The Efficacy of Common Household Cleaning Agents for SARS-CoV-2 Infection Control
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Cell Cytotoxicity Effects of the Household Chemicals Chosen for This Study
3.2. Assay Design to Remove Direct Cytotoxic Effects of Household Chemicals on Vero Cells
3.3. Vinegar Does Not Render SARS-CoV-2 Inactive
3.4. Ethanol at Concentrations of 40% v/v or Higher Inactivates SARS-CoV-2
3.5. Household Bleach Is Capable of Abolishing SARS-CoV-2 Infectivity
3.6. Dishwashing Detergent Diluted up to 500-Fold Inactivates SARS-CoV-2
3.7. Combining Detergent with Bleach Does Not Significantly Enhance Virucidal Activity
3.8. SARS-CoV-2 Remains Infectious through Multiple Freeze-Thaw Cycles
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020, 395, 565–574. [Google Scholar] [CrossRef] [Green Version]
- Gralinski, L.E.; Menachery, V.D. Return of the Coronavirus: 2019-nCoV. Viruses 2020, 12, 135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020, 5, 536–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Zhao, S.; Yu, B.; Chen, Y.M.; Wang, W.; Song, Z.G.; Hu, Y.; Tao, Z.W.; Tian, J.H.; Pei, Y.Y.; et al. A new coronavirus associated with human respiratory disease in China. Nature 2020, 579, 265–269. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.J.; Dong, X.; Liu, G.H.; Gao, Y.D. Risk and Protective Factors for COVID-19 Morbidity, Severity, and Mortality. Clin. Rev. Allergy Immunol. 2022, 1–18. [Google Scholar] [CrossRef]
- Hirabara, S.M.; Serdan, T.D.A.; Gorjao, R.; Masi, L.N.; Pithon-Curi, T.C.; Covas, D.T.; Curi, R.; Durigon, E.L. SARS-COV-2 Variants: Differences and Potential of Immune Evasion. Front. Cell. Infect. Microbiol. 2021, 11, 781429. [Google Scholar] [CrossRef]
- Liu, H.; Wei, P.; Kappler, J.W.; Marrack, P.; Zhang, G. SARS-CoV-2 Variants of Concern and Variants of Interest Receptor Binding Domain Mutations and Virus Infectivity. Front. Immunol. 2022, 13, 825256. [Google Scholar] [CrossRef]
- CDC Updates and Shortens Recommended Isolation and Quarantine Period for General Population. Available online: https://www.cdc.gov/media/releases/2021/s1227-isolation-quarantine-guidance.html (accessed on 26 February 2022).
- Meyerowitz, E.A.; Richterman, A.; Gandhi, R.T.; Sax, P.E. Transmission of SARS-CoV-2: A Review of Viral, Host, and Environmental Factors. Ann. Intern. Med. 2021, 174, 69–79. [Google Scholar] [CrossRef]
- Van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef]
- Kratzel, A.; Steiner, S.; Todt, D.; V’Kovski, P.; Brueggemann, Y.; Steinmann, J.; Steinmann, E.; Thiel, V.; Pfaender, S. Temperature-dependent surface stability of SARS-CoV-2. J. Infect. 2020, 81, 452–482. [Google Scholar] [CrossRef] [PubMed]
- Chin, A.W.H.; Chu, J.T.S.; Perera, M.R.A.; Hui, K.P.Y.; Yen, H.L.; Chan, M.C.W.; Peiris, M.; Poon, L.L.M. Stability of SARS-CoV-2 in different environmental conditions. Lancet Microbe 2020, 1, e10. [Google Scholar] [CrossRef]
- Colaneri, M.; Seminari, E.; Novati, S.; Asperges, E.; Biscarini, S.; Piralla, A.; Percivalle, E.; Cassaniti, I.; Baldanti, F.; Bruno, R.; et al. Severe acute respiratory syndrome coronavirus 2 RNA contamination of inanimate surfaces and virus viability in a health care emergency unit. Clin. Microbiol. Infect. 2020, 26, 1094.e1–1094.e5. [Google Scholar] [CrossRef] [PubMed]
- Ben-Shmuel, A.; Brosh-Nissimov, T.; Glinert, I.; Bar-David, E.; Sittner, A.; Poni, R.; Cohen, R.; Achdout, H.; Tamir, H.; Yahalom-Ronen, Y.; et al. Detection and infectivity potential of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) environmental contamination in isolation units and quarantine facilities. Clin. Microbiol. Infect. 2020, 26, 1658–1662. [Google Scholar] [CrossRef] [PubMed]
- Moreno, T.; Pinto, R.M.; Bosch, A.; Moreno, N.; Alastuey, A.; Minguillon, M.C.; Anfruns-Estrada, E.; Guix, S.; Fuentes, C.; Buonanno, G.; et al. Tracing surface and airborne SARS-CoV-2 RNA inside public buses and subway trains. Environ. Int. 2021, 147, 106326. [Google Scholar] [CrossRef]
- Santarpia, J.L.; Rivera, D.N.; Herrera, V.L.; Morwitzer, M.J.; Creager, H.M.; Santarpia, G.W.; Crown, K.K.; Brett-Major, D.M.; Schnaubelt, E.R.; Broadhurst, M.J.; et al. Aerosol and surface contamination of SARS-CoV-2 observed in quarantine and isolation care. Sci. Rep. 2020, 10, 12732. [Google Scholar] [CrossRef]
- Ji, W.; Li, X.; Chen, S.; Ren, L. Transmission of SARS-CoV-2 via fomite, especially cold chain, should not be ignored. Proc. Natl. Acad. Sci. USA 2021, 118, e2026093118. [Google Scholar] [CrossRef]
- Birkett, M.; Dover, L.; Cherian Lukose, C.; Wasy Zia, A.; Tambuwala, M.M.; Serrano-Aroca, A. Recent Advances in Metal-Based Antimicrobial Coatings for High-Touch Surfaces. Int. J. Mol. Sci. 2022, 23, 1162. [Google Scholar] [CrossRef]
- Goncalves, J.; da Silva, P.G.; Reis, L.; Nascimento, M.S.J.; Koritnik, T.; Paragi, M.; Mesquita, J.R. Surface contamination with SARS-CoV-2: A systematic review. Sci. Total Environ. 2021, 798, 149231. [Google Scholar] [CrossRef]
- Cai, J.; Sun, W.; Huang, J.; Gamber, M.; Wu, J.; He, G. Indirect Virus Transmission in Cluster of COVID-19 Cases, Wenzhou, China, 2020. Emerg. Infect. Dis. 2020, 26, 1343–1345. [Google Scholar] [CrossRef]
- Xie, C.; Zhao, H.; Li, K.; Zhang, Z.; Lu, X.; Peng, H.; Wang, D.; Chen, J.; Zhang, X.; Wu, D.; et al. The evidence of indirect transmission of SARS-CoV-2 reported in Guangzhou, China. BMC Public Health 2020, 20, 1202. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.H.; Shin, H.; Koo, H.Y.; Lee, S.W.; Yang, J.M.; Yon, D.K. Asymptomatic Transmission of SARS-CoV-2 on Evacuation Flight. Emerg. Infect. Dis. 2020, 26, 2705–2708. [Google Scholar] [CrossRef] [PubMed]
- Kampf, G.; Bruggemann, Y.; Kaba, H.E.J.; Steinmann, J.; Pfaender, S.; Scheithauer, S.; Steinmann, E. Potential sources, modes of transmission and effectiveness of prevention measures against SARS-CoV-2. J. Hosp. Infect. 2020, 106, 678–697. [Google Scholar] [CrossRef] [PubMed]
- Rothan, H.A.; Byrareddy, S.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun. 2020, 109, 102433. [Google Scholar] [CrossRef]
- Marcenac, P.; Park, G.W.; Duca, L.M.; Lewis, N.M.; Dietrich, E.A.; Barclay, L.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Rispens, J.; et al. Detection of SARS-CoV-2 on Surfaces in Households of Persons with COVID-19. Int. J. Environ. Res. Public Health 2021, 18, 8184. [Google Scholar] [CrossRef] [PubMed]
- Bobrin, V.A.; Chen, S.P.; Grandes Reyes, C.F.; Sun, B.; Ng, C.K.; Kim, Y.; Purcell, D.; Jia, Z.; Gu, W.; Armstrong, J.W.; et al. Water-Borne Nanocoating for Rapid Inactivation of SARS-CoV-2 and Other Viruses. ACS Nano 2021, 15, 14915–14927. [Google Scholar] [CrossRef] [PubMed]
- Caschera, A.G.; McAuley, J.; Kim, Y.; Purcell, D.; Rymenants, J.; Foucher, D.A. Evaluation of Virucidal Activity of Residual Quaternary Ammonium-treated Surfaces on SARS-CoV-2. Am. J. Infect. Control 2021, 50, 325–329. [Google Scholar] [CrossRef]
- Fadaei, A. Viral Inactivation with Emphasis on SARS-CoV-2 Using Physical and Chemical Disinfectants. Sci. World J. 2021, 2021, 9342748. [Google Scholar] [CrossRef]
- Hirose, R.; Itoh, Y.; Ikegaya, H.; Miyazaki, H.; Watanabe, N.; Yoshida, T.; Bandou, R.; Daidoji, T.; Nakaya, T. Evaluation of the Residual Disinfection Effects of Commonly Used Skin Disinfectants against Viruses: An Innovative Contact Transmission Control Method. Environ. Sci. Technol. 2021, 55, 16044–16055. [Google Scholar] [CrossRef]
- Sommers, K.J.; Michaud, M.E.; Hogue, C.E.; Scharnow, A.M.; Amoo, L.E.; Petersen, A.A.; Carden, R.G.; Minbiole, K.P.C.; Wuest, W.M. Quaternary Phosphonium Compounds: An Examination of Non-Nitrogenous Cationic Amphiphiles That Evade Disinfectant Resistance. ACS Infect. Dis. 2022, 8, 387–397. [Google Scholar] [CrossRef]
- McAuley, J.L.; Deerain, J.M.; Hammersla, W.; Aktepe, T.E.; Purcell, D.F.J.; Mackenzie, J.M. Liquid Chalk Is an Antiseptic against SARS-CoV-2 and Influenza A Respiratory Viruses. mSphere 2021, 6, e00313-21. [Google Scholar] [CrossRef] [PubMed]
- Gerlach, M.; Wolff, S.; Ludwig, S.; Schafer, W.; Keiner, B.; Roth, N.J.; Widmer, E. Rapid SARS-CoV-2 inactivation by commonly available chemicals on inanimate surfaces. J. Hosp. Infect. 2020, 106, 633–634. [Google Scholar] [CrossRef] [PubMed]
- Ijaz, M.K.; Nims, R.W.; Zhou, S.S.; Whitehead, K.; Srinivasan, V.; Kapes, T.; Fanuel, S.; Epstein, J.H.; Daszak, P.; Rubino, J.R.; et al. Microbicidal actives with virucidal efficacy against SARS-CoV-2 and other beta- and alpha-coronaviruses and implications for future emerging coronaviruses and other enveloped viruses. Sci. Rep. 2021, 11, 5626. [Google Scholar] [CrossRef]
- Jahromi, R.; Mogharab, V.; Jahromi, H.; Avazpour, A. Synergistic effects of anionic surfactants on coronavirus (SARS-CoV-2) virucidal efficiency of sanitizing fluids to fight COVID-19. Food Chem. Toxicol. 2020, 145, 111702. [Google Scholar] [CrossRef] [PubMed]
- Bin Abdulrahman, A.K.; Bin Abdulrahman, K.A.; Nouh, R.M. Response of Saudi Population to Strict Preventive Measures against COVID-19. Int. J. Environ. Res. Public Health 2021, 18, 13424. [Google Scholar] [CrossRef]
- Cheng, C.W.; Huang, P.Y.; Wu, T.S.; Huang, C.G.; Tsao, K.C.; Lin, C.S.; Chung, T.Y.; Lai, C.C.; Yang, C.T.; Chiu, C.H.; et al. Infection control operations of a large hospital in Taiwan to prevent nosocomial outbreaks during COVID-19 pandemic. Biomed. J. 2021, in press. [Google Scholar] [CrossRef]
- Krishnaratne, S.; Littlecott, H.; Sell, K.; Burns, J.; Rabe, J.E.; Stratil, J.M.; Litwin, T.; Kreutz, C.; Coenen, M.; Geffert, K.; et al. Measures implemented in the school setting to contain the COVID-19 pandemic. Cochrane Database Syst. Rev. 2022, 1, CD015029. [Google Scholar]
- Gharpure, R.; Hunter, C.M.; Schnall, A.H.; Barrett, C.E.; Kirby, A.E.; Kunz, J.; Berling, K.; Mercante, J.W.; Murphy, J.L.; Garcia-Williams, A.G. Knowledge and Practices Regarding Safe Household Cleaning and Disinfection for COVID-19 Prevention—United States, May 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 705–709. [Google Scholar] [CrossRef]
- WHO. WHO Guidelines on Hand Hygiene in Health Care; World Health Organization: Geneva, Switzerland, 2009; pp. 1–270. [Google Scholar]
- Caly, L.; Druce, J.; Roberts, J.; Bond, K.; Tran, T.; Kostecki, R.; Yoga, Y.; Naughton, W.; Taiaroa, G.; Seemann, T.; et al. Isolation and rapid sharing of the 2019 novel coronavirus (SARS-CoV-2) from the first patient diagnosed with COVID-19 in Australia. Med. J. Aust. 2020, 212, 459–462. [Google Scholar] [CrossRef] [Green Version]
- Reed, L.J.; Muench, H. A simple method of estimating fifty per cent endpoints. Am. J. Hyg. 1938, 27, 493–497. [Google Scholar]
- Becker, B.; Henningsen, L.; Paulmann, D.; Bischoff, B.; Todt, D.; Steinmann, E.; Steinmann, J.; Brill, F.H.H.; Steinmann, J. Evaluation of the virucidal efficacy of disinfectant wipes with a test method simulating practical conditions. Antimicrob. Resist. Infect. Control 2019, 8, 121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacombe, A.; Niemira, B.A.; Gurtler, J.B.; Kingsley, D.H.; Li, X.; Chen, H. Surfactant-Enhanced Organic Acid Inactivation of Tulane Virus, a Human Norovirus Surrogate. J. Food Prot. 2018, 81, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Jing, J.L.J.; Pei Yi, T.; Bose, R.J.C.; McCarthy, J.R.; Tharmalingam, N.; Madheswaran, T. Hand Sanitizers: A Review on Formulation Aspects, Adverse Effects, and Regulations. Int. J. Environ. Res. Public Health 2020, 17, 3326. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.; Schnall, A.H.; Law, R.; Bronstein, A.C.; Marraffa, J.M.; Spiller, H.A.; Hays, H.L.; Funk, A.R.; Mercurio-Zappala, M.; Calello, D.P.; et al. Cleaning and Disinfectant Chemical Exposures and Temporal Associations with COVID-19—National Poison Data System, United States, January 1, 2020–March 31, 2020. Morb. Mortal. Wkly. Rep. 2020, 69, 496–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McAuley, J.; Fraser, C.; Paraskeva, E.; Trajcevska, E.; Sait, M.; Wang, N.; Bert, E.; Purcell, D.; Strugnell, R. Optimal preparation of SARS-CoV-2 viral transport medium for culture. Virol. J. 2021, 18, 53. [Google Scholar] [CrossRef]
- Liu, P.; Yang, M.; Zhao, X.; Guo, Y.; Wang, L.; Zhang, J.; Lei, W.; Han, W.; Jiang, F.; Liu, W.J.; et al. Cold-chain transportation in the frozen food industry may have caused a recurrence of COVID-19 cases in destination: Successful isolation of SARS-CoV-2 virus from the imported frozen cod package surface. Biosaf. Health 2020, 2, 199–201. [Google Scholar] [CrossRef]
- Hament, J.M.; Kimpen, J.L.; Fleer, A.; Wolfs, T.F. Respiratory viral infection predisposing for bacterial disease: A concise review. FEMS Immunol. Med. Microbiol. 1999, 26, 189–195. [Google Scholar] [CrossRef]
- Mahl, M.C.; Sadler, C. Virus survival on inanimate surfaces. Can. J. Microbiol. 1975, 21, 819–823. [Google Scholar] [CrossRef]
- Kramer, A.; Schwebke, I.; Kampf, G. How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect. Dis. 2006, 6, 130. [Google Scholar] [CrossRef] [Green Version]
- Bean, B.; Moore, B.M.; Sterner, B.; Peterson, L.R.; Gerding, D.N.; Balfour, H.H., Jr. Survival of influenza viruses on environmental surfaces. J. Infect. Dis. 1982, 146, 47–51. [Google Scholar] [CrossRef]
- Kampf, G.; Todt, D.; Pfaender, S.; Steinmann, E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J. Hosp. Infect. 2020, 104, 246–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greatorex, J.S.; Digard, P.; Curran, M.D.; Moynihan, R.; Wensley, H.; Wreghitt, T.; Varsani, H.; Garcia, F.; Enstone, J.; Nguyen-Van-Tam, J.S. Survival of influenza A(H1N1) on materials found in households: Implications for infection control. PLoS ONE 2011, 6, e27932. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, M.E.; Ladman, B.S.; Alphin, R.L.; Benson, E.R. Inactivation of avian influenza virus using common detergents and chemicals. Avian Dis. 2008, 52, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Greatorex, J.S.; Page, R.F.; Curran, M.D.; Digard, P.; Enstone, J.E.; Wreghitt, T.; Powell, P.P.; Sexton, D.W.; Vivancos, R.; Nguyen-Van-Tam, J.S. Effectiveness of common household cleaning agents in reducing the viability of human influenza A/H1N1. PLoS ONE 2010, 5, e8987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, S.B.; Kawasaki, K.; Ohnishi, S. Hemolytic activity of influenza virus hemagglutinin glycoproteins activated in mildly acidic environments. Proc. Natl. Acad. Sci. USA 1983, 80, 3153–3157. [Google Scholar] [CrossRef] [Green Version]
- Savolainen-Kopra, C.; Haapakoski, J.; Peltola, P.A.; Ziegler, T.; Korpela, T.; Anttila, P.; Amiryousefi, A.; Huovinen, P.; Huvinen, M.; Noronen, H.; et al. Hand washing with soap and water together with behavioural recommendations prevents infections in common work environment: An open cluster-randomized trial. Trials 2012, 13, 10. [Google Scholar] [CrossRef] [Green Version]
- Oughton, M.T.; Loo, V.G.; Dendukuri, N.; Fenn, S.; Libman, M.D. Hand hygiene with soap and water is superior to alcohol rub and antiseptic wipes for removal of Clostridium difficile. Infect. Control. Hosp. Epidemiol. 2009, 30, 939–944. [Google Scholar] [CrossRef]
- Aboubakr, H.A.; Sharafeldin, T.A.; Goyal, S.M. Stability of SARS-CoV-2 and other coronaviruses in the environment and on common touch surfaces and the influence of climatic conditions: A review. Transbound. Emerg. Dis. 2021, 68, 296–312. [Google Scholar] [CrossRef]
Household Cleaning Solution | Active Ingredient |
---|---|
Vinegar | 4% v/v Acetic acid |
Alcohol (e.g., Methylated spirits, hand sanitizers) | Ethanol |
Bleach | 42.6 g/L Sodium hypochlorite |
Dishwashing detergent | unknown * |
Household Cleaning Solution | Active Ingredient | Effective Dilution in Water Δ |
---|---|---|
Vinegar | 4% v/v Acetic acid | Not virucidal against SARS-CoV-2 |
Alcohol (e.g., Methylated spirits, hand sanitizers) | Ethanol | 40% v/v |
Bleach | 42.6 g/L Sodium hypochlorite | 1 in 200; equivalent to 0.21 g/L Sodium hypochlorite |
Dishwashing detergent | unknown * | 1 in 500 |
Freeze (−20 °C)/Thaw cycles | Not applicable | Not virucidal against SARS-CoV-2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeida, C.F.; Purcell, D.F.J.; Godfrey, D.I.; McAuley, J.L. The Efficacy of Common Household Cleaning Agents for SARS-CoV-2 Infection Control. Viruses 2022, 14, 715. https://doi.org/10.3390/v14040715
Almeida CF, Purcell DFJ, Godfrey DI, McAuley JL. The Efficacy of Common Household Cleaning Agents for SARS-CoV-2 Infection Control. Viruses. 2022; 14(4):715. https://doi.org/10.3390/v14040715
Chicago/Turabian StyleAlmeida, Catarina F., Damian F. J. Purcell, Dale I. Godfrey, and Julie L. McAuley. 2022. "The Efficacy of Common Household Cleaning Agents for SARS-CoV-2 Infection Control" Viruses 14, no. 4: 715. https://doi.org/10.3390/v14040715
APA StyleAlmeida, C. F., Purcell, D. F. J., Godfrey, D. I., & McAuley, J. L. (2022). The Efficacy of Common Household Cleaning Agents for SARS-CoV-2 Infection Control. Viruses, 14(4), 715. https://doi.org/10.3390/v14040715