasive hornet Vespa velutina. Viruses 2019, 11, 1041. [Google Scholar] [CrossRef] [Green Version]
- Schoonvaere, K.; De Smet, L.; Smagghe, G.; Vierstraete, A.; Braeckman, B.P.; de Graaf, D.C. Unbiased RNA shotgun metagenomics in social and solitary wild bees detects associations with eukaryote parasites and new viruses. PLoS ONE 2016, 11, e0168456. [Google Scholar] [CrossRef]
- Vasilakis, N.; Castro-Llanos, F.; Widen, S.G.; Aguilar, P.V.; Guzman, H.; Guevara, C.; Fernandez, R.; Auguste, A.J.; Wood, T.G.; Popov, V.; et al. Arboretum and Puerto Almendras viruses: Two novel rhabdoviruses isolated from mosquitoes in Peru. J. Gen. Virol. 2014, 95 Pt 4, 787–792. [Google Scholar] [CrossRef]
- Chen, Y.P.; Siede, R. Honey bee viruses. In Advances in Virus Research; Elsevier: Amsterdam, The Netherlands, 2007; Volume 70, pp. 33–80. [Google Scholar]
- McMenamin, A.J.; Flenniken, M.L. Recently identified bee viruses and their impact on bee pollinators. Curr. Opin. Insect Sci. 2018, 26, 120–129. [Google Scholar] [CrossRef]
- Adams, M.J.; Antoniw, J.F.; Kreuze, J. Virgaviridae: A new family of rod-shaped plant viruses. Arch. Virol. 2009, 154, 1967–1972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levitt, A.L.; Singh, R.; Cox-Foster, D.L.; Rajotte, E.; Hoover, K.; Ostiguy, N.; Holmes, E.C. Cross-species transmission of honey bee viruses in associated arthropods. Virus Res. 2013, 176, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.J.; Brettell, L.E. Deformed wing virus in honeybees and other insects. Annu. Rev. Virol. 2019, 6, 49–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Virus Name | Pool | Contig Length | Read Number | Read Coverage | Closest Nucleotide Accession | Query Coverage (%) | Nucleotide Identity (%) |
---|---|---|---|---|---|---|---|
DWV | A | 8948 | 33,345 | 100 | AB070959.1 | 100 | 96.65 |
B | 10,086 | 58,750 | 100 | MH267695.1 | 100 | 96.49 | |
Mayfield virus 1 | A | 9024 | 13,680 | 100 | MH614304.1 | 96 | 94.94 |
B | 7668 | 554 | 100 | MH614304.1 | 96 | 94.4 | |
Vespa velutina-associated acypi-like virus | A | 9919 | 249,864 | 100 | MN565043.1 | 98 | 94.64 |
B | 9877 | 91,996 | 100 | MN565043.1 | 98 | 95 | |
Scaldis River bee virus | A | 7842 | 694 | 100 | KY053857.1 | 94 | 74.88 |
Hubei Diptera virus 6 RNA1 | A | 6406 | 8923 | 100 | KX884805.1 | 99 | 92.54 |
Hubei Diptera virus 6 RNA2 | A | 2089 | 2510 | 96.7 | KX884806.1 | 96 | 92.32 |
Arboretum almendravirus | A | 11,492 | 30,383 | 100 | KC994644.1 | 100 | 77.56 |
ABPV | B | 9481 | 2598 | 100 | MN565031.1 | 99 | 96.78 |
CBPV RNA1 | B | 3592 | 332 | 100 | KX168412.1 | 100 | 97.88 |
CBPV RNA2 | B | 2349 | 228 | 100 | MF175174.1 | 95 | 98.44 |
Virus Name | Pool | Family | Genus | Contig Size (bp) | Query Coverage | Subject Accession | Closest Relative (RdRp Amino Acid Identity) |
---|---|---|---|---|---|---|---|
Xiangshan martelli-like virus 1 | A | Kitaviridae | Unclassified | 8848 | 98.82 | QOJ43136 | Sandewavirus dungfly (67.1) |
Xiangshan martelli-like virus 2 | A | Kitaviridae | Unclassified | 9205 | 100 | QTW97796 | Riboviria sp. (51.8) |
Xiangshan martelli-like virus 3 | B | Kitaviridae | Unclassified | 9440 | 54.5 | YP_009337423 | Hubei virga-like virus 1 (54.5) |
Xiangshan martelli-like virus 4 | B | Kitaviridae | Unclassified | 11,269 | 99.81 | YP_009337693 | Hubei virga-like virus 15 (52.1) |
Xiangshan orthomyxo-like virus | A | Orthomyxoviridae | Unclassified | 2336 + 2233 + 1994 + 1604 + 1443 + 967 | 99.84 | QOQ34681 | Dhori thogotovirus (subunit PA: 36.2) |
Xiangshan tombus-like virus | A | Unclassified | Unclassified | 2261 + 1722 | 100 | QED21532 | Cushing virus (64.7) |
Xiangshan insect virus | B | Unclassified | Unclassified | 3665 + 2045 | 100 | YP_009011225 | Anopheline-associated C virus (49.7) |
Xiangshan sinhali-like virus | B | Sinhaliviridae | Unclassified | 5770 | 100 | ASS83305 | Lake Sinai virus (49.7) |
Xiangshan picorna-like virus 1 | A | Iflaviridae | Iflavirus | 9379 | 99.46 | QQX28927 | Soybean thrips ifla-like virus 10 (60.7) |
Xiangshan picorna-like virus 2 | A | Iflaviridae | Iflavirus | 10,050 | 98.92 | QKW94218 | PNG bee virus 13 (67.8) |
Xiangshan picorna-like virus 3 | B | Iflaviridae | Iflavirus | 9087 | 97.28 | QPI13031 | Iflavirus IricIV-4 (50.1) |
Xiangshan picorna-like virus 4 | B | Iflaviridae | Iflavirus | 10,087 | 99.47 | AWK77848 | Darwin bee virus 3 (56.3) |
Xiangshan picorna-like virus 5 | B | Iflaviridae | Iflavirus | 9918 | 100 | YP_009337760 | Hubei odonate virus 4 (69.0) |
Xiangshan picorna-like virus 6 | A | Polycipiviridae | Sopolycivirus | 11,387 | 99.28 | AXA52568 | Linepithema humile polycipivirus 1 (51.2) |
Xiangshan picorna-like virus 7 | A | Unclassified | Unclassified | 10,200 | 85.95 | QIT20099 | Diabrotica undecimpunctata virus 1 (38.5) |
Xiangshan rhabdo-like virus 1 | A | Rhabdoviridae | Unclassified | 10,798 | 98.74 | YP_009094394 | Puerto Almendras virus (47.1) |
Xiangshan rhabdo-like virus 2 | A | Rhabdoviridae | Unclassified | 13,241 | 92.08 | AJG39108 | Jingshan fly virus 2 (34.8) |
Xiangshan rhabdo-like virus 3 | A | Rhabdoviridae | Alphahymrhavirus | 11,774 | 99.06 | QMP82144 | Hymenopteran rhabdo-related virus OKIAV109 (51.5) |
Xiangshan rhabdo-like virus 4 | B | Rhabdoviridae | Betahymrhavirus | 12,645 | 99.77 | QPB73983 | Hymenopteran rhabdo-related virus OKIAV24 (58.9) |
Xiangshan rhabdo-like virus 5 | B | Rhabdoviridae | Unclassified | 11,517 | 99.11 | QMP82217 | Lepidopteran rhabdo-related virus OKIAV3 (47.8) |
Xiangshan nyami-like virus | B | Nyamiviridae | Formivirus | 9707 | 99.15 | QPB73978 | Hymenopteran orino-related virus OKIAV85 (63.5) |
Xiangshan narna-like virus | A | Unclassified | Unclassified | 3191 | 83.7 | APG77263 | Wenling narna-like virus 8 (35.3) |
Xiangshan tymo-like virus | B | Tymoviridae | Marafivirus | 9087 | 100 | QQG34658 | Nasturtium officinale macula-like virus 1 (73.9) |
Xiangshan toli-like virus | B | Unclassified | Unclassified | 6009 | 90.87 | YP_009143313 | Camponotus yamaokai virus (57.3) |
Xiangshan flavi-like virus 1 | B | Flaviviridae | Unclassified | 14,732 | 100 | QTJ63564 | Hymenopteran flavi-related virus (54.9) |
Xiangshan flavi-like virus 2 | B | Flaviviridae | Unclassified | 17,417 | 100 | QTJ63570 | Hymenopteran flavi-related virus (58.1) |
Virus Name | Genome Type | Host | Complementary Strand Detection |
---|---|---|---|
Xiangshan orthomyxo-like virus | ssRNA (−) | Eristalisi tenax (L.) | + |
Xiangshan tombus-like virus | ssRNA (+) | Sphaerophoria indiana Bigot | − |
Xiangshan picorna-like virus 2 | ssRNA (+) | Amegilla zonata L. | − |
Xiangshan insect virus | ssRNA (+) | Vespidae | − |
Xiangshan sinhali-like virus | ssRNA (+) | Sphecidae | + |
Xiangshan picorna-like virus 1 | ssRNA (+) | Tabanidae | + |
Xiangshan picorna-like virus 4 | ssRNA (+) | Scolia sinensis Saussure et Siehel | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, N.; Huang, Y.; Li, W.; Xu, S. Virome Analysis Reveals Diverse and Divergent RNA Viruses in Wild Insect Pollinators in Beijing, China. Viruses 2022, 14, 227. https://doi.org/10.3390/v14020227
Li N, Huang Y, Li W, Xu S. Virome Analysis Reveals Diverse and Divergent RNA Viruses in Wild Insect Pollinators in Beijing, China. Viruses. 2022; 14(2):227. https://doi.org/10.3390/v14020227
Chicago/Turabian StyleLi, Nannan, Yizhao Huang, Wei Li, and Shufa Xu. 2022. "Virome Analysis Reveals Diverse and Divergent RNA Viruses in Wild Insect Pollinators in Beijing, China" Viruses 14, no. 2: 227. https://doi.org/10.3390/v14020227
APA StyleLi, N., Huang, Y., Li, W., & Xu, S. (2022). Virome Analysis Reveals Diverse and Divergent RNA Viruses in Wild Insect Pollinators in Beijing, China. Viruses, 14(2), 227. https://doi.org/10.3390/v14020227