Seroprevalence, Waning and Correlates of Anti-SARS-CoV-2 IgG Antibodies in Tyrol, Austria: Large-Scale Study of 35,193 Blood Donors Conducted between June 2020 and September 2021
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Study Population
3.2. Seroprevalence of Anti-SARS-CoV-2 IgG Antibodies by Time and by Region
3.3. Seroprevalence of Anti-S IgG Antibodies by Vaccination Status and Prior SARS-CoV-2 Infection
3.4. Cross-Sectional Correlates of Anti-S IgG Seroprevalence and Antibody Levels
3.5. Waning of Anti-S IgG Antibody Levels after SARS-CoV-2 Infection and after Vaccination
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ritchie, H.; Mathieu, E.; Rodés-Guirao, L.; Appel, C.; Giattino, C.; Ortiz-Ospina, E.; Hasell, J.; Macdonald, B.; Beltekian, D.; Roser, M. Coronavirus Pandemic (COVID-19). Available online: https://ourworldindata.org/coronavirus (accessed on 13 December 2021).
- Robert Koch Institut. Serologische Untersuchungen von Blutspenden auf Antikörper gegen SARS-CoV-2 (SeBluCo-Studie). Available online: https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Projekte_RKI/SeBluCo_Zwischenbericht.html (accessed on 10 December 2021).
- Ward, H.; Whitaker, M.; Tang, S.N.; Atchison, C.; Darzi, A.; Donnelly, C.A.; Diggle, P.J.; Ashby, D.; Riley, S.; Barclay, W.S.; et al. Vaccine uptake and SARS-CoV-2 antibody prevalence among 207,337 adults during May 2021 in England: REACT-2 study. medRxiv 2021. [Google Scholar] [CrossRef]
- Office for National Statistics. Antibodies against Coronavirus (COVID-19). Available online: https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/articles/coronaviruscovid19latestinsights/antibodies (accessed on 26 November 2021).
- Siller, A.; Wachter, G.A.; Neururer, S.; Pfeifer, B.; Astl, M.; Borena, W.; Kimpel, J.; Elmer, S.; Spöck, F.; Vales, A.; et al. Prevalence of SARS-CoV-2 antibodies in healthy blood donors from the state of Tyrol, Austria, in summer 2020. Wien. Klin. Wochenschr. 2021, 133, 1272–1280. [Google Scholar] [CrossRef]
- Weidner, L.; Nunhofer, V.; Jungbauer, C.; Hoeggerl, A.D.; Grüner, L.; Grabmer, C.; Zimmermann, G.; Rohde, E.; Laner-Plamberger, S. Seroprevalence of anti-SARS-CoV-2 total antibody is higher in younger Austrian blood donors. Infection 2021, 49, 1187–1194. [Google Scholar] [CrossRef] [PubMed]
- Statistik Austria. Mehr als die Hälfte der SARS-CoV-2-Infektionen Kurz vor dem Zweiten Lockdown sind Behördlich Nicht Erfasst. Available online: https://www.statistik.at/web_de/presse/124846.html (accessed on 10 December 2021).
- Steensels, D.; Pierlet, N.; Penders, J.; Mesotten, D.; Heylen, L. Comparison of SARS-CoV-2 Antibody Response Following Vaccination with BNT162b2 and mRNA-1273. JAMA 2021, 326, 1533–1535. [Google Scholar] [CrossRef] [PubMed]
- Levin, E.G.; Lustig, Y.; Cohen, C.; Fluss, R.; Indenbaum, V.; Amit, S.; Doolman, R.; Asraf, K.; Mendelson, E.; Ziv, A.; et al. Waning Immune Humoral Response to BNT162b2 Covid-19 Vaccine over 6 Months. N. Engl. J. Med. 2021, 385, e84. [Google Scholar] [CrossRef] [PubMed]
- Abbott Alinity i. SARS-CoV-2 IgG Instructions for Use. Available online: https://www.corelaboratory.abbott/int/en/home (accessed on 31 December 2020).
- Abbott Alinity i. SARS-CoV-2 IgG II Quant Instructions for Use. Available online: https://www.corelaboratory.abbott/int/en/home (accessed on 30 April 2021).
- Borena, W.; Bánki, Z.; Bates, K.; Winner, H.; Riepler, L.; Rössler, A.; Pipperger, L.; Theurl, I.; Falkensammer, B.; Ulmer, H.; et al. Persistence of immunity to SARS-CoV-2 over time in the ski resort Ischgl. EBioMedicine 2021, 70, 103534. [Google Scholar] [CrossRef]
- Statistik Austria. Bevölkerung nach Alter und Geschlecht. Available online: http://www.statistik.at/web_de/statistiken/menschen_und_gesellschaft/bevoelkerung/bevoelkerungsstruktur/bevoelkerung_nach_alter_geschlecht/index.html (accessed on 9 December 2021).
- data.gv.at—Open Data Österreich. Katalog COVID-19: Zeitliche Darstellung von Daten zu Covid19-Fällen je Bezirk. Available online: https://www.data.gv.at/covid-19/ (accessed on 7 December 2021).
- Gallais, F.; Gantner, P.; Bruel, T.; Velay, A.; Planas, D.; Wendling, M.-J.; Bayer, S.; Solis, M.; Laugel, E.; Reix, N.; et al. Evolution of antibody responses up to 13 months after SARS-CoV-2 infection and risk of reinfection. EBioMedicine 2021, 71, 103561. [Google Scholar] [CrossRef]
- Walsh, E.E.; Frenck, R.W.; Falsey, A.R.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Neuzil, K.; Mulligan, M.J.; Bailey, R.; et al. Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates. N. Engl. J. Med. 2020, 383, 2439–2450. [Google Scholar] [CrossRef] [PubMed]
- Naranbhai, V.; Garcia-Beltran, W.F.; Chang, C.C.; Mairena, C.B.; Thierauf, J.C.; Kirkpatrick, G.; Onozato, M.L.; Cheng, J.; St Denis, K.J.; Lam, E.C.; et al. Comparative immunogenicity and effectiveness of mRNA-1273, BNT162b2 and Ad26.COV2.S COVID-19 vaccines. J. Infect. Dis. 2021, jiab593. [Google Scholar] [CrossRef] [PubMed]
- Anderson, E.J.; Rouphael, N.G.; Widge, A.T.; Jackson, L.A.; Roberts, P.C.; Makhene, M.; Chappell, J.D.; Denison, M.R.; Stevens, L.J.; Pruijssers, A.J.; et al. Safety and Immunogenicity of SARS-CoV-2 mRNA-1273 Vaccine in Older Adults. N. Engl. J. Med. 2020, 383, 2427–2438. [Google Scholar] [CrossRef]
- Rahav, G.; Lustig, Y.; Lavee, J.; Ohad, B.; Magen, H.; Hod, T.; Noga, S.-T.; Shmueli, E.S.; Drorit, M.; Ben-Ari, Z.; et al. BNT162b2 mRNA COVID-19 vaccination in immunocompromised patients: A prospective cohort study. EClinicalMedicine 2021, 41, 101158. [Google Scholar] [CrossRef] [PubMed]
- Burckhardt, R.M.; Dennehy, J.J.; Poon, L.L.M.; Saif, L.J.; Enquist, L.W. Are COVID-19 Vaccine Boosters Needed? The Science behind Boosters. J. Virol. 2021, 96, JVI0197321. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.S.; O’Halloran, J.A.; Kalaidina, E.; Kim, W.; Schmitz, A.J.; Zhou, J.Q.; Lei, T.; Thapa, M.; Chen, R.E.; Case, J.B.; et al. SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses. Nature 2021, 596, 109–113. [Google Scholar] [CrossRef]
- Tartof, S.Y.; Slezak, J.M.; Fischer, H.; Hong, V.; Ackerson, B.K.; Ranasinghe, O.N.; Frankland, T.B.; Ogun, O.A.; Zamparo, J.M.; Gray, S.; et al. Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: A retrospective cohort study. Lancet 2021, 398, 1407–1416. [Google Scholar] [CrossRef]
- Thomas, S.J.; Moreira, E.D.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Polack, F.P.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine through 6 Months. N. Engl. J. Med. 2021, 385, 1761–1773. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, E.S.; Dorabawila, V.; Easton, D.; Bauer, U.E.; Kumar, J.; Hoen, R.; Hoefer, D.; Wu, M.; Lutterloh, E.; Conroy, M.B.; et al. Covid-19 Vaccine Effectiveness in New York State. N. Engl. J. Med. 2022, 386, 116–127. [Google Scholar] [CrossRef] [PubMed]
- Nomura, Y.; Sawahata, M.; Nakamura, Y.; Kurihara, M.; Koike, R.; Katsube, O.; Hagiwara, K.; Niho, S.; Masuda, N.; Tanaka, T.; et al. Age and Smoking Predict Antibody Titres at 3 Months after the Second Dose of the BNT162b2 COVID-19 Vaccine. Vaccines 2021, 9, 1042. [Google Scholar] [CrossRef] [PubMed]
- Billah, M.A.; Miah, M.M.; Khan, M.N. Reproductive number of coronavirus: A systematic review and meta-analysis based on global level evidence. PLoS ONE 2020, 15, e0242128. [Google Scholar] [CrossRef]
- Campbell, F.; Archer, B.; Laurenson-Schafer, H.; Jinnai, Y.; Konings, F.; Batra, N.; Pavlin, B.; Vandemaele, K.; van Kerkhove, M.D.; Jombart, T.; et al. Increased transmissibility and global spread of SARS-CoV-2 variants of concern as at June 2021. Eurosurveillance 2021, 26, 2100509. [Google Scholar] [CrossRef]
- Pulliam, J.R.C.; van Schalkwyk, C.; Govender, N.; Gottberg, A.; von Cohen, C.; Groome, M.J.; Dushoff, J.; Mlisana, K.; Moultrie, H. Increased risk of SARS-CoV-2 reinfection associated with emergence of the Omicron variant in South Africa. medRxiv 2021. [Google Scholar] [CrossRef]
- Iftekhar, E.N.; Priesemann, V.; Balling, R.; Bauer, S.; Beutels, P.; Calero Valdez, A.; Cuschieri, S.; Czypionka, T.; Dumpis, U.; Glaab, E.; et al. A look into the future of the COVID-19 pandemic in Europe: An expert consultation. Lancet Reg. Health Eur. 2021, 8, 100185. [Google Scholar] [CrossRef] [PubMed]
- Singanayagam, A.; Hakki, S.; Dunning, J.; Madon, K.J.; Crone, M.A.; Koycheva, A.; Derqui-Fernandez, N.; Barnett, J.L.; Whitfield, M.G.; Varro, R.; et al. Community transmission and viral load kinetics of the SARS-CoV-2 delta (B.1.617.2) variant in vaccinated and unvaccinated individuals in the UK: A prospective, longitudinal, cohort study. Lancet Infect. Dis. 2022, 22, 183–195. [Google Scholar] [CrossRef]
- Shah, A.S.V.; Gribben, C.; Bishop, J.; Hanlon, P.; Caldwell, D.; Wood, R.; Reid, M.; McMenamin, J.; Goldberg, D.; Stockton, D.; et al. Effect of Vaccination on Transmission of SARS-CoV-2. N. Engl. J. Med. 2021, 385, 1718–1720. [Google Scholar] [CrossRef] [PubMed]
Total No. | No. (%), Mean ± SD, Median (IQR), or Range | |
---|---|---|
Baseline data | ||
Date of baseline—range | 35,193 | 8 Jun 2020–30 Sep 2021 |
Age in years—median (IQR) | 35,193 | 43.1 (29.3–53.7) |
Female sex—no. (%) | 35,193 | 15,950 (45.3%) |
Current smoker—no. (%) | 28,265 | 5035 (17.8%) |
Body mass index in kg/m2—mean ± SD | 28,176 | 25.2 ± 3.9 |
Prior SARS-CoV-2 infection—no. (%) | 31,039 | 3113 (10.0%) |
First donation since Oct 2017—no. (%) | 35,193 | 13,832 (39.3%) |
Availability of SARS-CoV-2 antibody data | ||
Participants with anti-N IgG—no. (%) | 35,193 | 24,483 (69.6%) |
Participants with anti-S IgG—no. (%) | 35,193 | 19,792 (56.2%) |
Repeat donations during study | ||
Participants with ≥2 donations—no. (%) | 35,193 | 9735 (27.7%) |
Follow-up duration in months—median (IQR) | 9735 | 6.3 (5.4–9.4) |
Seropositive /Total No. | % Seropositive (95% CI) | Median Level (IQR) in BAU/mL | |
---|---|---|---|
Vaccinated | |||
Partially vaccinated | 2048/2563 | 79.9 (78.3–81.4) | 70 (15–259) |
Fully vaccinated a | 8098/8133 | 99.6 (99.4–99.7) | 757 (265–1829) |
Unvaccinated | |||
Prior SARS-CoV-2 infection | 1445/1599 | 90.4 (88.8–91.7) | 38 (17–87) |
No prior SARS-CoV-2 infection | 815/7070 | 11.5 (10.8–12.3) | 0.1 (0.0–0.5) |
Missing information | 111/427 | 26.0 (22.1–30.4) | 0.2 (0.0–9.1) |
Seroprevalence among Unvaccinated a (n = 2684) | Anti-S IgG Level among Fully Vaccinated b (n = 7701) | |||
---|---|---|---|---|
% Seropositive (95% CI) | Multivariable Adjusted c Odds Ratio (95% CI) vs. Reference | Level in BAU/mL, Median (IQR) | Multivariable Adjusted c % Difference (95% CI) vs. Reference | |
Age groups | ||||
25 years or older | 29.4 (27.5–31.3) | (Reference) | 675 (249–1617) | (Reference) |
<25 years | 39.6 (35.2–44.3) | 2.06 (1.52–2.78) | 1233 (350–2781) | +51.9 (from 37.8 to 67.4) |
Sex | ||||
Female | 30.2 (27.7–32.9) | (Reference) | 776 (264–1803) | (Reference) |
Male | 31.7 (29.4–34.1) | 1.20 (0.94–1.54) | 676 (250–1680) | −8.0 (from −13.6 to −2.1) |
Smoking status | ||||
Never/ex-smoker | 33.8 (31.8–35.8) | (Reference) | 753 (263–1794) | (Reference) |
Current smoker | 19.5 (16.3–23.1) | 0.39 (0.27–0.56) | 580 (220–1486) | −10.6 (from −17.9 to −2.7) |
Body mass index | ||||
<25 kg/m2 | 30.4 (28.2–32.8) | (Reference) | 743 (254–1772) | (Reference) |
25 kg/m2 or higher | 31.8 (29.2–34.6) | 1.31 (1.02–1.69) | 697 (258–1712) | +4.6 (from −1.8 to 11.4) |
Prior SARS-CoV-2 infection | ||||
No | 12.7 (11.3–14.2) | (Reference) | 633 (229–1559) | (Reference) |
Yes | 89.6 (87.0–91.8) | 64.81 (48.33–86.92) | 1491 (668–2986) | +129.3 (from 109.0 to 151.6) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siller, A.; Seekircher, L.; Wachter, G.A.; Astl, M.; Tschiderer, L.; Pfeifer, B.; Gaber, M.; Schennach, H.; Willeit, P. Seroprevalence, Waning and Correlates of Anti-SARS-CoV-2 IgG Antibodies in Tyrol, Austria: Large-Scale Study of 35,193 Blood Donors Conducted between June 2020 and September 2021. Viruses 2022, 14, 568. https://doi.org/10.3390/v14030568
Siller A, Seekircher L, Wachter GA, Astl M, Tschiderer L, Pfeifer B, Gaber M, Schennach H, Willeit P. Seroprevalence, Waning and Correlates of Anti-SARS-CoV-2 IgG Antibodies in Tyrol, Austria: Large-Scale Study of 35,193 Blood Donors Conducted between June 2020 and September 2021. Viruses. 2022; 14(3):568. https://doi.org/10.3390/v14030568
Chicago/Turabian StyleSiller, Anita, Lisa Seekircher, Gregor A. Wachter, Manfred Astl, Lena Tschiderer, Bernhard Pfeifer, Manfred Gaber, Harald Schennach, and Peter Willeit. 2022. "Seroprevalence, Waning and Correlates of Anti-SARS-CoV-2 IgG Antibodies in Tyrol, Austria: Large-Scale Study of 35,193 Blood Donors Conducted between June 2020 and September 2021" Viruses 14, no. 3: 568. https://doi.org/10.3390/v14030568
APA StyleSiller, A., Seekircher, L., Wachter, G. A., Astl, M., Tschiderer, L., Pfeifer, B., Gaber, M., Schennach, H., & Willeit, P. (2022). Seroprevalence, Waning and Correlates of Anti-SARS-CoV-2 IgG Antibodies in Tyrol, Austria: Large-Scale Study of 35,193 Blood Donors Conducted between June 2020 and September 2021. Viruses, 14(3), 568. https://doi.org/10.3390/v14030568