Combining a Universal Capture Ligand and Pan-Serotype Monoclonal Antibody to Develop a Pan-Serotype Lateral Flow Strip Test for Foot-and-Mouth Disease Virus Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Production and Biotinylation of Recombinant Bovine Integrin αvβ6
2.2. Purification and Gold Conjugation of the Monoclonal Antibody
2.3. Experimental Samples
2.4. Development of Pan-Serotype FMD Lateral Flow Strip Test
2.5. Antigen Detection Enzyme-Linked Immunosorbent Assay
2.6. Real-Time Reverse Transcription Polymerase Chain Reaction
3. Results
3.1. Sensitivity and Specificity of the Pan-Serotype FMDV Lateral Flow Strip Test
3.2. Antigen Detection in Clinical Samples Using the Pan-Serotype FMDV Lateral Flow Strip Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alexandersen, S.; Zhang, Z.; Donaldson, A.I.; Garland, A.J. The pathogenesis and diagnosis of foot-and-mouth disease. J. Comp. Pathol. 2003, 129, 1–36. [Google Scholar] [CrossRef]
- Grubman, M.J.; Baxt, B. Foot-and-mouth disease. Clin. Microbiol. Rev. 2004, 17, 465–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hole, K.; Nfon, C. Foot-and-mouth disease virus detection on a handheld real-time polymerase chain reaction platform. Transbound. Emerg. Dis. 2019, 66, 1789–1795. [Google Scholar] [CrossRef] [PubMed]
- Howson, E.L.A.; Armson, B.; Lyons, N.A.; Chepkwony, E.; Kasanga, C.J.; Kandusi, S.; Ndusilo, N.; Yamazaki, W.; Gizaw, D.; Cleaveland, S.; et al. Direct detection and characterization of foot-and-mouth disease virus in east africa using a field-ready real-time pcr platform. Transbound. Emerg. Dis. 2018, 65, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Ambagala, A.; Fisher, M.; Goolia, M.; Nfon, C.; Furukawa-Stoffer, T.; Ortega Polo, R.; Lung, O. Field-deployable reverse transcription-insulated isothermal pcr (rt-iipcr) assay for rapid and sensitive detection of foot-and-mouth disease virus. Transbound. Emerg. Dis. 2017, 64, 1610–1623. [Google Scholar] [CrossRef] [PubMed]
- Howson, E.L.A.; Armson, B.; Madi, M.; Kasanga, C.J.; Kandusi, S.; Sallu, R.; Chepkwony, E.; Siddle, A.; Martin, P.; Wood, J.; et al. Evaluation of two lyophilized molecular assays to rapidly detect foot-and-mouth disease virus directly from clinical samples in field settings. Transbound. Emerg. Dis. 2017, 64, 861–871. [Google Scholar] [CrossRef]
- Howson, E.L.A.; Soldan, A.; Webster, K.; Beer, M.; Zientara, S.; Belak, S.; Sanchez-Vizcaino, J.M.; Van Borm, S.; King, D.P.; Fowler, V.L. Technological advances in veterinary diagnostics: Opportunities to deploy rapid decentralised tests to detect pathogens affecting livestock. Rev. Sci. Technol. 2017, 36, 479–498. [Google Scholar] [CrossRef]
- Zhang, G.P.; Wang, X.N.; Yang, J.F.; Yang, Y.Y.; Xing, G.X.; Li, Q.M.; Zhao, D.; Chai, S.J.; Guo, J.Q. Development of an immunochromatographic lateral flow test strip for detection of beta-adrenergic agonist clenbuterol residues. J. Immunol. Methods 2006, 312, 27–33. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, Y.; Wang, S. Development of multianalyte flow-through and lateral-flow assays using gold particles and horseradish peroxidase as tracers for the rapid determination of carbaryl and endosulfan in agricultural products. J. Agric. Food Chem. 2006, 54, 2502–2507. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, G.; Liu, Q.; Teng, M.; Yang, J.; Wang, J. Development of a lateral flow colloidal gold immunoassay strip for the rapid detection of enrofloxacin residues. J. Agric. Food Chem. 2008, 56, 12138–12142. [Google Scholar] [CrossRef]
- Ferris, N.P.; Nordengrahn, A.; Hutchings, G.H.; Paton, D.J.; Kristersson, T.; Brocchi, E.; Grazioli, S.; Merza, M. Development and laboratory validation of a lateral flow device for the detection of serotype sat 2 foot-and-mouth disease viruses in clinical samples. J. Virol. Methods 2010, 163, 474–476. [Google Scholar] [CrossRef] [PubMed]
- Ferris, N.P.; Nordengrahn, A.; Hutchings, G.H.; Reid, S.M.; King, D.P.; Ebert, K.; Paton, D.J.; Kristersson, T.; Brocchi, E.; Grazioli, S.; et al. Development and laboratory validation of a lateral flow device for the detection of foot-and-mouth disease virus in clinical samples. J. Virol. Methods 2009, 155, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Oem, J.K.; Ferris, N.P.; Lee, K.N.; Joo, Y.S.; Hyun, B.H.; Park, J.H. Simple and rapid lateral-flow assay for the detection of foot-and-mouth disease virus. Clin. Vaccine Immunol. 2009, 16, 1660–1664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, M.; Goolia, M.; Xu, W.; Bittner, H.; Clavijo, A. Development of a quick and simple detection methodology for foot-and-mouth disease virus serotypes o, a and asia 1 using a generic rapidassay device. Virol. J. 2013, 10, 125. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Mudabuka, B.; Quizon, K.; Nfon, C. Generation of monoclonal antibodies against foot-and-mouth disease virus sat 2 and the development of a lateral flow strip test for virus detection. Transbound. Emerg. Dis. 2019, 66, 1158–1166. [Google Scholar] [CrossRef]
- Yang, M.; Mudabuka, B.; Dueck, C.; Xu, W.; Masisi, K.; Fana, E.M.; Mpofu, C.; Nfon, C. Development of two rapid lateral flow test strips for detection of foot-and-mouth disease virus sat 1 and sat 3. J. Virol. Methods 2021, 291, 113967. [Google Scholar] [CrossRef]
- Kittelberger, R.; Nfon, C.; Swekla, K.; Zhang, Z.; Hole, K.; Bittner, H.; Salo, T.; Goolia, M.; Embury-Hyatt, C.; Bueno, R.; et al. Foot-and-mouth disease in red deer-experimental infection and test methods performance. Transbound. Emerg. Dis. 2017, 64, 213–225. [Google Scholar] [CrossRef]
- Senthilkumaran, C.; Yang, M.; Bittner, H.; Ambagala, A.; Lung, O.; Zimmerman, J.; Gimenez-Lirola, L.G.; Nfon, C. Detection of genome, antigen, and antibodies in oral fluids from pigs infected with foot-and-mouth disease virus. Can. J. Vet. Res. 2017, 81, 82–90. [Google Scholar]
- Kotecha, A.; Wang, Q.; Dong, X.; Ilca, S.L.; Ondiviela, M.; Zihe, R.; Seago, J.; Charleston, B.; Fry, E.E.; Abrescia, N.G.A.; et al. Rules of engagement between alphavbeta6 integrin and foot-and-mouth disease virus. Nat. Commun. 2017, 8, 15408. [Google Scholar] [CrossRef]
- Ferris, N.P.; Abrescia, N.G.; Stuart, D.I.; Jackson, T.; Burman, A.; King, D.P.; Paton, D.J. Utility of recombinant integrin alpha v beta6 as a capture reagent in immunoassays for the diagnosis of foot-and-mouth disease. J. Virol. Methods 2005, 127, 69–79. [Google Scholar] [CrossRef]
- Ferris, N.P.; Grazioli, S.; Hutchings, G.H.; Brocchi, E. Validation of a recombinant integrin alphavbeta6/monoclonal antibody based antigen elisa for the diagnosis of foot-and-mouth disease. J. Virol. Methods 2011, 175, 253–260. [Google Scholar] [CrossRef] [PubMed]
- King, D.P.; Burman, A.; Gold, S.; Shaw, A.E.; Jackson, T.; Ferris, N.P. Integrin sub-unit expression in cell cultures used for the diagnosis of foot-and-mouth disease. Vet. Immunol. Immunopathol. 2011, 140, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Shimmon, G.; Wood, B.A.; Morris, A.; Mioulet, V.; Grazioli, S.; Brocchi, E.; Berryman, S.; Tuthill, T.; King, D.P.; Burman, A.; et al. Truncated bovine integrin alpha-v/beta-6 as a universal capture ligand for fmd diagnosis. PLoS ONE 2016, 11, e0160696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, M.; Clavijo, A.; Suarez-Banmann, R.; Avalo, R. Production and characterization of two serotype independent monoclonal antibodies against foot-and-mouth disease virus. Vet. Immunol. Immunopathol. 2007, 115, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Moniwa, M.; Clavijo, A.; Li, M.; Collignon, B.; Kitching, P.R. Performance of a foot-and-mouth disease virus reverse transcription-polymerase chain reaction with amplification controls between three real-time instruments. J. Vet. Diagn. Investig. 2007, 19, 9–20. [Google Scholar] [CrossRef] [Green Version]
- Shaw, A.E.; Reid, S.M.; Ebert, K.; Hutchings, G.H.; Ferris, N.P.; King, D.P. Implementation of a one-step real-time rt-pcr protocol for diagnosis of foot-and-mouth disease. J. Virol. Methods 2007, 143, 81–85. [Google Scholar] [CrossRef]
- Reid, S.M.; Ebert, K.; Bachanek-Bankowska, K.; Batten, C.; Sanders, A.; Wright, C.; Shaw, A.E.; Ryan, E.D.; Hutchings, G.H.; Ferris, N.P.; et al. Performance of real-time reverse transcription polymerase chain reaction for the detection of foot-and-mouth disease virus during field outbreaks in the united kingdom in 2007. J. Vet. Diagn. Investig. 2009, 21, 321–330. [Google Scholar] [CrossRef] [Green Version]
- Ryan, E.; Gloster, J.; Reid, S.M.; Li, Y.; Ferris, N.P.; Waters, R.; Juleff, N.; Charleston, B.; Bankowski, B.; Gubbins, S.; et al. Clinical and laboratory investigations of the outbreaks of foot-and-mouth disease in southern England in 2007. Vet. Rec. 2008, 163, 139–147. [Google Scholar] [CrossRef]
- Paton, D.J.; Reeve, R.; Capozzo, A.V.; Ludi, A. Estimating the protection afforded by foot-and-mouth disease vaccines in the laboratory. Vaccine 2019, 37, 5515–5524. [Google Scholar] [CrossRef]
- Romey, A.; Relmy, A.; Gorna, K.; Laloy, E.; Zientara, S.; Blaise-Boisseau, S.; Bakkali Kassimi, L. Safe and cost-effective protocol for shipment of samples from foot-and-mouth disease suspected cases for laboratory diagnostic. Transbound. Emerg. Dis. 2018, 65, 197–204. [Google Scholar] [CrossRef]
- Fowler, V.L.; Bankowski, B.M.; Armson, B.; Di Nardo, A.; Valdazo-Gonzalez, B.; Reid, S.M.; Barnett, P.V.; Wadsworth, J.; Ferris, N.P.; Mioulet, V.; et al. Recovery of viral rna and infectious foot-and-mouth disease virus from positive lateral-flow devices. PLoS ONE 2014, 9, e109322. [Google Scholar] [CrossRef] [PubMed]
O UKG11/2001 | A24 Cruzerio | Asia1 Shamir | SAT1 KEN4/98 | SAT2 ZIM10/91 | SAT3 ZIM4/81 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dilution | Titer (Log10 TCID50/0.1 mL) | AgELISA | LFST | Titer (Log10 TCID50/0.1 mL) | AgELISA | LFST | Titer (Log10 TCID50/0.1 mL) | AgELISA | LFST | Titer (Log10 TCID50/0.1 mL) | AgELISA | LFST | Titer (Log10 TCID50/0.1 mL) | AgELISA | LFST | Titer (Log10 TCID50/0.1 mL) | AgELISA | LFST |
Neat | 6.9 | 0.60 | +++ | 6.9 | 2.46 | +++ | 5.8 | 3.66 | +++ | 6.9 | 1.77 | +++ | 5.8 | 0.69 | ++ | 5.8 | 2.41 | +++ |
1:2 | 6.6 | 0.42 | +++ | 6.6 | 2.26 | +++ | 5.5 | 3.58 | +++ | 6.6 | 1.26 | +++ | 5.5 | 0.57 | ++ | 5.5 | 2.18 | +++ |
1:4 | 6.3 | 0.28 | ++ | 6.3 | 1.91 | +++ | 5.2 | 3.23 | +++ | 6.3 | 0.83 | ++ | 5.2 | 0.41 | ++ | 5.2 | 1.72 | +++ |
1:8 | 6.0 | 0.16 | ++ | 6.0 | 1.36 | ++ | 4.9 | 2.31 | ++ | 6.0 | 0.49 | ++ | 4.9 | 0.25 | ++ | 4.9 | 1.27 | +++ |
1:16 | 5.7 | 0.09 | ++ | 5.7 | 0.94 | ++ | 4.6 | 1.33 | ++ | 5.7 | 0.26 | + | 4.6 | 0.13 | + | 4.6 | 0.82 | ++ |
1:32 | 5.4 | 0.02 | + | 5.4 | 0.54 | + | 4.3 | 0.73 | + | 5.4 | 0.13 | + | 4.3 | 0.06 | + | 4.3 | 0.47 | ++ |
1:64 | 5.1 | 0.02 | + | 5.1 | 0.30 | + | 4.0 | 0.37 | + | 5.1 | 0.05 | − | 4.0 | 0.04 | − | 4.0 | 0.25 | + |
1:128 | 4.8 | 0.02 | − | 4.8 | 0.16 | + | 3.7 | 0.19 | − | 4.8 | 0.03 | − | 3.7 | 0.00 | − | 3.7 | 0.12 | + |
1:256 | 4.5 | 0.02 | − | 4.5 | 0.07 | − | 3.4 | 0.11 | − | 4.5 | 0.02 | − | 3.4 | 0.01 | − | 3.4 | 0.055 | − |
1:512 | 4.2 | 0.01 | − | 4.2 | 0.04 | − | 3.1 | 0.06 | − | 4.2 | 0.00 | − | 3.1 | 0.01 | − | 3.1 | 0.03 | − |
Serotype/Subtype | Animal ID | Tissue Origin | DPI | rRT-PCR Result (Ct) | AgELISA Result (OD) | LFST Result |
---|---|---|---|---|---|---|
O UKG 11/2001 | Pig 13 | Epithelium | 3 | 12.20 | 0.666 | +++ |
O UKG 11/2001 | Pig 14 | Epithelium | 3 | 13.50 | 0.766 | +++ |
O UKG 11/2001 | Pig 15 | Epithelium | 3 | 15.33 | 0.437 | ++ |
O UKG 11/2001 | Pig 16 | Epithelium | 3 | 14.32 | 0.624 | +++ |
O1 BFS/1860 | Pig 41 | Foot | 8 | 24.69 | 0.346 | +++ |
O UKG 11/2001 | Pig 59 | Epithelium | 3 | 18.76 | 0.586 | +++ |
O UKG 11/2001 | Cattle | Foot (interdigital space) | 3 | 13.31 | 0.516 | ++ |
O UKG 11/2001 | Cattle | Foot | n/a | 13.27 | 0.513 | +++ |
O1 Manisa | Cattle | Foot | 3 | 17.39 | 0.386 | +++ |
A IRN 1/2009 | Pig 77 | Foot (coronary band) | 4 | 14.47 | 2.496 | +++ |
A IRN 1/2009 | Pig 78 | Foot (coronary band) | 4 | 19.22 | 2.133 | +++ |
A IRN 1/2009 | Pig 78 | Foot (interdigital space) | 4 | 18.26 | 1.637 | +++ |
A IRN 1/2009 | Pig 79 | Foot (interdigital space) | n/a | 17.14 | 2.462 | +++ |
A IRN 1/2009 | Pig 80 | Foot (coronary band) | 4 | 15.59 | 2.378 | +++ |
ASIA 1 PAK 20/2003 | Pig 1 | Foot | 3 | 14.48 | 2.345 | +++ |
ASIA 1 PAK 20/2003 | Pig 2 | Foot (coronary band) | 4 | 12.09 | 3.433 | +++ |
ASIA 1 PAK 20/2003 | Pig 3 | Foot | 4 | 18.56 | 1.572 | +++ |
ASIA 1 PAK 20/2003 | Pig 4 | Foot (coronary band) | 4 | 15.96 | 3.288 | +++ |
ASIA 1 PAK 20/2003 | Pig 4 | Foot | 3 | 13.54 | 2.898 | +++ |
SAT 1 BOT 1/68 | Cattle | Tongue epithelium | 2 | 14.06 | 1.843 | + |
SAT 1 ZAM 9/2008 | Pig 81 | Foot (interdigital space) | 6 | 15.89 | 1.138 | +++ |
SAT 1 ZAM 9/2008 | Pig 81 | Foot (coronary band) | 6 | 17.04 | 1.111 | +++ |
SAT 1 ZAM 9/2008 | Pig 81 | Soft palate | 6 | 17.37 | 0.811 | +++ |
SAT 1 ZAM 9/2008 | Pig 84 | Foot (interdigital space) | 4 | 19.18 | 0.933 | +++ |
SAT 2 EGY 6/2012 | Pig 89 | Foot (coronary band) | 3 | 18.68 | 0.000 | +++ |
SAT 2 EGY 6/2012 | Pig 91 | Foot (interdigital space) | 3 | 25.56 | 0.322 | + |
SAT 2 EGY 6/2012 | Pig 91 | Foot (coronary band) | 3 | 25.14 | 0.324 | ++ |
SAT 2 EGY 6/2012 | Pig 92 | Snout | 3 | 23.64 | 0.540 | +++ |
SAT 2 EGY 6/2012 | Pig 92 | Foot (coronary band) | 3 | 21.58 | 0.780 | +++ |
SAT 3 ZIM 4/81 | Pig 5 | Hock tissue | 3 | 21.10 | 3.074 | +++ |
SAT 3 ZIM 4/81 | Pig 8 | Hock tissue | 3 | 21.74 | 3.037 | +++ |
SAT 3 SAR 1/2006 | Pig 93 | Foot (interdigital space) | 3 | 18.56 | 1.153 | +++ |
SAT 3 SAR 1/2006 | Pig 94 | Foot (coronary band) | 4 | 18.82 | 2.494 | +++ |
SAT 3 SAR 1/2006 | Pig 94 | Foot (interdigital space) | 4 | 18.29 | 1.904 | +++ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, M.; Zhmendak, D.; Mioulet, V.; King, D.P.; Burman, A.; Nfon, C.K. Combining a Universal Capture Ligand and Pan-Serotype Monoclonal Antibody to Develop a Pan-Serotype Lateral Flow Strip Test for Foot-and-Mouth Disease Virus Detection. Viruses 2022, 14, 785. https://doi.org/10.3390/v14040785
Yang M, Zhmendak D, Mioulet V, King DP, Burman A, Nfon CK. Combining a Universal Capture Ligand and Pan-Serotype Monoclonal Antibody to Develop a Pan-Serotype Lateral Flow Strip Test for Foot-and-Mouth Disease Virus Detection. Viruses. 2022; 14(4):785. https://doi.org/10.3390/v14040785
Chicago/Turabian StyleYang, Ming, Dmytro Zhmendak, Valerie Mioulet, Donald P. King, Alison Burman, and Charles K. Nfon. 2022. "Combining a Universal Capture Ligand and Pan-Serotype Monoclonal Antibody to Develop a Pan-Serotype Lateral Flow Strip Test for Foot-and-Mouth Disease Virus Detection" Viruses 14, no. 4: 785. https://doi.org/10.3390/v14040785
APA StyleYang, M., Zhmendak, D., Mioulet, V., King, D. P., Burman, A., & Nfon, C. K. (2022). Combining a Universal Capture Ligand and Pan-Serotype Monoclonal Antibody to Develop a Pan-Serotype Lateral Flow Strip Test for Foot-and-Mouth Disease Virus Detection. Viruses, 14(4), 785. https://doi.org/10.3390/v14040785