The Impact of Sociodemographic, Nutritional, and Health Factors on the Incidence and Complications of COVID-19 in Egypt: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Validation and Pilot Study
2.3. Data Collection
2.4. Statistical Analysis of the Data
3. Results
3.1. Sociodemographic Data of All Participants
3.2. Assessment of the Impact of Social, Nutritional Risk Factors, and Comorbid Health Status on the Incidence of COVID-19 Infection
3.3. Post COVID-19 Symptoms
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.-R.; Zhu, Y.; Li, B.; Huang, C.-L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef] [PubMed]
- WHO Regional Office for Africa. COVID-19. Cases Top 10,000 in Africa. Available online: https://www.afro.who.int/news/Covid-19-cases-top-10-000-africa4 (accessed on 11 June 2020).
- Kaseje, N. Why Sub-Saharan Africa Needs a Unique Response to COVID-19. InPublished by World Economic Forum on 2020, Volume 30. Available online: https://www.weforum.org/agenda/2020/03/why-sub-saharan-africa-needs-a-unique-response-to-Covid-19 (accessed on 23 October 2020).
- Chevallier Lugon, C.; Smit, M.; Salamun, J.; Abderrahmane, M.; Braillard, O.; Nehme, M.; Bausch, F.J.; Guessous, I.; Spechbach, H. Novel outpatient management of mild to moderate COVID-19 spares hospital capacity and safeguards patient outcome: The Geneva PneumoCoV-Ambu study. PLoS ONE 2021, 16, e0247774. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, S.; Gołębiowska, J.; Bartoszewicz, B.; Makuch, S.; Mazur, G. Clinical preventive services to reduce pandemic deaths. Prev. Med. Rep. 2020, 20, 101249. [Google Scholar] [CrossRef]
- Saeed, H.; Abdelrahim, M.E.; Rabea, H.; Salem, H.F. Impact of Advanced Patient Counseling Using a Training Device and Smartphone Application on Asthma Control. Respir. Care 2020, 65, 326–332. [Google Scholar] [CrossRef]
- Galal, I.; Hussein, A.A.R.M.; Amin, M.T.; Saad, M.M.; Zayan, H.E.E.; Abdelsayed, M.Z.; Moustafa, M.M.; Ezzat, A.R.; Helmy, R.E.D.; Abd-Elaal, H.K.; et al. Determinants of persistent post-COVID-19 symptoms: Value of a novel COVID-19 symptom score. Egypt. J. Bronchol. 2021, 15, 10. [Google Scholar] [CrossRef]
- Lee, J.Y.; Hong, S.W.; Hyun, M.; Park, J.S.; Lee, J.H.; Suh, Y.S.; Kim, D.H.; Han, S.-W.; Cho, C.-H.; Kim, H.A. Epidemiological and clinical characteristics of coronavirus disease 2019 in Daegu, South Korea. Int. J. Infect. 2020, 98, 462–466. [Google Scholar] [CrossRef]
- Richardson, S.; Hirsch, J.S.; Narasimhan, M.; Crawford, J.M.; McGinn, T.; Davidson, K.W. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA 2020, 323, 2052–2059. [Google Scholar] [CrossRef]
- Alkundi, A.; Mahmoud, I.; Musa, A.; Naveed, S.; Alshawaf, M. Clinical characteristics and outcomes of COVID-19 hospitalized patients with diabetes in UK: A retrospective single centre study. Diabetes Res. Clin. Pract. 2020, 165, 108263. [Google Scholar] [CrossRef]
- Marco, M.; Valentina, I.; Laura, G.; Roberto, G.; Luigi, U. Management of diabetic persons with foot ulceration during COVID-19 health care emergency: Effectiveness of a new triage pathway. Diabetes Res. Clin. Pract. 2020, 165, 108245. [Google Scholar]
- Gao, F.; Zheng, K.I.; Wang, X.B.; Sun, Q.F.; Pan, K.H.; Wang, T.Y.; Chen, Y.-P.; Targher, G.; Byrne, C.D.; George, J.; et al. Obesity is a risk factor for greater COVID-19 severity. Diabetes Care 2020, 43, e72–e74. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.I.; Gao, F.; Wang, X.B.; Sun, Q.F.; Pan, K.H.; Wang, T.Y.; Ma, H.-L.; Chen, Y.-P.; Liu, W.-Y.; George, J.; et al. Obesity as a risk factor for greater severity of COVID-19 in patients with metabolic associated fatty liver disease. Metabolism 2020, 108, 154244. [Google Scholar] [CrossRef] [PubMed]
- Hamer, M.; Kivimaki, M.; Gale, C.R.; Batty, G.D. Lifestyle Risk Factors for Cardiovascular Disease in Relation to COVID-19 Hospitalization: A Community-Based Cohort Study of 387,109 Adults in UK. MedRxiv 2020. [Google Scholar] [CrossRef]
- Liao, J.; Fan, S.; Chen, J.; Wu, J.; Xu, S.; Guo, Y.; Li, C.; Zhang, X.; Wu, C.; Mou, H.; et al. Epidemiological and clinical characteristics of COVID-19 in adolescents and young adults. Innovation 2020, 1, 100001. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Wang, M.; Wang, M.; Zhao, Y.; Zheng, Z.; Li, X.; Hu, K. Asymptomatic infection by SARS-CoV-2 in healthcare workers: A study in a large teaching hospital in Wuhan, China. Int. J. Infect. Dis. 2020, 99, 219–225. [Google Scholar] [CrossRef]
- Mayoral, E.P.-C.; Hernández-Huerta, M.T.; Mayoral, L.P.-C.; Matias-Cervantes, C.A.; Mayoral-Andrade, G.; Barrios, L.Á.L.; Pérez-Campos, E. Factors related to asymptomatic or severe COVID-19 infection. Med. Hypotheses 2020, 144, 110296. [Google Scholar] [CrossRef]
- Caccuri, F.; Zani, A.; Messali, S.; Giovanetti, M.; Bugatti, A.; Campisi, G.; Caruso, A. A persistently replicating SARS-CoV-2 variant derived from an asymptomatic individual. J. Transl. Med. 2020, 18, 1–12. [Google Scholar] [CrossRef]
- Mannan, A.; Mehedi, H.H.; A Chy, N.U.H.; Qayum, O.; Akter, F.; Rob, A.; Biswas, P.; Hossain, S.; Ibn Ayub, M. A multi-centre, cross-sectional study on coronavirus disease 2019 in Bangladesh: Clinical epidemiology and short-term outcomes in recovered individuals. New Microbes New Infect. 2021, 40, 100838. [Google Scholar] [CrossRef]
- Gonzalez-Rubio, J.; Navarro-Lopez, C.; Lopez-Najera, E.; Lopez-Najera, A.; Jimenez-Diaz, L.; Navarro-Lopez, J.D.; Najera, A. Cytokine Release Syndrome (CRS) and Nicotine in COVID-19 Patients: Trying to Calm the Storm. Front. Immunol. 2020, 11, 1359. [Google Scholar] [CrossRef]
- Tanimoto, K.; Hirota, K.; Fukazawa, T.; Matsuo, Y.; Nomura, T.; Tanuza, N.; Hirohashi, N.; Bono, H.; Sakaguchi, T. Inhibiting SARS-CoV-2 infection in vitro by suppressing its receptor, angiotensin-converting enzyme 2, via aryl-hydrocarbon receptor signal. Sci. Rep. 2021, 11, 16629. [Google Scholar] [CrossRef]
- Nomura, Y.; Sawahata, M.; Nakamura, Y.; Kurihara, M.; Koike, R.; Katsube, O.; Hagiwara, K.; Niho, S.; Masuda, N.; Tanaka, T.; et al. Age and Smoking Predict Antibody Titres at 3 Months after the Second Dose of the BNT162b2 COVID-19 Vaccine. Vaccines 2021, 9, 1042. [Google Scholar] [CrossRef] [PubMed]
- Hemilä, H.; Chalker, E. Vitamin C for Preventing and Treating the Common Cold. Cochrane Database Syst. Rev. 2013, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jalal, B.; Amir, R.M.; Marjan, G.D.; Zakiyeh, B.Z.; Mohammad, A.H.K.; Mohammad, B.-I.; Nimah, B.-E. COVID-19 and Fast Foods Consumption: A Review. Int. J. Food Prop. 2021, 24, 203–209. [Google Scholar] [CrossRef]
- Moldofsky, H.; Patcai, J. Chronic widespread musculoskeletal pain, fatigue, depression and disordered sleep in chronic post-SARS syndrome; a case-controlled study. BMC Neurol. 2011, 11, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carfì, A.; Bernabei, R.; Landi, F. Persistent symptoms in patients after acute COVID-19. JAMA 2020, 324, 603–605. [Google Scholar] [CrossRef]
- Kanwar, D.; Baig, A.M.; Wasay, M. Neurological manifestations of COVID-19. J. Pak. Med. Assoc. 2020, 70 (Suppl. S3), S101–S103. [Google Scholar] [CrossRef] [PubMed]
- Tansey, C.M.; Louie, M.; Loeb, M.; Gold, W.L.; Muller, M.P.; De Jager, J.; Cameron, J.; Tomlinson, G.; Mazzulli, T.; Walmsley, S.; et al. One-year outcomes and health care utilization in survivors of severe acute respiratory syndrome. Arch. Intern. Med. 2007, 167, 1312–1320. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, A.; Iqbal, K.; Ali, S.A.; Azim, D.; Farid, E.; Baig, M.D.; Bin Arif, T.; Raza, M. The COVID-19 Sequelae: A Cross-Sectional Evaluation of Post-recovery Symptoms and the Need for Rehabilitation of COVID-19 Survivors. Cureus 2021, 13, e13080. [Google Scholar] [CrossRef]
- Ahmed, H.; Patel, K.; Greenwood, D.C.; Halpin, S.; Lewthwaite, P.; Salawu, A.; Eyre, L.; Breen, A.; O’Connor, R.; Jones, A.; et al. Long-term clinical outcomes in survivors of severe acute respiratory syndrome and Middle East respiratory syndrome coronavirus outbreaks after hospitalization or ICU admission: A systematic review and meta-analysis. J. Rehabil. Med. 2020, 52, jrm00063. [Google Scholar] [CrossRef]
- Mandal, S.; Barnett, J.; Brill, S.E.; Brown, J.S.; Denneny, E.K.; Hare, S.S.; Heightman, M.; E Hillman, T.; Jacob, J.; Jarvis, H.C.; et al. ’Long-COVID’: A cross-sectional study of persisting symptoms, biomarker and imaging abnormalities following hospitalisation for COVID-19. Thorax 2021, 76, 396–398. [Google Scholar] [CrossRef]
- Jiang, D.H.; McCoy, R.G. Planning for the post-COVID syndrome: How payers can mitigate long-term complications of the pandemic. J. Gen. Intern. Med. 2020, 35, 3036–3039. [Google Scholar] [CrossRef] [PubMed]
- Kamal, M.; Abo Omirah, M.; Hussein, A.; Saeed, H. Assessment and characterisation of post-COVID-19 manifestations. Int. J. Clin. Pract. 2021, 75, e13746. [Google Scholar] [CrossRef] [PubMed]
- Halpin, S.J.; Mclvor, C.; Whyatt, G.; Adams, A.; Harvey, O.; McLean, L.; Walshaw, C.; Kemp, S.; Corrado, J.; Singh, R.; et al. Postdischarge symptoms and rehabilitation needs in survivors of COVID-19 infection: A cross-sectional evaluation. J. Med. Virol. 2021, 93, 1013–1022. [Google Scholar] [CrossRef]
- Targher, G.; Zoppini, G.; Moghetti, P.; Day, C.P. Disorders of coagulation and hemostasis in abdominal obesity: Emerging role of fatty liver. Semin. Thromb. Hemost. 2010, 31, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Wichmann, D.; Sperhake, J.-P.; Lütgehetmann, M.; Steurer, S.; Edler, C.; Heinemann, A.; Kluge, S. Autopsy findings and venous thromboembolism in patients with COVID-19: A prospective cohort study. Ann. Intern. Med. 2020, 173, 268–277. [Google Scholar] [CrossRef]
- Burnham, E.L.; Hyzy, R.C.; Paine, R., 3rd; Coley, C., 2nd; Kelly, A.M.; Quint, L.E.; Lynch, D.; Janssen, W.J.; Moss, M.; Standiford, T.J. Chest CT features are associated with poorer quality of life in acute lung injury survivors. Crit. Care Med. 2013, 41, 445–456. [Google Scholar] [CrossRef] [Green Version]
Total (n = 15,166) | Did You Get an Infection with COVID-19? | Test of Sig. | p-Value | |||||
---|---|---|---|---|---|---|---|---|
No (n = 10,063) 66.35% | Yes (n = 5103) 33.64% | |||||||
No. | % | No. | % | No. | % | |||
Sex | ||||||||
Male | 6808 | 44.9 | 4401 | 43.7 | 2407 | 47.2 | χ2 = 16.139 * | <0.001 * |
Female | 8358 | 55.1 | 5662 | 56.3 | 2696 | 52.8 | ||
Age (years) | ||||||||
18-<30 | 10,109 | 66.66 | 7957 | 79.07 | 2152 | 42.17 | χ2 = 2273.287 * t = 45.025 * | <0.001 * <0.001 * |
30–50 | 3187 | 21.01 | 1556 | 15.46 | 1631 | 31.96 | ||
≥50 | 1870 | 12.33 | 550 | 5.47 | 1320 | 25.87 | ||
Mean ± SD. | 30.32 ± 13.20 | 26.68 ± 9.93 | 37.51 ± 15.66 | |||||
Height (cm) | ||||||||
Median, (IQR) | 168.0 (160.0–175.0) | 167.0 (160.0–175.0) | 168.0 (161.0–175.0) | U = 3.716 * | <0.001 * | |||
Weight (kg) | ||||||||
Median, (IQR) | 72.0 (63.0–83.0) | 70.0 (60.0–80.0) | 77.0 (68.0–86.0 | U = 22.901 * | <0.001 * | |||
BMI | ||||||||
Low (<18.5) | 316 | 2.1 | 267 | 2.7 | 49 | 1.0 | χ2 = 553.310 * | <0.001 * |
Normal (18.5–24.99) | 6669 | 44.0 | 5025 | 49.9 | 1644 | 32.2 | ||
Overweight (25–29.99) | 5638 | 37.2 | 3393 | 33.7 | 2245 | 44.0 | ||
Obese (30–39.99) | 2209 | 14.6 | 1193 | 11.9 | 1016 | 19.9 | ||
Severely obese (≥40) | 334 | 2.2 | 185 | 1.8 | 149 | 2.9 | ||
Residency | ||||||||
Upper Egypt | 3158 | 20.8 | 2155 | 21.4 | 1003 | 19.7 | χ2 = 13.827 * | 0.001 * |
Northern Egypt | 7198 | 47.5 | 4671 | 46.4 | 2527 | 49.5 | ||
Great Cairo | 4810 | 31.7 | 3237 | 32.2 | 1573 | 30.8 | ||
Marital status | ||||||||
Single | 9329 | 61.5 | 7401 | 73.5 | 1928 | 37.8 | χ2 = 1886.503 * | <0.001 * |
Married | 5366 | 35.4 | 2474 | 24.6 | 2892 | 56.7 | ||
Engaged | 171 | 1.1 | 103 | 1.0 | 68 | 1.3 | ||
Widow | 300 | 2.0 | 85 | 0.8 | 215 | 4.2 | ||
Educational level | ||||||||
Non-educated | 596 | 3.9 | 182 | 1.8 | 414 | 8.1 | χ2 =1388.119 * | <0.001 * |
Student | 5502 | 36.3 | 4514 | 44.9 | 988 | 19.4 | ||
Technical education | 6168 | 40.7 | 3918 | 38.9 | 2250 | 44.1 | ||
Bachelor | 1698 | 11.2 | 746 | 7.4 | 952 | 18.7 | ||
Postgraduate studies | 1153 | 7.6 | 678 | 6.7 | 475 | 9.3 | ||
Others | 49 | 0.3 | 25 | 0.2 | 24 | 0.5 |
Survey Item | No. | % |
---|---|---|
Select the Symptoms Associated with the Disease; | ||
Fever | 4035 | 79.1 |
Cough | 3804 | 74.5 |
Loss of sense of smell (anosmia) and loss of sense of taste (ageusia) | 3492 | 68.4 |
Dyspnea | 3414 | 66.9 |
Diarrhea | 2033 | 39.8 |
Without symptoms | 8 | 0.2 |
Other | 322 | 6.3 |
How was it diagnosed? | ||
Clinical examination | 3041 | 59.6 |
Lab. investigation (CRP, CBC, ferritin, D-dimer, etc) | 2855 | 55.9 |
Chest CT | 2358 | 46.2 |
PCR | 1182 | 23.2 |
Where were you isolated? | ||
Home isolation (Mild-Moderate cases) | 4246 | 83.2 |
Hospital (severe cases) | 857 | 16.8 |
Total (n = 15,166) | Did You Get an Infection with COVID-19 | χ2 | p | |||||
---|---|---|---|---|---|---|---|---|
No (n = 10,063) | Yes (n = 5103) | |||||||
No. | % | No. | % | No. | % | |||
Occupation | ||||||||
Jobless | 2137 | 14.1 | 1149 | 11.4 | 988 | 19.4 | 1239.35 * | <0.001 * |
Student | 6013 | 39.6 | 4949 | 49.2 | 1064 | 20.9 | ||
Non-healthcare professional | 4560 | 30.1 | 2390 | 23.8 | 2170 | 42.5 | ||
Healthcare professional | 2456 | 16.2 | 1575 | 15.7 | 881 | 17.3 | ||
Previous travel outside the country | ||||||||
No | 13,581 | 89.5 | 9007 | 89.5 | 4574 | 89.6 | 0.059 | 0.808 |
Yes | 1585 | 10.5 | 1056 | 10.5 | 529 | 10.4 | ||
Smoking | ||||||||
No | 13,165 | 86.8 | 8886 | 88.3 | 4279 | 83.9 | 67.690 * | <0.001 * |
Irregular or from 1–10 cigarettes | 1124 | 7.4 | 631 | 6.3 | 493 | 9.7 | ||
From 11–20 cigarettes | 650 | 4.3 | 399 | 4.0 | 251 | 4.9 | ||
More than 20 cigarettes | 227 | 1.5 | 147 | 1.5 | 80 | 1.6 | ||
What are your food habits? | ||||||||
Healthy food | 9094 | 60.0 | 6054 | 60.2 | 3040 | 59.6 | 1.044 | 0.593 |
Fast food | 5570 | 36.7 | 3670 | 36.5 | 1900 | 37.2 | ||
Vegetarian | 502 | 3.3 | 339 | 3.4 | 163 | 3.2 | ||
Does your diet contain any of these ingredients? | ||||||||
Legumes and beans | 9151 | 60.3 | 6091 | 60.5 | 3060 | 60.0 | 0.450 | 0.502 |
Vegetables and fruits | 11,065 | 73.0 | 7305 | 72.6 | 3760 | 73.7 | 2.037 | 0.153 |
Meat and eggs | 12,053 | 79.5 | 7988 | 79.4 | 4065 | 79.7 | 0.162 | 0.688 |
Do you suffer from one of the following diseases? | ||||||||
No | 12,434 | 82.0 | 8810 | 87.5 | 3624 | 71.0 | 626.544 * | <0.001 * |
Yes | 2732 | 18.0 | 1253 | 12.5 | 1479 | 29.0 | ||
Hypertension | 1161 | 7.7 | 405 | 4.0 | 756 | 14.8 | 557.655 * | <0.001 * |
Diabetes | 806 | 5.3 | 248 | 2.5 | 558 | 10.9 | 482.758 * | <0.001 * |
Chest disease | 469 | 3.1 | 215 | 2.1 | 254 | 5.0 | 91.189 * | <0.001 * |
Cardiac disease | 250 | 1.6 | 84 | 0.8 | 166 | 3.3 | 122.133 * | <0.001 * |
Autoimmune disease | 240 | 1.6 | 132 | 1.3 | 108 | 2.1 | 14.077 * | <0.001 * |
Hepatic diseases | 69 | 0.5 | 22 | 0.2 | 47 | 0.9 | 36.886 * | <0.001 * |
Cancer | 29 | 0.2 | 16 | 0.2 | 13 | 0.3 | 1.627 | 0.202 |
Renal Failure | 32 | 0.2 | 9 | 0.1 | 23 | 0.5 | 20.990 * | <0.001 * |
Other diseases | 454 | 2.9 | 279 | 2.7 | 175 | 3.4 | 5.070 * | 0.024 * |
Did You Get an Infection with COVID-19? | Total (n = 15,166) | χ2 | p | |||||
---|---|---|---|---|---|---|---|---|
No (n = 10,063) | Yes (n = 5103) | |||||||
No. | % | No. | % | No. | % | |||
Are you a regular user of multivitamins? | ||||||||
No | 7880 | 78.3 | 4005 | 78.5 | 11,885 | 78.4 | 0.062 | 0.803 |
Yes | 2183 | 21.7 | 1098 | 21.5 | 3281 | 21.6 | ||
Are you annually receiving the influenza vaccine? | ||||||||
No | 5417 | 53.8 | 1083 | 21.2 | 6500 | 42.9 | 1470.083 * | <0.001 * |
Yes | 4646 | 46.2 | 4020 | 78.8 | 8666 | 57.1 | ||
What are you doing to protect yourself from COVID-19? | ||||||||
Do not follow any precautions | 1115 | 11.1 | 502 | 9.8 | 1617 | 10.7 | 5.491 * | 0.019 * |
Face mask | 8444 | 83.9 | 4369 | 85.6 | 12,813 | 84.5 | 7.509 * | 0.006 * |
Wear face shield | 1506 | 15 | 757 | 14.8 | 2263 | 14.9 | 0.046 | 0.830 |
Use alcohol | 56,965 | 59.3 | 3104 | 60.8 | 9069 | 59.8 | 3.386 | 0.066 |
Others | 94 | 0.9 | 45 | 0.9 | 139 | 0.9 | 0.102 | 0.750 |
Have you had any contact with someone with COVID-19 disease? | ||||||||
No | 5417 | 53.8 | 1083 | 21.2 | 6500 | 42.9 | 1470.083 * | <0.001 * |
Yes | 4646 | 46.2 | 4020 | 78.8 | 8666 | 57.1 |
Did You Suffer from Any of the Following Problems since Your Infection | Did You Get an Infection with COVID-19 | Total | χ2 | p | ||||
---|---|---|---|---|---|---|---|---|
No (n = 10,063) | Yes (n = 5103) | (n = 15,166) | ||||||
No. | % | No. | % | No. | % | |||
Clots | 58 | 0.60 | 192 | 3.80 | 250 | 1.60 | 212.010 * | <0.001 * |
Depression needs treatment | 336 | 3.30 | 336 | 6.60 | 672 | 4.40 | 84.218 * | <0.001 * |
Not experience anything | 9415 | 93.60 | 4459 | 87.40 | 13,874 | 91.50 | 165.967 * | <0.001 * |
Other | 113 | 1.10 | 93 | 1.80 | 206 | 1.40 | 12.366 * | <0.001 * |
Did you experience post-COVID-19 symptoms? | No. | % | ||||||
No | 4010 | 78.6 | ||||||
Yes | 1093 | 21.4 | ||||||
Did you receive anticoagulant | ||||||||
No | 3088 | 60.5 | ||||||
Yes | 2015 | 39.5 |
Post-COVID Symptoms | Use of Anticoagulant | Incidence of Clots | Depression/ Use of Antidepressants | |||||
---|---|---|---|---|---|---|---|---|
p | OR (95% C.I) | p | OR (95% C.I) | p | OR (95% C.I) | p | OR (95% C.I) | |
Sex | ||||||||
Male ®“Ref.” | Ref. | |||||||
Female | <0.001 * | 1.618 (1.34–1.96) | NA | NA | NA | |||
Age (years) | ||||||||
18-<30 ®“Ref.” | Ref. | |||||||
30–50 | 0.801 | 0.975 (0.80–1.18) | 0.087 | 1.19 (0.97–1.45) | 0.089 | 1.727 (0.92–3.24) | 0.176 | 0.776 (0.54–1.12) |
≥50 | 0.001 * | 0.606 (0.45–0.82) | <0.001 * | 1.72 (1.38–2.14) | <0.001 * | 3.471 (1.81–6.65) | 0.003 * | 0.509 (0.33–0.80) |
BMI | ||||||||
Normal (18.5–24.99) ®“Ref.” | Ref. | |||||||
Low (<18.5) | 0.375 | 1.372 (0.68–2.76) | 0.016 * | 2.048 (1.14–3.68) | NA | NA | ||
Overweight (25–29.99) | 0.320 | 1.104 (0.91–1.34) | <0.001 * | 1.42 (1.23–1.64) | NA | NA | ||
Obese (30–39.99) | 0.002 * | 1.509 (1.16–1.96) | <0.001 * | 1.94 (1.63–2.31) | NA | NA | ||
Severely obese (≥40) | 0.428 | 0.702 (0.29–1.68) | <0.001 * | 3.420 (2.39–4.90) | NA | NA | ||
Residency | ||||||||
Great Cairo ®“Ref.” | Ref. | |||||||
Upper Egypt | 0.005 * | 0.696 (0.54–0.90) | 0.009 * | 0.798 (0.67–0.95) | NA | NA | ||
Northern Egypt | 0.045 * | 0.824 (0.68–0.100) | 0.208 | 1.089 (0.95–1.24) | NA | NA | ||
Marital status | ||||||||
Single ®“Ref.” | Ref | |||||||
Married | NA | 0.015 * | 1.278 (1.05–1.56) | NA | 0.482 | 0.880 (0.62–1.26) | ||
Engaged | NA | 0.739 | 1.094 (0.64–1.86) | NA | 0.001 * | 3.023 (1.57–6.53) | ||
Widow | NA | 0.427 | 1.152 (0.81–1.64) | NA | 0.281 | 1.444 (0.74–2.82) | ||
Educational level | ||||||||
Educated ®“Ref.” | ||||||||
Non-educated | NA | NA | 0.013 * | 1.67 (1.11–2.52) | NA | |||
Job | ||||||||
Other ®“Ref.” | ||||||||
Healthcare professional | NA | <0.001 * | 1.38 (1.19–1.62) | NA | NA | |||
Previous travel outside the Country | ||||||||
No ®“Ref.” | ||||||||
Yes | NA | NA | 0.004 * | 1.622 (1.17–2.24) | ||||
Suffering from any of the comorbid diseases | NA | 0.024 * | 2.031 (1.10–3.76) | NA | NA | |||
Diet: meat and eggs | NA | NA | 0.015 * | 0.661 (0.47–0.92) | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schaalan, M.; Abou Warda, A.E.; Osman, S.M.; Fathy, S.; Sarhan, R.M.; Boshra, M.S.; Sarhan, N.; Gaber, S.; Ali, A.M.A. The Impact of Sociodemographic, Nutritional, and Health Factors on the Incidence and Complications of COVID-19 in Egypt: A Cross-Sectional Study. Viruses 2022, 14, 448. https://doi.org/10.3390/v14030448
Schaalan M, Abou Warda AE, Osman SM, Fathy S, Sarhan RM, Boshra MS, Sarhan N, Gaber S, Ali AMA. The Impact of Sociodemographic, Nutritional, and Health Factors on the Incidence and Complications of COVID-19 in Egypt: A Cross-Sectional Study. Viruses. 2022; 14(3):448. https://doi.org/10.3390/v14030448
Chicago/Turabian StyleSchaalan, Mona, Ahmed E. Abou Warda, Samir M. Osman, Shaimaa Fathy, Rania M. Sarhan, Marian S. Boshra, Neven Sarhan, Sayed Gaber, and Ahmed Mahmoud Abdelhaleem Ali. 2022. "The Impact of Sociodemographic, Nutritional, and Health Factors on the Incidence and Complications of COVID-19 in Egypt: A Cross-Sectional Study" Viruses 14, no. 3: 448. https://doi.org/10.3390/v14030448
APA StyleSchaalan, M., Abou Warda, A. E., Osman, S. M., Fathy, S., Sarhan, R. M., Boshra, M. S., Sarhan, N., Gaber, S., & Ali, A. M. A. (2022). The Impact of Sociodemographic, Nutritional, and Health Factors on the Incidence and Complications of COVID-19 in Egypt: A Cross-Sectional Study. Viruses, 14(3), 448. https://doi.org/10.3390/v14030448