Pre-Treatment Integrase Inhibitor Resistance and Natural Polymorphisms among HIV-1 Subtype C Infected Patients in Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. HIV-1 Genotyping
2.3. Subtype Determination Using HIV-1 Integrase Sequences
2.4. HIV-1 Drug Resistance Analysis
2.5. HIV-1 Subtype C Integrase Polymorphism and Conservation Analysis
2.6. Generation of Consensus HIV-1 Integrase Sequence
2.7. Genetic Barrier to Integrase Strand-Transfer Inhibitor Resistance
2.8. Modeling and In Silico Predictions of HIV-1 Integrase and Dolutegravir Interaction
2.9. Statistical Analysis
3. Results
3.1. HIV-1 Subtyping
3.2. Prevalence of Major Integrase Strand-Transfer Inhibitor Resistance Mutations
3.3. Integrase Strand-Transfer Inhibitor Resistance among Patents on Antiretroviral Therapy
3.4. Prevalence of Naturally Occurring Integrase Polymorphisms in HIV-1 Subtype C
3.5. Analysis of the N-Terminal Domain (NTD)
3.6. Analysis of the Catalytic Core Domain (CCD)
3.7. Analysis of the C-Terminal Domain (CTD)
3.8. Analysis of the Subtype Consensus Integrase Sequences
3.9. Genetic Barrier to Dolutegravir Resistance
3.10. Impact of Protease and Reverse-Transcriptase Drug-Resistance Mutation on the Structure of HIV-1 Integrase
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Guidelines on the Public Health Response to Pretreatment HIV Drug Resistance; WHO: Geneva, Switzerland, 2017; Available online: http://apps.who.int/iris/bitstream/10665/255880/1/9789241550055-eng.pdf (accessed on 20 December 2021).
- WHO. Policy Brief: Update of Recommendations on First- and Second-Line Antiretroviral Regimens. 2019. Available online: https://apps.who.int/iris/handle/10665/325892 (accessed on 20 December 2021).
- WHO. Dolutegravir (DTG) and the fixed Dose Combination (FDC) of Tenofovir/Lamivudine/Dolutegravir (TLD). 2018. Available online: https://www.who.int/hiv/pub/arv/DTG-TLD-arv_briefing_2018.pdf (accessed on 20 December 2021).
- The Lancet HIV. End resistance to dolutegravir roll-out. Lancet HIV 2020, 7, e593. [Google Scholar] [CrossRef]
- Rhee, S.Y.; Liu, T.F.; Kiuchi, M.; Zioni, R.; Gifford, R.J.; Holmes, S.P.; Shafer, R.W. Natural variation of HIV-1 group M integrase: Implications for a new class of antiretroviral inhibitors. Retrovirology 2008, 5, 74. [Google Scholar] [CrossRef] [Green Version]
- Ceccherini-Silberstein, F.; Malet, I.; D’Arrigo, R.; Antinori, A.; Marcelin, A.G.; Perno, C.F. Characterization and structural analysis of HIV-1 integrase conservation. AIDS Rev. 2009, 11, 17–29. [Google Scholar]
- Craigie, R. HIV integrase, a brief overview from chemistry to therapeutics. J. Biol. Chem. 2001, 276, 23213–23216. [Google Scholar] [CrossRef] [Green Version]
- Zheng, R.; Jenkins, T.M.; Craigie, R. Zinc folds the N-terminal domain of HIV-1 integrase, promotes multimerization, and enhances catalytic activity. Proc. Natl. Acad. Sci. USA 1996, 93, 13659–13664. [Google Scholar] [CrossRef] [Green Version]
- Ceccherini-Silberstein, F.; Malet, I.; Fabeni, L.; Dimonte, S.; Svicher, V.; D’Arrigo, R.; Artese, A.; Costa, G.; Bono, S.; Alcaro, S.; et al. Specific HIV-1 integrase polymorphisms change their prevalence in untreated versus antiretroviral-treated HIV-1-infected patients, all naive to integrase inhibitors. J. Antimicrob. Chemother. 2010, 65, 2305–2318. [Google Scholar] [CrossRef]
- Brown, P.O.; Bowerman, B.; Varmus, H.E.; Bishop, J.M. Retroviral integration: Structure of the initial covalent product and its precursor, and a role for the viral IN protein. Proc. Natl. Acad. Sci. USA 1989, 86, 2525–2529. [Google Scholar] [CrossRef] [Green Version]
- FDA. FDA-Approved HIV Medicines. 2021. Available online: https://hivinfo.nih.gov/understanding-hiv/fact-sheets/fda-approved-hiv-medicines (accessed on 22 December 2021).
- Yang, L.L.; Li, Q.; Zhou, L.B.; Chen, S.Q. Meta-analysis and systematic review of the efficacy and resistance for human immunodeficiency virus type 1 integrase strand transfer inhibitors. Int. J. Antimicrob. Agents 2019, 54, 547–555. [Google Scholar] [CrossRef]
- Han, Y.S.; Mesplède, T.; Wainberg, M.A. Differences among HIV-1 subtypes in drug resistance against integrase inhibitors. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2016, 46, 286–291. [Google Scholar] [CrossRef]
- Dow, D.E.; Bartlett, J.A. Dolutegravir, the Second-Generation of Integrase Strand Transfer Inhibitors (INSTIs) for the Treatment of HIV. Infect Dis. 2014, 3, 83–102. [Google Scholar] [CrossRef] [Green Version]
- Lepik, K.J.; Harrigan, P.R.; Yip, B.; Wang, L.; Robbins, M.A.; Zhang, W.W.; Toy, J.; Akagi, L.; Lima, V.D.; Guillemi, S.; et al. Emergent drug resistance with integrase strand transfer inhibitor-based regimens. AIDS 2017, 31, 1425–1434. [Google Scholar] [CrossRef]
- McGee, K.S.; Okeke, N.L.; Hurt, C.B.; McKellar, M.S. Canary in the Coal Mine? Transmitted Mutations Conferring Resistance to All Integrase Strand Transfer Inhibitors in a Treatment-Naive Patient. Open Forum Infect. Dis. 2018, 5, ofy294. [Google Scholar] [CrossRef]
- Oliveira, M.; Ibanescu, R.I.; Anstett, K.; Mésplède, T.; Routy, J.P.; Robbins, M.A.; Brenner, B.G. Selective resistance profiles emerging in patient-derived clinical isolates with cabotegravir, bictegravir, dolutegravir, and elvitegravir. Retrovirology 2018, 15, 56. [Google Scholar] [CrossRef] [Green Version]
- Young, B.; Fransen, S.; Greenberg, K.S.; Thomas, A.; Martens, S.; St Clair, M.; Petropoulos, C.J.; Ha, B. Transmission of integrase strand-transfer inhibitor multidrug-resistant HIV-1: Case report and response to raltegravir-containing antiretroviral therapy. Antivir 2011, 16, 253–256. [Google Scholar] [CrossRef] [Green Version]
- Seatla, K.K.; Maruapula, D.; Choga, W.T.; Ntsipe, T.; Mathiba, N.; Mogwele, M.; Kapanda, M.; Nkomo, B.; Ramaabya, D.; Makhema, J.; et al. HIV-1 Subtype C Drug Resistance Mutations in Heavily Treated Patients Failing Integrase Strand Transfer Inhibitor-Based Regimens in Botswana. Viruses 2021, 13, 594. [Google Scholar] [CrossRef]
- Bailey, A.J.; Rhee, S.Y.; Shafer, R.W. Integrase Strand Transfer Inhibitor Resistance in Integrase Strand Transfer Inhibitor-Naive Persons. AIDS Res. Hum. Retrovir. 2021, 37, 736–743. [Google Scholar] [CrossRef]
- Casadellà, M.; Santos, J.R.; Noguera-Julian, M.; Micán-Rivera, R.; Domingo, P.; Antela, A.; Portilla, J.; Sanz, J.; Montero-Alonso, M.; Navarro, J.; et al. Primary resistance to integrase strand transfer inhibitors in Spain using ultrasensitive HIV-1 genotyping. J. Antimicrob. Chemother. 2020, 75, 3517–3524. [Google Scholar] [CrossRef]
- Semengue, E.N.J.; Armenia, D.; Inzaule, S.; Santoro, M.M.; Dambaya, B.; Takou, D.; Teto, G.; Nka, A.D.; Yagai, B.; Fabeni, L.; et al. Baseline integrase drug resistance mutations and conserved regions across HIV-1 clades in Cameroon: Implications for transition to dolutegravir in resource-limited settings. J. Antimicrob. Chemother. 2021, 76, 1277–1285. [Google Scholar] [CrossRef]
- Lübke, N.; Jensen, B.; Hüttig, F.; Feldt, T.; Walker, A.; Thielen, A.; Däumer, M.; Obermeier, M.; Kaiser, R.; Knops, E.; et al. Failure of Dolutegravir First-Line ART with Selection of Virus Carrying R263K and G118R. N. Engl. J. Med. 2019, 381, 887–889. [Google Scholar] [CrossRef]
- Ndashimye, E.; Avino, M.; Olabode, A.S.; Poon, A.F.Y.; Gibson, R.M.; Li, Y.; Meadows, A.; Tan, C.; Reyes, P.S.; Kityo, C.M.; et al. Accumulation of integrase strand transfer inhibitor resistance mutations confers high-level resistance to dolutegravir in non-B subtype HIV-1 strains from patients failing raltegravir in Uganda. J. Antimicrob. Chemother. 2020, 75, 3525–3533. [Google Scholar] [CrossRef]
- Pena, M.J.; Chueca, N.; D’Avolio, A.; Zarzalejos, J.M.; Garcia, F. Virological Failure in HIV to Triple Therapy With Dolutegravir-Based Firstline Treatment: Rare but Possible. Open Forum Infect. Dis. 2019, 6, ofy332. [Google Scholar] [CrossRef] [Green Version]
- Blanco, J.L.; Marcelin, A.G.; Katlama, C.; Martinez, E. Dolutegravir resistance mutations: Lessons from monotherapy studies. Curr. Opin Infect. Dis. 2018, 31, 237–245. [Google Scholar] [CrossRef]
- Brenner, B.G.; Thomas, R.; Blanco, J.L.; Ibanescu, R.I.; Oliveira, M.; Mesplède, T.; Golubkov, O.; Roger, M.; Garcia, F.; Martinez, E.; et al. Development of a G118R mutation in HIV-1 integrase following a switch to dolutegravir monotherapy leading to cross-resistance to integrase inhibitors. J. Antimicrob. Chemother. 2016, 71, 1948–1953. [Google Scholar] [CrossRef]
- Fulcher, J.A.; Du, Y.; Zhang, T.H.; Sun, R.; Landovitz, R.J. Emergence of Integrase Resistance Mutations During Initial Therapy Containing Dolutegravir. Clin. Infect. Dis. 2018, 67, 791–794. [Google Scholar] [CrossRef]
- Theys, K.; Libin, P.J.K.; Van Laethem, K.; Abecasis, A.B. An Evolutionary Model-Based Approach To Quantify the Genetic Barrier to Drug Resistance in Fast-Evolving Viruses and Its Application to HIV-1 Subtypes and Integrase Inhibitors. Antimicrob. Agents Chemother. 2019, 63, e00539-19. [Google Scholar] [CrossRef] [Green Version]
- Mikasi, S.G.; Isaacs, D.; Chitongo, R.; Ikomey, G.M.; Jacobs, G.B.; Cloete, R. Interaction analysis of statistically enriched mutations identified in Cameroon recombinant subtype CRF02_AG that can influence the development of Dolutegravir drug resistance mutations. BMC Infect. Dis. 2021, 21, 379. [Google Scholar] [CrossRef]
- Doyle, T.; Dunn, D.T.; Ceccherini-Silberstein, F.; De Mendoza, C.; Garcia, F.; Smit, E.; Fearnhill, E.; Marcelin, A.G.; Martinez-Picado, J.; Kaiser, R.; et al. Integrase inhibitor (INI) genotypic resistance in treatment-naive and raltegravir-experienced patients infected with diverse HIV-1 clades. J. Antimicrob. Chemother. 2015, 70, 3080–3086. [Google Scholar] [CrossRef] [Green Version]
- Rogers, L.; Obasa, A.E.; Jacobs, G.B.; Sarafianos, S.G.; Sönnerborg, A.; Neogi, U.; Singh, K. Structural Implications of Genotypic Variations in HIV-1 Integrase From Diverse Subtypes. Front. Microbiol. 2018, 9, 1754. [Google Scholar] [CrossRef] [Green Version]
- Bar-Magen, T.; Donahue, D.A.; McDonough, E.I.; Kuhl, B.D.; Faltenbacher, V.H.; Xu, H.; Michaud, V.; Sloan, R.D.; Wainberg, M.A. HIV-1 subtype B and C integrase enzymes exhibit differential patterns of resistance to integrase inhibitors in biochemical assays. Aids 2010, 24, 2171–2179. [Google Scholar] [CrossRef]
- Kirichenko, A.; Lapovok, I.; Baryshev, P.; van de Vijver, D.; van Kampen, J.J.A.; Boucher, C.A.B.; Paraskevis, D.; Kireev, D. Genetic Features of HIV-1 Integrase Sub-Subtype A6 Predominant in Russia and Predicted Susceptibility to INSTIs. Viruses 2020, 12, 838. [Google Scholar] [CrossRef]
- Quashie, P.K.; Mesplède, T.; Han, Y.S.; Oliveira, M.; Singhroy, D.N.; Fujiwara, T.; Underwood, M.R.; Wainberg, M.A. Characterization of the R263K mutation in HIV-1 integrase that confers low-level resistance to the second-generation integrase strand transfer inhibitor dolutegravir. J. Virol. 2012, 86, 2696–2705. [Google Scholar] [CrossRef] [Green Version]
- Rhee, S.Y.; Grant, P.M.; Tzou, P.L.; Barrow, G.; Harrigan, P.R.; Ioannidis, J.P.A.; Shafer, R.W. A systematic review of the genetic mechanisms of dolutegravir resistance. J. Antimicrob. Chemother. 2019, 74, 3135–3149. [Google Scholar] [CrossRef]
- Mouscadet, J.F.; Delelis, O.; Marcelin, A.G.; Tchertanov, L. Resistance to HIV-1 integrase inhibitors: A structural perspective. Drug Resist. Updates 2010, 13, 139–150. [Google Scholar] [CrossRef]
- EPHI. HIV Related Estimats and Projections in Ethiopia for the Year-2019. 2020. Available online: http://repository.iifphc.org/bitstream/handle/123456789/1069/HIV_estimation_and_projection_for_Ethiopia_2019.pdf?sequence=1&isAllowed=y (accessed on 25 December 2021).
- Arimide, D.A.; Esquivel-Gómez, L.R.; Kebede, Y.; Sasinovich, S.; Balcha, T.; Björkman, P.; Kühnert, D.; Medstrand, P. Molecular Epidemiology and Transmission Dynamics of the HIV-1 Epidemic in Ethiopia: Epidemic Decline Coincided With Behavioral Interventions Before ART Scale-Up. Front. Microbiol. 2022, 13, 821006. [Google Scholar] [CrossRef]
- MOH. National Consolidated Guidelines for Comprehensive HIV Prevention, Care and Treatment. 2018. Available online: https://www.afro.who.int/sites/default/files/2019-04/National%20Comprehensive%20HIV%20Care%20%20Guideline%202018.pdf (accessed on 15 December 2021).
- WHO. HIV Drug Resistance Surveillance Guidance: 2015 Update. 2015. Available online: https://www.who.int/publications/i/item/978-92-4-151009-7 (accessed on 27 December 2021).
- WHO. World Health Organization Global Strategy for the Surveillance and Monitoring of HIV Drug Resistance; WHO Press: Geneva, Switzerland, 2012. [Google Scholar]
- Van Laethem, K.; Schrooten, Y.; Covens, K.; Dekeersmaeker, N.; De Munter, P.; Van Wijngaerden, E.; Van Ranst, M.; Vandamme, A.M. A genotypic assay for the amplification and sequencing of integrase from diverse HIV-1 group M subtypes. J. Virol. Methods 2008, 153, 176–181. [Google Scholar] [CrossRef]
- Woods, C.K.; Brumme, C.J.; Liu, T.F.; Chui, C.K.; Chu, A.L.; Wynhoven, B.; Hall, T.A.; Trevino, C.; Shafer, R.W.; Harrigan, P.R. Automating HIV drug resistance genotyping with RECall, a freely accessible sequence analysis tool. J. Clin. Microbiol. 2012, 50, 1936–1942. [Google Scholar] [CrossRef] [Green Version]
- Pineda-Peña, A.C.; Faria, N.R.; Imbrechts, S.; Libin, P.; Abecasis, A.B.; Deforche, K.; Gómez-López, A.; Camacho, R.J.; de Oliveira, T.; Vandamme, A.M. Automated subtyping of HIV-1 genetic sequences for clinical and surveillance purposes: Performance evaluation of the new REGA version 3 and seven other tools. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2013, 19, 337–348. [Google Scholar] [CrossRef] [Green Version]
- Struck, D.; Lawyer, G.; Ternes, A.M.; Schmit, J.C.; Bercoff, D.P. COMET: Adaptive context-based modeling for ultrafast HIV-1 subtype identification. Nucleic. Acids Res. 2014, 42, e144. [Google Scholar] [CrossRef]
- Martin, D.P.; Lemey, P.; Lott, M.; Moulton, V.; Posada, D.; Lefeuvre, P. RDP3: A flexible and fast computer program for analyzing recombination. Bioinformatics 2010, 26, 2462–2463. [Google Scholar] [CrossRef]
- Katoh, K.; Kuma, K.; Miyata, T.; Toh, H. Improvement in the accuracy of multiple sequence alignment program MAFFT. Genome Inf. 2005, 16, 22–33. [Google Scholar]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Tippmann, H.F. Analysis for free: Comparing programs for sequence analysis. Brief. Bioinform. 2004, 5, 82–87. [Google Scholar] [CrossRef]
- Guindon, S.; Dufayard, J.F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar] [CrossRef] [Green Version]
- Guindon, S.; Lethiec, F.; Duroux, P.; Gascuel, O. PHYML Online—A web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res. 2005, 33, W557-9. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.L.; Ruxrungtham, K.; Delaugerre, C. Genetic barrier to the development of resistance to integrase inhibitors in HIV-1 subtypes CRF01_AE and B. Intervirology 2012, 55, 287–295. [Google Scholar] [CrossRef]
- Li, M.; Chen, X.; Wang, H.; Jurado, K.A.; Engelman, A.N.; Craigie, R. A Peptide Derived from Lens Epithelium-Derived Growth Factor Stimulates HIV-1 DNA Integration and Facilitates Intasome Structural Studies. J. Mol. Biol. 2020, 432, 2055–2066. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [Green Version]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef]
- Lu, R.; Limón, A.; Ghory, H.Z.; Engelman, A. Genetic analyses of DNA-binding mutants in the catalytic core domain of human immunodeficiency virus type 1 integrase. J. Virol. 2005, 79, 2493–2505. [Google Scholar] [CrossRef] [Green Version]
- Inzaule, S.C.; Hamers, R.L.; Noguera-Julian, M.; Casadellà, M.; Parera, M.; Rinke de Wit, T.F.; Paredes, R. Primary resistance to integrase strand transfer inhibitors in patients infected with diverse HIV-1 subtypes in sub-Saharan Africa. J. Antimicrob. Chemother. 2018, 73, 1167–1172. [Google Scholar] [CrossRef] [Green Version]
- Obasa, A.E.; Mikasi, S.G.; Brado, D.; Cloete, R.; Singh, K.; Neogi, U.; Jacobs, G.B. Drug Resistance Mutations Against Protease, Reverse Transcriptase and Integrase Inhibitors in People Living With HIV-1 Receiving Boosted Protease Inhibitors in South Africa. Front. Microbiol. 2020, 11, 438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fish, M.Q.; Hewer, R.; Wallis, C.L.; Venter, W.D.; Stevens, W.S.; Papathanasopoulos, M.A. Natural polymorphisms of integrase among HIV type 1-infected South African patients. AIDS Res. Hum. Retrovir. 2010, 26, 489–493. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.F.; Ramalho, D.B.; Abreu, C.M.; Vubil, A.; Mabunda, N.; Ismael, N.; Francisco, C.; Jani, I.V.; Tanuri, A. Genetic diversity and naturally polymorphisms in HIV type 1 integrase isolates from Maputo, Mozambique: Implications for integrase inhibitors. AIDS Res. Hum. Retrovir. 2012, 28, 1788–1792. [Google Scholar] [CrossRef] [Green Version]
- Mulu, A.; Maier, M.; Liebert, U.G. Lack of integrase inhibitors associated resistance mutations among HIV-1C isolates. J. Transl. Med. 2015, 13, 377. [Google Scholar] [CrossRef] [Green Version]
- Rangel, H.R.; Garzaro, D.; Fabbro, R.; Martinez, N.; Ossenkop, J.; Torres, J.R.; Gutiérrez, C.R.; Pujol, F.H. Absence of primary integrase resistance mutations in HIV type 1-infected patients in Venezuela. AIDS Res. Hum. Retrovir. 2010, 26, 923–926. [Google Scholar] [CrossRef]
- Brado, D.; Obasa, A.E.; Ikomey, G.M.; Cloete, R.; Singh, K.; Engelbrecht, S.; Neogi, U.; Jacobs, G.B. Analyses of HIV-1 integrase sequences prior to South African national HIV-treatment program and available of integrase inhibitors in Cape Town, South Africa. Sci. Rep. 2018, 8, 4709. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Kim, E.J.; Choi, J.Y.; Kwon, O.K.; Kim, G.J.; Choi, S.Y.; Kim, S.S. Genetic variation of the HIV-1 integrase region in newly diagnosed anti-retroviral drug-naïve patients with HIV/AIDS in Korea. Clin. Microbiol. Infect. 2011, 17, 1155–1159. [Google Scholar] [CrossRef] [Green Version]
- Kotaki, T.; Khairunisa, S.Q.; Sukartiningrum, S.D.; Witaningrum, A.M.; Rusli, M.; Diansyah, M.N.; Arfijanto, M.V.; Rahayu, R.P.; Nasronudin; Kameoka, M. Detection of drug resistance-associated mutations in human immunodeficiency virus type 1 integrase derived from drug-naive individuals in Surabaya, Indonesia. AIDS Res. Hum. Retrovir. 2014, 30, 489–492. [Google Scholar] [CrossRef]
- Arruda, L.B.; Fonseca, L.A.; Duarte, A.J.; Casseb, J. Genetic diversity on the integrase region of the pol gene among HIV type 1-infected patients naive for integrase inhibitors in São Paulo City, Brazil. AIDS Res. Hum. Retrovir. 2010, 26, 105–107. [Google Scholar] [CrossRef] [Green Version]
- Casadellà, M.; van Ham, P.M.; Noguera-Julian, M.; van Kessel, A.; Pou, C.; Hofstra, L.M.; Santos, J.R.; Garcia, F.; Struck, D.; Alexiev, I.; et al. Primary resistance to integrase strand-transfer inhibitors in Europe. J. Antimicrob. Chemother. 2015, 70, 2885–2888. [Google Scholar]
- Meixenberger, K.; Yousef, K.P.; Smith, M.R.; Somogyi, S.; Fiedler, S.; Bartmeyer, B.; Hamouda, O.; Bannert, N.; von Kleist, M.; Kücherer, C. Molecular evolution of HIV-1 integrase during the 20 years prior to the first approval of integrase inhibitors. Virol. J. 2017, 14, 223. [Google Scholar] [CrossRef] [Green Version]
- Tostevin, A.; White, E.; Dunn, D.; Croxford, S.; Delpech, V.; Williams, I.; Asboe, D.; Pozniak, A.; Churchill, D.; Geretti, A.M.; et al. Recent trends and patterns in HIV-1 transmitted drug resistance in the United Kingdom. HIV Med. 2017, 18, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Inzaule, S.C.; Hamers, R.L.; Noguera-Julian, M.; Casadellà, M.; Parera, M.; Kityo, C.; Steegen, K.; Naniche, D.; Clotet, B.; Rinke de Wit, T.F.; et al. Clinically relevant thresholds for ultrasensitive HIV drug resistance testing: A multi-country nested case-control study. Lancet HIV 2018, 5, e638–e646. [Google Scholar] [CrossRef]
- Ndashimye, E.; Avino, M.; Kyeyune, F.; Nankya, I.; Gibson, R.M.; Nabulime, E.; Poon, A.F.Y.; Kityo, C.; Mugyenyi, P.; Quiñones-Mateu, M.E.; et al. Absence of HIV-1 Drug Resistance Mutations Supports the Use of Dolutegravir in Uganda. AIDS Res. Hum. Retrovir. 2018, 34, 404–414. [Google Scholar] [CrossRef] [PubMed]
- Karade, S.; Sen, S.; Sashindran, V.K. Absence of Integrase Strand Transfer Inhibitor Associated Resistance in Antiretroviral Therapy Naïve and Experienced Individuals from Western India. AIDS Res. Hum. Retrovir. 2019, 35, 567–571. [Google Scholar] [CrossRef] [Green Version]
- Kityo, C.; Thompson, J.; Nankya, I.; Hoppe, A.; Ndashimye, E.; Warambwa, C.; Mambule, I.; van Oosterhout, J.J.; Wools-Kaloustian, K.; Bertagnolio, S.; et al. HIV Drug Resistance Mutations in Non-B Subtypes After Prolonged Virological Failure on NNRTI-Based First-Line Regimens in Sub-Saharan Africa. J. Acquir. Immune Defic. Syndr. 2017, 75, e45–e54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lan, Y.; Li, L.; Chen, W.; Deng, X.; Li, J.; Fan, Q.; Cai, X.; Cai, W.; Hu, F. Absence of Integrase Inhibitor-Associated Resistance Among Antiretroviral Therapy-Naïve HIV-1-Infected Adults in Guangdong Province, China, in 2018. Infect. Drug Resist. 2020, 13, 4389–4394. [Google Scholar] [CrossRef]
- Anstett, K.; Cutillas, V.; Fusco, R.; Mesplède, T.; Wainberg, M.A. Polymorphic substitution E157Q in HIV-1 integrase increases R263K-mediated dolutegravir resistance and decreases DNA binding activity. J. Antimicrob. Chemother. 2016, 71, 2083–2088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fun, A.; Van Baelen, K.; van Lelyveld, S.F.; Schipper, P.J.; Stuyver, L.J.; Wensing, A.M.; Nijhuis, M. Mutation Q95K enhances N155H-mediated integrase inhibitor resistance and improves viral replication capacity. J. Antimicrob. Chemother. 2010, 65, 2300–2304. [Google Scholar] [CrossRef] [Green Version]
- Garrido, C.; Villacian, J.; Zahonero, N.; Pattery, T.; Garcia, F.; Gutierrez, F.; Caballero, E.; Van Houtte, M.; Soriano, V.; de Mendoza, C. Broad phenotypic cross-resistance to elvitegravir in HIV-infected patients failing on raltegravir-containing regimens. Antimicrob. Agents Chemother. 2012, 56, 2873–2878. [Google Scholar] [CrossRef] [Green Version]
- Temesgen, Z.; Siraj, D.S. Raltegravir: First in class HIV integrase inhibitor. Clin. Risk Manag. 2008, 4, 493–500. [Google Scholar] [CrossRef] [Green Version]
- Passaes, C.B.; Guimarães, M.L.; Fernandez, S.L.; Lorete Rdos, S.; Teixeira, S.L.; Fernandez, J.C.; Morgado, M.G. Lack of primary mutations associated with integrase inhibitors among HIV-1 subtypes B, C, and F circulating in Brazil. J. Acquir. Immune Defic. Syndr. 2009, 51, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Wares, M.; Mesplède, T.; Quashie, P.K.; Osman, N.; Han, Y.; Wainberg, M.A. The M50I polymorphic substitution in association with the R263K mutation in HIV-1 subtype B integrase increases drug resistance but does not restore viral replicative fitness. Retrovirology 2014, 11, 7. [Google Scholar] [CrossRef] [Green Version]
- Hackett, J.; Harris, B.; Holzmayer, V.; Yamaguchi, J.; Luk, K.C.; Brennan, C.; Schochetman, G.; Devare, S.; Swanson, P. Naturally occurring polymorphisms in HIV-1 Group M, N, and O Integrase: Implications for integrase inhibitors. In Proceedings of the Fifteenth Conference on Retroviruses and Opportunistic Infections, Boston, MA, USA, 2–6 February 2008. [Google Scholar]
- Giacomelli, A.; Lai, A.; Franzetti, M.; Maggiolo, F.; Di Giambenedetto, S.; Borghi, V.; Francisci, D.; Magnani, G.; Pecorari, M.; Monno, L.; et al. No impact of previous NRTIs resistance in HIV positive patients switched to DTG+2NRTIs under virological control: Time of viral suppression makes the difference. Antivir. Res. 2019, 172, 104635. [Google Scholar] [CrossRef] [PubMed]
- Olearo, F.; Nguyen, H.; Bonnet, F.; Yerly, S.; Wandeler, G.; Stoeckle, M.; Cavassini, M.; Scherrer, A.; Costagiola, D.; Schmid, P.; et al. Impact of the M184V/I Mutation on the Efficacy of Abacavir/Lamivudine/Dolutegravir Therapy in HIV Treatment-Experienced Patients. Open Forum Infect. Dis. 2019, 6, ofz330. [Google Scholar] [CrossRef]
- Andreatta, K.; Willkom, M.; Martin, R.; Chang, S.; Wei, L.; Liu, H.; Liu, Y.-P.; Graham, H.; Quirk, E.; Martin, H.; et al. Switching to bictegravir/emtricitabine/tenofovir alafenamide maintained HIV-1 RNA suppression in participants with archived antiretroviral resistance including M184V/I. J. Antimicrob. Chemother. 2019, 74, 3555–3564. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.J.; Sun, H.Y.; Chang, S.Y.; Cheng, A.; Huang, Y.S.; Lin, K.Y.; Huang, Y.C.; Su, Y.C.; Liu, W.C.; Hung, C.C. Effectiveness of switching from protease inhibitors to dolutegravir in combination with nucleoside reverse transcriptase inhibitors as maintenance antiretroviral therapy among HIV-positive patients. Int. J. Antimicrob. Agents 2019, 54, 35–42. [Google Scholar] [CrossRef]
- Van Hal, S.J.; Herring, B.; Deris, Z.; Wang, B.; Saksena, N.K.; Dwyer, D.E. HIV-1 integrase polymorphisms are associated with prior antiretroviral drug exposure. Retrovirology 2009, 6, 12. [Google Scholar] [CrossRef] [Green Version]
- Brenner, B.G.; Lowe, M.; Moisi, D.; Hardy, I.; Gagnon, S.; Charest, H.; Baril, J.G.; Wainberg, M.A.; Roger, M. Subtype diversity associated with the development of HIV-1 resistance to integrase inhibitors. J. Med. Virol. 2011, 83, 751–759. [Google Scholar] [CrossRef]
- Maïga, A.I.; Malet, I.; Soulie, C.; Derache, A.; Koita, V.; Amellal, B.; Tchertanov, L.; Delelis, O.; Morand-Joubert, L.; Mouscadet, J.F.; et al. Genetic barriers for integrase inhibitor drug resistance in HIV type-1 B and CRF02_AG subtypes. Antivir 2009, 14, 123–129. [Google Scholar]
- Telele, N.F.; Kalu, A.W.; Gebre-Selassie, S.; Fekade, D.; Abdurahman, S.; Marrone, G.; Neogi, U.; Tegbaru, B.; Sönnerborg, A. Pretreatment drug resistance in a large countrywide Ethiopian HIV-1C cohort: A comparison of Sanger and high-throughput sequencing. Sci. Rep. 2018, 8, 7556. [Google Scholar] [CrossRef] [PubMed]
No. | Sequence ID | ART Regimen | Age | Gender | CD4+ T-Cell Count (Cells/mm3) | Viral Load (Copies/mL) | INSTI Accessory Mutation |
---|---|---|---|---|---|---|---|
1 | ETH-0186 | Naive | 40 | M | 359 | 62,118 | E157Q |
2 | ETH-0232 | Naive | 42 | M | 83 | -- | G163R |
3 | ETH-0343 | Naive | 40 | M | 42 | 26,531 | E157Q |
4 | ETH-0358 | Naive | 35 | M | 69 | 418,611 | G149A, E157Q |
5 | ETH-0366 | Naive | 27 | F | 175 | 62,517 | E157Q |
6 | ETH-0380 | Naive | 34 | M | 16 | 397,306 | E157Q |
7 | ETH-0396 | Naive | 25 | F | 341 | 47,435 | G163R |
8 | ETH-0410 | Naive | 38 | F | 538 | 11,458 | E157Q |
9 | ETH-0493 | Naive | 45 | M | 164 | 7130 | Q95K |
10 | ETH-0508 | Naive | 39 | M | 150 | -- | E157Q |
11 | ETH-0545 | Naive | 30 | F | -- | -- | E157Q |
12 | ETH-0609 | Naive | 28 | F | 895 | 2002 | T97A |
13 | ETH-0622 | Naive | 21 | F | 236 | 155,331 | T97A |
14 | ETH-0631 | Naive | 35 | F | 50 | 295,532 | E157Q |
15 | ETH-0695 | Naive | 35 | F | -- | 6465 | E157Q |
16 | ETH-0750 | TDF+3TC+EFV | 46 | M | -- | 18,681 | Q95K |
17 | ETH-0815 | TDF+3TC+EFV | 50 | M | 384 | -- | Q95K |
18 | ETH-0839 | ABC+3TC+ATV/r | 40 | M | 432 | 1432 | G163K |
19 | ETH-0843 | AZT+3TC+LPV/r | 39 | M | 733 | 4752 | G140E |
20 | ETH-0879 | TDF+3TC+ATV/r | 50 | F | 655 | 2667 | E157Q |
Codon Position | Substitution | Subtype C, n (%) a | Subtype B, n (%) b | Wild-Type Codon | Mutant Codon | Minimal Score c |
---|---|---|---|---|---|---|
66 | T66A | 439 (96.91) | 1829 (97.08) | ACA | GTC, GCC/A/G | 1 |
3 (0.66) | 7 (0.37) | ACG | 1 | |||
3 (0.66) | 6 (0.32) | ACT | 2 | |||
8 (1.77) | 42 (2.23) | ACC | 1 | |||
T66K | 439 (96.91) | 1829 (97.08) | ACA | AAA/G | 2.5 | |
3 (0.66) | 7 (0.37) | ACG | 2.5 | |||
3 (0.66) | 6 (0.32) | ACT | 5 | |||
8 (1.77) | 42 (2.23) | ACC | 5 | |||
T66I | 439 (96.91) | 1829 (97.08) | ACA | ATT/C/A | 1 | |
3 (0.66) | 7 (0.37) | ACG | 3.5 | |||
3 (0.66) | 6 (0.32) | ACT | 1 | |||
8 (1.77) | 42 (2.23) | ACC | 1 | |||
92 | E92Q | 441 (97.35) | 446 (23.67) | GAA | CAA/G | 2.5 |
12 (2,65%) | 1438 (76.33) | GAG | 2.5 | |||
118 | G118R | 394 (86.98) | 1750 (92.89) | GGC | CGT/C/A/G, AGA/G | 2.5 |
19 (4.19) | 32 (1.7) | GGA | 1 | |||
1 (0.22) | 5 (0.27) | GGG | 1 | |||
39 (8.61) | 91 (4.83) | GGT | 2.5 | |||
138 | E138A | 440 (93.16) | 1831 (97.19) | GAA | GTC, GCC/A/G | 2.5 |
13 (2.87) | 39 (2.07) | GAG | 2.5 | |||
E138K | 440 (93.16) | 1831 (97.19) | GAA | GTC, GCC/A/G | 1 | |
13 (2.87) | 39 (2.07) | GAG | 1 | |||
E138T | 440 (93.16) | 1831 (97.19) | GAA | ACT/C/A/G | 3.5 | |
13 (2.87) | 39 (2.07) | GAG | 3.5 | |||
140 | G140A | 243 (53.64) | 18 (0.96) | GGG | GTC, GCC/A/G | 2.5 |
208 (45.92) | 58 (3.08) | GGA | 2.5 | |||
1 (0.22) | 201 (10.67) | GGT | 3.5 | |||
1 (0.22) | 1607 (85.30) | GGC | 2.5 | |||
G140S | 243 (53.64) | 18 (0.96) | GGG | TCT/C/A/G, AGT/C | 3.5 | |
208 (45.92) | 58 (3.08) | GGA | 3.5 | |||
1 (0.22) | 201 (10.67) | GGT | 1 | |||
1 (0.22) | 1607 (85.30) | GGC | 1 | |||
G140C | 243 (53.64) | 18 (0.96) | GGG | TGT, TTC | 5 | |
208 (45.92) | 58 (3.08) | GGA | 5 | |||
1 (0.22) | 201 (10.67) | GGT | 2.5 | |||
1 (0.22) | 1607 (85.30) | GGC | 3.5 | |||
143 | Y143C | 436 (96.25) | 1877 (99.63) | TAC | TGT, TTC | 2.5 |
17 (3.75) | 7 (0.37) | TAT | 1 | |||
Y143H | 436 (96.25) | 1877 (99.63) | TAC | CAT/C | 1 | |
17 (3.75) | 7 (0.37) | TAT | 1 | |||
Y143R | 436 (96.25) | 1877 (99.63) | TAC | CGT/C/A/G. AGA/G | 3.5 | |
17 (3.75) | 7 (0.37) | TAT | 2 | |||
147 | S147G | 403 (88.96) | 1828 (97.03) | AGT | GGT/C/A/G | 1 |
50 (11.04) | 56 (2.97) | AGC | 1 | |||
148 | Q148H | 71 (15.67) | 1828 (97.03) | CAA | CAT/C | 2.5 |
382 (84.33) | 56 (2.97) | CAG | 2.5 | |||
Q148K | 71 (15.67) | 1828 (97.03) | CAA | AAA/G | 2.5 | |
382 (84.33) | 56 (2.97) | CAG | 2.5 | |||
Q148R | 71 (15.67) | 1828 (97.03) | CAA | CGT/C/A/G, AGA/G | 1 | |
382 (84.33) | 56 (2.97) | CAG | 1 | |||
155 | N155H | 427 (94.26) | 1849 (98.14) | AAT | CAT/C | 2.5 |
26 (5.74) | 35 (1.86) | AAC | 2.5 | |||
263 | R263K | 62 (13.69) | 1833 (97.29) | AGA | AAA/G | 1 |
389 (85.87) | 4 (0.21) | AGG | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arimide, D.A.; Szojka, Z.I.; Zealiyas, K.; Gebreegziabxier, A.; Adugna, F.; Sasinovich, S.; Björkman, P.; Medstrand, P. Pre-Treatment Integrase Inhibitor Resistance and Natural Polymorphisms among HIV-1 Subtype C Infected Patients in Ethiopia. Viruses 2022, 14, 729. https://doi.org/10.3390/v14040729
Arimide DA, Szojka ZI, Zealiyas K, Gebreegziabxier A, Adugna F, Sasinovich S, Björkman P, Medstrand P. Pre-Treatment Integrase Inhibitor Resistance and Natural Polymorphisms among HIV-1 Subtype C Infected Patients in Ethiopia. Viruses. 2022; 14(4):729. https://doi.org/10.3390/v14040729
Chicago/Turabian StyleArimide, Dawit Assefa, Zsófia Ilona Szojka, Kidist Zealiyas, Atsbeha Gebreegziabxier, Fekadu Adugna, Sviataslau Sasinovich, Per Björkman, and Patrik Medstrand. 2022. "Pre-Treatment Integrase Inhibitor Resistance and Natural Polymorphisms among HIV-1 Subtype C Infected Patients in Ethiopia" Viruses 14, no. 4: 729. https://doi.org/10.3390/v14040729
APA StyleArimide, D. A., Szojka, Z. I., Zealiyas, K., Gebreegziabxier, A., Adugna, F., Sasinovich, S., Björkman, P., & Medstrand, P. (2022). Pre-Treatment Integrase Inhibitor Resistance and Natural Polymorphisms among HIV-1 Subtype C Infected Patients in Ethiopia. Viruses, 14(4), 729. https://doi.org/10.3390/v14040729