Seroprevalence of Zika Virus in Amphawa District, Thailand, after the 2016 Pandemic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Sample Collection
2.2. ZIKV and Dengue Virus NS1 IgG ELISA
2.3. ZIKV NS1 Blockade-of-Binding (BOB) ELISA
2.4. Plaque Reduction Neutralization Test (PRNT)
2.5. ZIKV RT-PCR
2.6. Criteria of ZIKV NS1 Seropositivity and Seroconversion
2.7. Statistical Analysis
3. Results
3.1. The Seroprevalence of ZIKV Infection
3.2. The Seroconversion Rate of the ZIKV NS1 Antibody
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Dick, G.W.A. Zika Virus (I). Isolations and serological specificity. Trans. R. Soc. Trop. Med. Hyg. 1952, 46, 509–520. [Google Scholar] [CrossRef]
- Simpson, D.I.H. Zika virus infection in man. Trans. R. Soc. Trop. Med. Hyg. 1964, 58, 335–337. [Google Scholar] [CrossRef]
- Marchette, N.J.; Garcia, R.; Rudnick, A. Isolation of Zika virus from Aedes aegypti mosquitoes in Malaysia. Am. J. Trop. Med. Hyg. 1969, 18, 411–415. [Google Scholar] [CrossRef] [PubMed]
- Duffy, M.R.; Chen, T.-H.; Hancock, W.T.; Powers, A.M.; Kool, J.L.; Lanciotti, R.S.; Pretrick, M.; Marfel, M.; Holzbauer, S.; Dubray, C.; et al. Zika Virus Outbreak on Yap Island, Federated States of Micronesia. N. Engl. J. Med. 2009, 360, 2536–2543. [Google Scholar] [CrossRef]
- Musso, D.; Ko, A.I.; Baud, D. Zika Virus Infection—After the Pandemic. N. Engl. J. Med. 2019, 381, 1444–1457. [Google Scholar] [CrossRef]
- Hennessey, M.; Fischer, M.; Staples, J.E. Zika Virus Spreads to New Areas—Region of the Americas, May 2015–January 2016. Am. J. Transplant. 2016, 16, 1031–1034. [Google Scholar] [CrossRef] [Green Version]
- França, G.V.A.; Schuler-Faccini, L. Congenital Zika virus syndrome in Brazil: A case series of the first 1501 livebirths with complete investigation. Lancet 2016, 388, 891–897. [Google Scholar] [CrossRef] [Green Version]
- WHO Statement on the First Meeting of the International Health Regulations (2005) (IHR 2005) Emergency Committee on Zika Virus and Observed Increase in Neurological Disorders and Neonatal Malformations. 2005. Available online: https://www.who.int/news/item/01-02-2016-who-statement-on-the-first-meeting-of-the-international-health-regulations-(2005)-(ihr-2005)-emergency-committee-on-zika-virus-and-observed-increase-in-neurological-disorders-and-neonatal-malformations (accessed on 5 January 2022).
- Ioos, S.; Mallet, H.P.; Leparc Goffart, I.; Gauthier, V.; Cardoso, T.; Herida, M. Current Zika virus epidemiology and recent epidemics. Med. Mal. Infect. 2014, 44, 302–307. [Google Scholar] [CrossRef]
- Wongsawat, J.; Vivong, N.; Suttha, P.; Utayamakul, S.; Aumpornareekul, S.; Chewcharat, A.; Chokephaibulkit, K. Zika Virus Disease Comparing Children and Adults in a Dengue-Endemic Setting. Am. J. Trop. Med. Hyg 2021, 104, 557–563. [Google Scholar] [CrossRef]
- Pond, W.L. Arthropod-borne virus antibodies in sera from residents of South-east Asia. Trans. R. Soc. Trop. Med. Hyg. 1963, 57, 364–371. [Google Scholar] [CrossRef]
- Musso, D.; Gubler, D.J. Zika virus. Clin. Microbiol. Rev. 2016, 29, 487–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, W.Y.; Youn, H.H.; Brites, C.; Tsai, J.J.; Tyson, J.; Pedroso, C.; Drexler, J.F.; Stone, M.; Simmons, G.; Busch, M.P.; et al. Distinguishing Secondary Dengue Virus Infection From Zika Virus Infection With Previous Dengue by a Combination of 3 Simple Serological Tests. Clin. Infect. Dis. An Off. Publ. Infect. Dis. Soc. Am. 2017, 65, 1829. [Google Scholar] [CrossRef]
- Tyson, J.; Tsai, W.Y.; Tsai, J.J.; Brites, C.; Mässgård, L.; Youn, H.H.; Pedroso, C.; Drexler, J.F.; Stramer, S.L.; Balmaseda, A.; et al. Combination of Nonstructural Protein 1-Based Enzyme-Linked Immunosorbent Assays Can Detect and Distinguish Various Dengue Virus and Zika Virus Infections. J. Clin. Microbiol. 2019, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buathong, R.; Hermann, L.; Thaisomboonsuk, B.; Rutvisuttinunt, W.; Klungthong, C.; Chinnawirotpisan, P.; Manasatienkij, W.; Nisalak, A.; Fernandez, S.; Yoon, I.K.; et al. Detection of zika virus infection in Thailand, 2012-2014. Am. J. Trop. Med. Hyg. 2015, 93, 380–383. [Google Scholar] [CrossRef] [Green Version]
- Phumee, A.; Buathong, R.; Boonserm, R.; Intayot, P.; Aungsananta, N.; Jittmittraphap, A.; Joyjinda, Y.; Wacharapluesadee, S.; Siriyasatien, P. Molecular Epidemiology and Genetic Diversity of Zika Virus from Field-Caught Mosquitoes in Various Regions of Thailand. Pathogens 2019, 8, 30. [Google Scholar] [CrossRef] [Green Version]
- Ruchusatsawat, K.; Wongjaroen, P.; Posanacharoen, A.; Rodriguez-Barraquer, I.; Sangkitporn, S.; Cummings, D.A.T.; Salje, H. Long-term circulation of Zika virus in Thailand: An observational study. Lancet Infect. Dis. 2019, 19, 439–446. [Google Scholar] [CrossRef] [Green Version]
- The Situation of Zika Virus in Thailand for the Week of 52/2018, 28 December 2018. 2018. Available online: https://ddc.moph.go.th/uploads/ckeditor/6f4922f45568161a8cdf4ad2299f6d23/files/Zika%20Fever/2561/Zika%2052.pdf (accessed on 1 April 2021).
- Balmaseda, A.; Stettler, K.; Medialdea-Carrera, R.; Collado, D.; Jin, X.; Zambrana, J.V.; Jaconi, S.; Cameroni, E.; Saborio, S.; Rovida, F.; et al. Antibody-based assay discriminates Zika virus infection from other flaviviruses. Proc. Natl. Acad. Sci. USA 2017, 114, 8384–8389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, P.K.; Nisalak, A.; Sukhavachana, P.; Vivona, S. A plaque reduction test for dengue virus neutralizing antibodies. J. Immunol. 1967, 99, 285–290. [Google Scholar]
- Sriburin, P.; Sittikul, P.; Kosoltanapiwat, N.; Sirinam, S.; Arunsodsai, W.; Sirivichayakul, C.; Limkittikul, K.; Chatchen, S. Incidence of zika virus infection from a dengue epidemiological study of children in ratchaburi province, thailand. Viruses 2021, 13, 1802. [Google Scholar] [CrossRef]
- Aubry, M.; Teissier, A.; Huart, M.; Merceron, S.; Vanhomwegen, J.; Roche, C.; Vial, A.-L.; Teururai, S.; Sicard, S.; Paulous, S.; et al. Zika Virus Seroprevalence, French Polynesia, 2014–2015. Emerg. Infect. Dis. 2017, 23, 669–672. [Google Scholar] [CrossRef] [Green Version]
- Zambrana, J.V.; Carrillo, F.B.; Burger-Calderon, R.; Collado, D.; Sanchez, N.; Ojeda, S.; Monterrey, J.C.; Plazaola, M.; Lopez, B.; Arguello, S.; et al. Seroprevalence, risk factor, and spatial analyses of Zika virus infection after the 2016 epidemic in Managua, Nicaragua. Proc. Natl. Acad. Sci. USA 2018, 115, 9294–9299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sornjai, W.; Jaratsittisin, J.; Auewarakul, P.; Wikan, N.; Smith, D.R. Analysis of Zika virus neutralizing antibodies in normal healthy Thais. Sci. Rep. 2018, 8, 17193. [Google Scholar] [CrossRef] [PubMed]
- Densathaporn, T.; Sangthong, R.; Sakolnapa, M.; Surasombatpattana, S.; Kemapunmanus, M.; Masrinoul, P.; Yoksan, S.; McNeil, E.B.; Chongsuvivatwong, V. Survey on neutralizing antibodies against Zika virus eighteen months post-outbreak in two southern Thailand communities. BMC Infect. Dis. 2020, 20, 921. [Google Scholar] [CrossRef] [PubMed]
- Phatihattakorn, C.; Wongsa, A.; Pongpan, K.; Anuwuthinawin, S.; Mungmanthong, S.; Wongprasert, M.; Tassaneetrithep, B. Seroprevalence of Zika virus in pregnant women from central Thailand. PLoS ONE 2021, 16, e0257205. [Google Scholar] [CrossRef]
- Lessler, J.; Chaisson, L.H.; Kucirka, L.M.; Bi, Q.; Grantz, K.; Salje, H.; Carcelen, A.C.; Ott, C.T.; Sheffield, J.S.; Ferguson, N.M.; et al. Assessing the global threat from Zika virus. Science 2016, 353, aaf8160. [Google Scholar] [CrossRef] [Green Version]
- Henderson, A.D.; Aubry, M.; Kama, M.; Vanhomwegen, J.; Teissier, A.; Mariteragi-Helle, T.; Paoaafaite, T.; Manuguerra, J.C.; Edmunds, W.J.; Whitworth, J.; et al. Zika virus seroprevalence declines and neutralization antibodies wane in adults following outbreaks in French Polynesia and Fiji. bioRxiv 2019, 1–17. [Google Scholar] [CrossRef]
- Honein, M.A.; Dawson, A.L.; Petersen, E.E.; Jones, A.M.; Lee, E.H.; Yazdy, M.M.; Ahmad, N.; Macdonald, J.; Evert, N.; Bingham, A.; et al. Birth Defects Among Fetuses and Infants of US Women With Evidence of Possible Zika Virus Infection During Pregnancy. JAMA 2017, 317, 59–68. [Google Scholar] [CrossRef]
Subdistrict | Number | Sex | Age (Years) | |||
---|---|---|---|---|---|---|
Male | Female | 5–15 | 16–30 | 31–50 | ||
Mueang Mai | 124 | 53 (42.7%) | 71 (57.3%) | 20 (16.1%) | 36 (29.0%) | 68 (54.9%) |
Khwae Om * | 105 | 45 (42.9%) | 60 (57.1%) | 28 (26.7%) | 27 (25.7%) | 50 (47.6%) |
Bang Khae | 121 | 45 (37.2%) | 76 (62.8%) | 24 (19.8%) | 34 (28.1%) | 63 (52.1%) |
Total (% **) | 350 | 143 (40.9%) | 207 (59.1%) | 72 (20.6%) | 97 (27.7%) | 181 (51.7%) |
Age (Years) | Day 0 (N = 350) | Month 6 (N = 330) | Month 12 (N = 314) | p | |
---|---|---|---|---|---|
Day 0 vs. Month 6 | Month 6 vs. Month 12 | ||||
5–15 | 8/73 (11.0%) | 11/71 (15.4%) | 7/64 (10.9%) | 0.577 | 0.600 |
16–30 | 13/97 (13.4%) | 16/88 (18.1%) | 17/83 (20.5%) | 0.490 | 0.852 |
31–50 | 32/180 (17.8%) | 30/171 (17.5%) | 32/167 (19.2%) | 1.000 | 0.807 |
Total | 53 (15.1%) | 57 (17.2%) | 56 (17.8%) | 0.516 | 0.933 |
ID Code | Laboratory Testing | Day 0 (April 2017) | Month 6 (October 2017) | Month 12 (April 2018) | |
---|---|---|---|---|---|
95 | % inhibition | Zika NS1-BOB | 26.0 | 98.3 | 72.7 |
PRNT50 | Zika | 198 | >2560 | >2560 | |
DEN1 | 29 | >2560 | 295 | ||
DEN2 | 259 | >2560 | 382 | ||
DEN3 | 241 | >2560 | 489 | ||
DEN4 | 196 | >2560 | 311 | ||
166 | % inhibition | Zika NS1-BOB | 19.6 | 92.6 | 96.9 |
PRNT50 | Zika | 16 | >2560 | 280 | |
DEN1 | 1843 | >2560 | >2560 | ||
DEN2 | 1780 | >2560 | >2560 | ||
DEN3 | >2560 | >2560 | >2560 | ||
DEN4 | 82 | 133 | 591 | ||
DEN4 | 1711 | 1440 | 5 | ||
167 | % inhibition | Zika NS1-BOB | 1.5 | 82.5 | 67.6 |
PRNT50 | Zika | <10 | 1307 | 572 | |
DEN1 | 10 | 1405 | 192 | ||
DEN2 | 1080 | >2560 | 863 | ||
DEN3 | 107 | 2096 | 892 | ||
DEN4 | <10 | 762 | 114 | ||
DEN4 | 114 | 320 | 110 | ||
168 | % inhibition | Zika NS1-BOB | 12.5 | 80.3 | 48.3 |
PRNT50 | Zika | <10 | 1637 | 259 | |
DEN1 | >2560 | 22 | 432 | ||
DEN2 | >2560 | 209 | 1459 | ||
DEN3 | 754 | 60 | 753 | ||
DEN4 | 1014 | 52 | 250 | ||
192 | % inhibition | Zika NS1-BOB | 36.7 | 84.6 | 71.2 |
PRNT50 | Zika | <10 | 1298 | 1541 | |
DEN1 | 782 | >2560 | 1929 | ||
DEN2 | 535 | >2560 | >2560 | ||
DEN3 | 1076 | >2560 | 1298 | ||
DEN4 | 29 | 19 | 31 | ||
196 | % inhibition | Zika NS1-BOB | 40.3 | 94.5 | 85.9 |
PRNT50 | Zika | <10 | 2083 | 949 | |
DEN1 | <10 | 316 | 174 | ||
DEN2 | 66 | >2560 | 1022 | ||
DEN3 | 1298 | 474 | 560 | ||
DEN4 | <10 | 74 | 48 | ||
232 | % inhibition | Zika NS1-BOB | 15.7 | 82.1 | 81.8 |
PRNT50 | Zika | 207 | >2560 | 2439 | |
DEN1 | 262 | 2157 | 1406 | ||
DEN2 | 276 | 2062 | 1315 | ||
DEN3 | 39 | 905 | 1435 | ||
DEN4 | 132 | 1570 | 2504 | ||
173 | % inhibition | Zika NS1-BOB | 20.3 | 70.0 | 39.3 |
PRNT50 | Zika | <10 | >2560 | 745 | |
DEN1 | 592 | >2560 | 1311 | ||
DEN2 | 966 | >2560 | 1353 | ||
DEN3 | 334 | >2560 | 1075 | ||
DEN4 | 60 | 1128 | 166 | ||
191 | % inhibition | Zika NS1-BOB | 46.3 | 103.8 | 97.1 |
PRNT50 | Zika | 1520 | >2560 | 1628 | |
DEN1 | 307 | >2560 | 2461 | ||
DEN2 | 2217 | >2560 | >2560 | ||
DEN3 | 465 | >2560 | >2560 | ||
DEN4 | 277 | 2527 | 536 | ||
210 | % inhibition | Zika NS1-BOB | 49.4 | 106.0 | missing |
PRNT50 | Zika | 210 | >2560 | missing | |
DEN1 | <10 | 830 | missing | ||
DEN2 | <10 | 2458 | missing | ||
DEN3 | <10 | 917 | missing | ||
DEN4 | >2560 | 520 | missing | ||
236 | % inhibition | Zika NS1-BOB | 28.0 | 53.9 | 38.8 |
PRNT50 | Zika | <10 | 1103 | >2560 | |
DEN1 | <10 | 47 | 17 | ||
DEN2 | <10 | 88 | 540 | ||
DEN3 | <10 | 55 | 424 | ||
DEN4 | 37 | 56 | 169 | ||
139 | % inhibition | Zika NS1-BOB | 28.4 | 20.6 | 60.4 |
PRNT50 | Zika | 106 | 752 | 1641 | |
DEN1 | 55 | 63 | 1428 | ||
DEN2 | 622 | 475 | >2560 | ||
DEN3 | 249 | 121 | 760 | ||
DEN4 | 121 | 111 | 570 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sirinam, S.; Chatchen, S.; Arunsodsai, W.; Guharat, S.; Limkittikul, K. Seroprevalence of Zika Virus in Amphawa District, Thailand, after the 2016 Pandemic. Viruses 2022, 14, 476. https://doi.org/10.3390/v14030476
Sirinam S, Chatchen S, Arunsodsai W, Guharat S, Limkittikul K. Seroprevalence of Zika Virus in Amphawa District, Thailand, after the 2016 Pandemic. Viruses. 2022; 14(3):476. https://doi.org/10.3390/v14030476
Chicago/Turabian StyleSirinam, Salin, Supawat Chatchen, Watcharee Arunsodsai, Suriya Guharat, and Kriengsak Limkittikul. 2022. "Seroprevalence of Zika Virus in Amphawa District, Thailand, after the 2016 Pandemic" Viruses 14, no. 3: 476. https://doi.org/10.3390/v14030476
APA StyleSirinam, S., Chatchen, S., Arunsodsai, W., Guharat, S., & Limkittikul, K. (2022). Seroprevalence of Zika Virus in Amphawa District, Thailand, after the 2016 Pandemic. Viruses, 14(3), 476. https://doi.org/10.3390/v14030476