Effects of Organic Biostimulants Added with Zeolite on Zucchini Squash Plants Infected by Tomato Leaf Curl New Delhi Virus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Vegetative Parameters and Symptom Evaluation
2.3. Quantification of Virus Titer
2.4. H-NMR Based Metabolomics of Zucchini Leaves
2.5. Statistical Analysis
3. Results
3.1. Effects of Biostimulants on the Vegetative Parameters
3.2. Evaluation of ToLCNDV Symptomatology
3.3. Effect of Biostimulants on Viral Titer
3.4. Effects of Biostimulants on Primary and Secondary Metabolism of Zucchini Squash Leaves
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rouphael, Y.; Colla, G. Toward a Sustainable Agriculture Through Plant Biostimulants: From Experimental Data to Practical Applications. Agronomy 2020, 10, 1461. [Google Scholar] [CrossRef]
- Ugena, L.; Hýlová, A.; Podlešáková, K.; Humplík, J.F.; Doležal, K.; de Diego, N.; Spíchal, L. Characterization of Biostimulant Mode of Action Using Novel Multi-Trait High-Throughput Screening of Arabidopsis Germination and Rosette Growth. Front. Plant Sci. 2018, 9, 1327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colla, G.; Rouphael, Y. Biostimulants in Horticulture. Sci. Hortic. 2015, 196, 1–134. [Google Scholar] [CrossRef]
- Rafińska, K.; Pomastowski, P.; Wrona, O.; Górecki, R.; Buszewski, B. Medicago Sativa as a Source of Secondary Metabolites for Agriculture and Pharmaceutical Industry. Phytochem. Lett. 2017, 20, 520–539. [Google Scholar] [CrossRef]
- Wadas, W.; Dziugieł, T. Quality of New Potatoes (Solanum tuberosum L.) in Response to Plant Biostimulants Application. Agriculture 2020, 10, 265. [Google Scholar] [CrossRef]
- Annunziata, M.G.; Ciarmiello, L.F.; Woodrow, P.; Dell’Aversana, E.; Carillo, P. Spatial and Temporal Profile of Glycine Betaine Accumulation in Plants Under Abiotic Stresses. Front. Plant Sci. 2019, 10, 230. [Google Scholar] [CrossRef] [Green Version]
- Sofy, M.R.; Elhawat, N.; Alshaal, T. Glycine Betaine Counters Salinity Stress by Maintaining High K+/Na+ Ratio and Antioxidant Defense via Limiting Na+ Uptake in Common Bean (Phaseolus vulgaris L.). Ecotoxicol. Environ. Saf. 2020, 200, 110732. [Google Scholar] [CrossRef]
- Ali, S.; Abbas, Z.; Seleiman, M.F.; Rizwan, M.; YAVAŞ, İ.; Alhammad, B.A.; Shami, A.; Hasanuzzaman, M.; Kalderis, D. Glycine Betaine Accumulation, Significance and Interests for Heavy Metal Tolerance in Plants. Plants 2020, 9, 896. [Google Scholar] [CrossRef]
- Nawaz, M.; Wang, Z. Abscisic Acid and Glycine Betaine Mediated Tolerance Mechanisms under Drought Stress and Recovery in Axonopus Compressus: A New Insight. Sci. Rep. 2020, 10, 6942. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Li, M.; Zhang, X.; Yang, Q.; Huang, B. Up-regulation of Lipid Metabolism and Glycine Betaine Synthesis Are Associated with Choline-induced Salt Tolerance in Halophytic Seashore Paspalum. Plant Cell Environ. 2020, 43, 159–173. [Google Scholar] [CrossRef]
- Hong, M.; Yu, L.; Wang, Y.; Zhang, J.; Chen, Z.; Dong, L.; Zan, Q.; Li, R. Heavy Metal Adsorption with Zeolites: The Role of Hierarchical Pore Architecture. Chem. Eng. J. 2019, 359, 363–372. [Google Scholar] [CrossRef]
- Al-Juthery, H.W.A.; Abbas Drebee, H.; Al-Khafaji, B.M.K.; Hadi, R.F. Plant Biostimulants, Seaweeds Extract as a Model (Article Review). IOP Conf. Ser. Earth Environ. Sci. 2020, 553, 12015. [Google Scholar] [CrossRef]
- Nephali, L.; Piater, L.A.; Dubery, I.A.; Patterson, V.; Huyser, J.; Burgess, K.; Tugizimana, F. Biostimulants for Plant Growth and Mitigation of Abiotic Stresses: A Metabolomics Perspective. Metabolites 2020, 10, 505. [Google Scholar] [CrossRef]
- Chomicki, G.; Schaefer, H.; Renner, S.S. Origin and Domestication of Cucurbitaceae Crops: Insights from Phylogenies, Genomics and Archaeology. New Phytol. 2020, 226, 1240–1255. [Google Scholar] [CrossRef] [Green Version]
- Panno, S.; Iacono, G.; Davino, M.; Marchione, S.; Zappardo, V.; Bella, P.; Tomassoli, L.; Accotto, G.P.; Davino, S. First Report of Tomato Leaf Curl New Delhi Virus Affecting Zucchini Squash in an Important Horticultural Area of Southern Italy. New Dis. Rep. 2016, 33, 6. [Google Scholar] [CrossRef] [Green Version]
- Radouane, N.; Tahiri, A.; el Ghadraoui, L.; al Figuigui, J.; Lahlali, R. First Report of Tomato Leaf Curl New Delhi Virus in Morocco. New Dis. Rep. 2018, 37, 2. [Google Scholar] [CrossRef] [Green Version]
- Orfanidou, C.G.; Malandraki, I.; Beris, D.; Kektsidou, O.; Vassilakos, N.; Varveri, C.; Katis, N.I.; Maliogka, V.I. First Report of Tomato Leaf Curl New Delhi Virus in Zucchini Crops in Greece. J. Plant Pathol. 2019, 101, 799. [Google Scholar] [CrossRef] [Green Version]
- Kheireddine, A.; Sifres, A.; Sáez, C.; Picó, B.; López, C. First Report of Tomato Leaf Curl New Delhi Virus Infecting Cucurbit Plants in Algeria. Plant Dis. 2019, 103, 3291. [Google Scholar] [CrossRef]
- Desbiez, C.; Gentit, P.; Cousseau-Suhard, P.; Renaudin, I.; Verdin, E. First Report of Tomato Leaf Curl New Delhi Virus Infecting Courgette in France. New Dis. Rep. 2021, 43, e12006. [Google Scholar] [CrossRef]
- Moriones, E.; Praveen, S.; Chakraborty, S. Tomato Leaf Curl New Delhi Virus: An Emerging Virus Complex Threatening Vegetable and Fiber Crops. Viruses 2017, 9, 264. [Google Scholar] [CrossRef] [Green Version]
- Panno, S.; Caruso, A.G.; Troiano, E.; Luigi, M.; Manglli, A.; Vatrano, T.; Iacono, G.; Marchione, S.; Bertin, S.; Tomassoli, L.; et al. Emergence of Tomato Leaf Curl New Delhi Virus in Italy: Estimation of Incidence and Genetic Diversity. Plant Pathol. 2019, 68, 601–608. [Google Scholar] [CrossRef]
- Ruiz, M.L.; Simón, A.; Velasco, L.; García, M.C.; Janssen, D. First Report of Tomato Leaf Curl New Delhi Virus Infecting Tomato in Spain. Plant Dis. 2015, 99, 894. [Google Scholar] [CrossRef]
- Luigi, M.; Manglli, A.; Bertin, S.; Donati, L.; Tomassoli, L.; Ferretti, L.; Faggioli, F. Development and Validation of a Specific Real-Time PCR Protocol for the Detection of Tomato Leaf Curl New Delhi Virus. Eur. J. Plant Pathol. 2020, 157, 969–974. [Google Scholar] [CrossRef]
- Fortes, I.; Sánchez-Campos, S.; Fiallo-Olivé, E.; Díaz-Pendón, J.; Navas-Castillo, J.; Moriones, E. A Novel Strain of Tomato Leaf Curl New Delhi Virus Has Spread to the Mediterranean Basin. Viruses 2016, 8, 307. [Google Scholar] [CrossRef] [Green Version]
- Simón, A.; Ruiz, L.; Velasco, L.; Janssen, D. Absolute Quantification of Tomato Leaf Curl New Delhi Virus Spain Strain, ToLCNDV-ES: Virus Accumulation in a Host-Specific Manner. Plant Dis. 2018, 102, 165–171. [Google Scholar] [CrossRef] [Green Version]
- Donati, L.; Ferretti, L.; Frallicciardi, J.; Rosciani, R.; Valletta, A.; Pasqua, G. Stilbene Biosynthesis and Gene Expression in Response to Methyl Jasmonate and Continuous Light Treatment in Vitis Vinifera Cv. Malvasia Del Lazio and Vitis Rupestris Du Lot Cell Cultures. Physiol. Plant. 2019, 166, 646–662. [Google Scholar] [CrossRef]
- Tomassini, A.; Sciubba, F.; di Cocco, M.E.; Capuani, G.; Delfini, M.; Aureli, W.; Miccheli, A. 1 H NMR-Based Metabolomics Reveals a Pedoclimatic Metabolic Imprinting in Ready-to-Drink Carrot Juices. J. Agric. Food Chem. 2016, 64, 5284–5291. [Google Scholar] [CrossRef]
- Giampaoli, O.; Sciubba, F.; Conta, G.; Capuani, G.; Tomassini, A.; Giorgi, G.; Brasili, E.; Aureli, W.; Miccheli, A. Red Beetroot’s NMR-Based Metabolomics: Phytochemical Profile Related to Development Time and Production Year. Foods 2021, 10, 1887. [Google Scholar] [CrossRef]
- Jones, R.A.C.; Naidu, R.A. Global Dimensions of Plant Virus Diseases: Current Status and Future Perspectives. Annu. Rev. Virol. 2019, 6, 387–409. [Google Scholar] [CrossRef]
- Aamir, M.; Rai, K.K.; Zehra, A.; Dubey, M.K.; Kumar, S.; Shukla, V.; Upadhyay, R.S. Microbial Bioformulation-Based Plant Biostimulants: A Plausible Approach toward next Generation of Sustainable Agriculture. In Microbial Endophytes; Elsevier: Amsterdam, The Netherlands, 2020; pp. 195–225. [Google Scholar]
- Bernardino, M.C.; Couto, M.L.C.O.; Vaslin, M.F.S.; Barreto-Bergter, E. Antiviral Activity of Glucosylceramides Isolated from Fusarium Oxysporum against Tobacco Mosaic Virus Infection. PLoS ONE 2020, 15, e0242887. [Google Scholar] [CrossRef]
- Ryu, S.M.; Lee, H.M.; Song, E.G.; Seo, Y.H.; Lee, J.; Guo, Y.; Kim, B.S.; Kim, J.-J.; Hong, J.S.; Ryu, K.H.; et al. Antiviral Activities of Trichothecenes Isolated from Trichoderma Albolutescens against Pepper Mottle Virus. J. Agric. Food Chem. 2017, 65, 4273–4279. [Google Scholar] [CrossRef] [PubMed]
- Blyuss, K.B.; al Basir, F.; Tsygankova, V.A.; Biliavska, L.O.; Iutynska, G.O.; Kyrychko, S.N.; Dziuba, S.V.; Tsyliuryk, O.I.; Izhboldin, O.O. Control of Mosaic Disease Using Microbial Biostimulants: Insights from Mathematical Modelling. Ric. Di Mat. 2020, 69, 437–455. [Google Scholar] [CrossRef]
- Shukla, P.S.; Borza, T.; Critchley, A.T.; Prithiviraj, B. Carrageenans from Red Seaweeds as Promoters of Growth and Elicitors of Defense Response in Plants. Front. Mar. Sci. 2016, 3, 81. [Google Scholar] [CrossRef]
- Hamid, B.; Zaman, M.; Farooq, S.; Fatima, S.; Sayyed, R.Z.; Baba, Z.A.; Sheikh, T.A.; Reddy, M.S.; el Enshasy, H.; Gafur, A.; et al. Bacterial Plant Biostimulants: A Sustainable Way towards Improving Growth, Productivity, and Health of Crops. Sustainability 2021, 13, 2856. [Google Scholar] [CrossRef]
- Polo, J.; Mata, P. Evaluation of a Biostimulant (Pepton) Based in Enzymatic Hydrolyzed Animal Protein in Comparison to Seaweed Extracts on Root Development, Vegetative Growth, Flowering, and Yield of Gold Cherry Tomatoes Grown under Low Stress Ambient Field Conditions. Front. Plant Sci. 2018, 8, 2261. [Google Scholar] [CrossRef]
- Parađiković, N.; Teklić, T.; Zeljković, S.; Lisjak, M.; Špoljarević, M. Biostimulants Research in Some Horticultural Plant Species—A Review. Food Energy Secur. 2019, 8, e00162. [Google Scholar] [CrossRef]
- Cheng, F.; Cheng, Z.; Meng, H.; Tang, X. The Garlic Allelochemical Diallyl Disulfide Affects Tomato Root Growth by Influencing Cell Division, Phytohormone Balance and Expansin Gene Expression. Front. Plant Sci. 2016, 7, 1199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, K.; Hayat, S.; Qi, X.; Liu, T.; Cheng, Z. The Garlic Allelochemical DADS Influences Cucumber Root Growth Involved in Regulating Hormone Levels and Modulating Cell Cycling. J. Plant Physiol. 2018, 230, 51–60. [Google Scholar] [CrossRef]
- Ertani, A.; Pizzeghello, D.; Francioso, O.; Sambo, P.; Sanchez-Cortes, S.; Nardi, S. Capsicum chinensis L. Growth and Nutraceutical Properties Are Enhanced by Biostimulants in a Long-Term Period: Chemical and Metabolomic Approaches. Front. Plant Sci. 2014, 5, 375. [Google Scholar] [CrossRef] [Green Version]
- Taglienti, A.; Tiberini, A.; Ciampa, A.; Piscopo, A.; Zappia, A.; Tomassoli, L.; Poiana, M.; Dell’Abate, M.T. Metabolites Response to Onion Yellow Dwarf Virus (OYDV) Infection in ‘Rossa Di Tropea’ Onion during Storage: A 1 H HR-MAS NMR Study. J. Sci. Food Agric. 2020, 100, 3418–3427. [Google Scholar] [CrossRef]
- Ertani, A.; Schiavon, M.; Altissimo, A.; Franceschi, C.; Nardi, S. Phenol-containing Organic Substances Stimulate Phenylpropanoid Metabolism in Zea Mays. J. Plant Nutr. Soil Sci. 2011, 174, 496–503. [Google Scholar] [CrossRef]
- Igamberdiev, A.U.; Bykova, N.V.; Kleczkowski, L.A. Origins and Metabolism of Formate in Higher Plants. Plant Physiol. Biochem. 1999, 37, 503–513. [Google Scholar] [CrossRef]
- He, M.; Ding, N.-Z. Plant Unsaturated Fatty Acids: Multiple Roles in Stress Response. Front. Plant Sci. 2020, 11, 1378. [Google Scholar] [CrossRef] [PubMed]
- Minorsky, P.V. The Hot and the Classic: Trigonelline: A Diverse Regulator in Plants. Plant Physiol. 2002, 128, 7. [Google Scholar] [CrossRef]
- Shelp, B.J.; Aghdam, M.S.; Flaherty, E.J. γ-Aminobutyrate (GABA) Regulated Plant Defense: Mechanisms and Opportunities. Plants 2021, 10, 1939. [Google Scholar] [CrossRef]
- McNeil, S.D.; Nuccio, M.L.; Ziemak, M.J.; Hanson, A.D. Enhanced Synthesis of Choline and Glycine Betaine in Transgenic Tobacco Plants That Overexpress Phosphoethanolamine N-Methyltransferase. Proc. Natl. Acad. Sci. USA 2001, 98, 10001–10005. [Google Scholar] [CrossRef] [Green Version]
Symptoms | Description | Score |
---|---|---|
Absent | No symptoms | 0 |
Slight | Slight leaf mosaic | 1 |
Medium | Leaf mosaic and curling | 2 |
Severe | Rib swelling, accentuated leaf mosaic and curling, reduced development of the plant | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Donati, L.; Bertin, S.; Gentili, A.; Luigi, M.; Taglienti, A.; Manglli, A.; Tiberini, A.; Brasili, E.; Sciubba, F.; Pasqua, G.; et al. Effects of Organic Biostimulants Added with Zeolite on Zucchini Squash Plants Infected by Tomato Leaf Curl New Delhi Virus. Viruses 2022, 14, 607. https://doi.org/10.3390/v14030607
Donati L, Bertin S, Gentili A, Luigi M, Taglienti A, Manglli A, Tiberini A, Brasili E, Sciubba F, Pasqua G, et al. Effects of Organic Biostimulants Added with Zeolite on Zucchini Squash Plants Infected by Tomato Leaf Curl New Delhi Virus. Viruses. 2022; 14(3):607. https://doi.org/10.3390/v14030607
Chicago/Turabian StyleDonati, Livia, Sabrina Bertin, Andrea Gentili, Marta Luigi, Anna Taglienti, Ariana Manglli, Antonio Tiberini, Elisa Brasili, Fabio Sciubba, Gabriella Pasqua, and et al. 2022. "Effects of Organic Biostimulants Added with Zeolite on Zucchini Squash Plants Infected by Tomato Leaf Curl New Delhi Virus" Viruses 14, no. 3: 607. https://doi.org/10.3390/v14030607
APA StyleDonati, L., Bertin, S., Gentili, A., Luigi, M., Taglienti, A., Manglli, A., Tiberini, A., Brasili, E., Sciubba, F., Pasqua, G., & Ferretti, L. (2022). Effects of Organic Biostimulants Added with Zeolite on Zucchini Squash Plants Infected by Tomato Leaf Curl New Delhi Virus. Viruses, 14(3), 607. https://doi.org/10.3390/v14030607