Effects of the Prophylactic HPV Vaccines on HPV Type Prevalence and Cervical Pathology
Abstract
:1. Introduction
2. Post-Vaccination Changes in HPV Type Prevalence
3. Post-Vaccination Changes in HPV Type Prevalence Associated with Cervical Dysplasia
4. Post-Vaccination Changes in the Incidence of Cervical Cancer
5. Potential Economic Implications
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arbyn, M.; Xu, L.; Simoens, C.; Martin-Hirsch, P.P. Prophylactic vaccination against human papillomaviruses to prevent cervical cancer and its precursors. Cochrane Database Syst. Rev. 2018, 5, Cd009069. [Google Scholar] [CrossRef] [PubMed]
- Porras, C.; Tsang, S.H.; Herrero, R.; Guillén, D.; Darragh, T.M.; Stoler, M.H.; Hildesheim, A.; Wagner, S.; Boland, J.; Lowy, D.R.; et al. Efficacy of the bivalent HPV vaccine against HPV 16/18-associated precancer: Long-term follow-up results from the Costa Rica Vaccine Trial. Lancet Oncol. 2020, 21, 1643–1652. [Google Scholar] [CrossRef]
- Sierra, M.S.; Tsang, S.H.; Hu, S.; Porras, C.; Herrero, R.; Kreimer, A.R.; Schussler, J.; Boland, J.; Wagner, S.; Cortes, B.; et al. Risk Factors for Non-Human Papillomavirus (HPV) Type 16/18 Cervical Infections and Associated Lesions Among HPV DNA-Negative Women Vaccinated Against HPV-16/18 in the Costa Rica Vaccine Trial. J. Infect. Dis. 2021, 224, 503–516. [Google Scholar] [CrossRef] [PubMed]
- Krogsgaard, L.W.; Petersen, I.; Plana-Ripoll, O.; Bech, B.H.; Lützen, T.H.; Thomsen, R.W.; Rytter, D. Infections in temporal proximity to HPV vaccination and adverse effects following vaccination in Denmark: A nationwide register-based cohort study and case-crossover analysis. PLoS Med. 2021, 18, e1003768. [Google Scholar] [CrossRef] [PubMed]
- Afrin, L.B.; Dempsey, T.T.; Weinstock, L.B. Post-HPV-Vaccination Mast Cell Activation Syndrome: Possible Vaccine-Triggered Escalation of Undiagnosed Pre-Existing Mast Cell Disease? Vaccines 2022, 10, 127. [Google Scholar] [CrossRef] [PubMed]
- Man, I.; Vänskä, S.; Lehtinen, M.; Bogaards, J.A. Human Papillomavirus Genotype Replacement: Still Too Early to Tell? J. Infect. Dis. 2021, 224, 481–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hampson, I.N.; Oliver, A.W.; Hampson, L. Potential Effects of Human Papillomavirus Type Substitution, Superinfection Exclusion and Latency on the Efficacy of the Current L1 Prophylactic Vaccines. Viruses 2020, 13, 22. [Google Scholar] [CrossRef] [PubMed]
- Freire-Salinas, J.; Benito, R.; Azueta, A.; Gil, J.; Mendoza, C.; Nicolás, M.; García-Berbel, P.; Algarate, S.; Gómez-Román, J. Genotype Distribution Change After Human Papillomavirus Vaccination in Two Autonomous Communities in Spain. Front. Cell. Infect. Microbiol. 2021, 11, 633162. [Google Scholar] [CrossRef] [PubMed]
- Schlecht, N.F.; Diaz, A.; Nucci-Sack, A.; Shyhalla, K.; Shankar, V.; Guillot, M.; Hollman, D.; Strickler, H.D.; Burk, R.D. Incidence and Types of Human Papillomavirus Infections in Adolescent Girls and Young Women Immunized With the Human Papillomavirus Vaccine. JAMA Netw. Open 2021, 4, e2121893. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Ährlund-Richter, A.; Näsman, A.; Dalianis, T. Human papilloma virus (HPV) prevalence upon HPV vaccination in Swedish youth: A review based on our findings 2008–2018, and perspectives on cancer prevention. Arch. Gynecol. Obstet. 2021, 303, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Dillner, J.; Sparén, P.; Andrae, B.; Strander, B. Cervical cancer has increased in Sweden in women who had a normal cell sample. Lakartidningen 2018, 115, E9FD. [Google Scholar] [PubMed]
- Gardella, B.; Dominoni, M.; Sosso, C.; Arrigo, A.; Gritti, A.; Cesari, S.; Fiandrino, G.; Spinillo, A. Human Papillomavirus Distribution in Women with Abnormal Pap Smear and/or Cervical Intraepithelial Neoplasia in Vaccination Era. A Single-Center Study in the North Italian Population. Microorganisms 2021, 9, 729. [Google Scholar] [CrossRef] [PubMed]
- Gargano, J.W.; Park, I.U.; Griffin, M.R.; Niccolai, L.M.; Powell, M.; Bennett, N.M.; Johnson Jones, M.L.; Whitney, E.; Pemmaraju, M.; Brackney, M.; et al. Trends in High-grade Cervical Lesions and Cervical Cancer Screening in 5 States, 2008–2015. Clin. Infect. Dis. 2019, 68, 1282–1291. [Google Scholar] [CrossRef] [PubMed]
- Hiramatsu, K.; Ueda, Y.; Yagi, A.; Morimoto, A.; Egawa-Takata, T.; Nakagawa, S.; Kobayashi, E.; Kimura, T.; Kimura, T.; Minekawa, R.; et al. The efficacy of human papillomavirus vaccination in young Japanese girls: The interim results of the OCEAN study. Hum. Vaccines Immunother. 2022, 18, 1951098. [Google Scholar] [CrossRef] [PubMed]
- Mix, J.M.; Van Dyne, E.A.; Saraiya, M.; Hallowell, B.D.; Thomas, C.C. Assessing Impact of HPV Vaccination on Cervical Cancer Incidence among Women Aged 15–29 Years in the United States, 1999–2017: An Ecologic Study. Cancer Epidemiol. Prev. Biomark. 2021, 30, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Benard, V.B.; Watson, M.; Castle, P.E.; Saraiya, M. Cervical carcinoma rates among young females in the United States. Obstet. Gynecol. 2012, 120, 1117–1123. [Google Scholar] [CrossRef] [PubMed]
- NORDCAN, Association of Nordic Cancer Registries. In WHO IARC. 2022. Available online: https://nordcan.iarc.fr/en/dataviz/trends?cancers=190&sexes=1_2&populations=0&mode=cancer&multiple_populations=0&multiple_cancers=1 (accessed on 28 February 2022).
- CRUK Cervical Cancer Incidence Statistics. Available online: https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/cervical-cancer/incidence#heading-Two (accessed on 28 February 2022).
- Pike, J.; Leidner, A.J.; Chesson, H.; Stoecker, C.; Grosse, S.D. Data-Related Challenges in Cost-Effectiveness Analyses of Vaccines. Appl. Health Econ. Health Policy. Available online: https://doi.org/10.1007/s40258-022-00718-z (accessed on 9 February 2022). [CrossRef]
- Chesson, H.W.; Meites, E.; Ekwueme, D.U.; Saraiya, M.; Markowitz, L.E. Cost-effectiveness of HPV vaccination for adults through age 45 years in the United States: Estimates from a simplified transmission model. Vaccine 2020, 38, 8032–8039. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hampson, I.N. Effects of the Prophylactic HPV Vaccines on HPV Type Prevalence and Cervical Pathology. Viruses 2022, 14, 757. https://doi.org/10.3390/v14040757
Hampson IN. Effects of the Prophylactic HPV Vaccines on HPV Type Prevalence and Cervical Pathology. Viruses. 2022; 14(4):757. https://doi.org/10.3390/v14040757
Chicago/Turabian StyleHampson, Ian N. 2022. "Effects of the Prophylactic HPV Vaccines on HPV Type Prevalence and Cervical Pathology" Viruses 14, no. 4: 757. https://doi.org/10.3390/v14040757
APA StyleHampson, I. N. (2022). Effects of the Prophylactic HPV Vaccines on HPV Type Prevalence and Cervical Pathology. Viruses, 14(4), 757. https://doi.org/10.3390/v14040757