Efficacy of the Sentinox Spray in Reducing Viral Load in Mild COVID-19 and Its Virucidal Activity against Other Respiratory Viruses: Results of a Randomized Controlled Trial and an In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Randomized Controlled Efficacy Trial
2.1.1. Study Design
2.1.2. Study Population
2.1.3. Investigational Product
2.1.4. Study Procedures
2.1.5. Study Outcomes and Definitions
2.1.6. Sample Size
2.1.7. Statistical Analysis
2.2. In Vitro Study
2.2.1. Viruses
2.2.2. Virucidal Assays
3. Results
3.1. Randomized Controlled Efficacy Trial
3.1.1. Baseline Characteristics of Patients
3.1.2. Efficacy
3.1.3. Safety, Tolerability and Satisfaction
3.2. In Vitro Study
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). Weekly Epidemiological Update on COVID-19—4 May 2022. Available online: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---4-may-2022 (accessed on 9 May 2022).
- World Health Organization (WHO). Advice for the Public: Coronavirus Disease (COVID-19). Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public (accessed on 14 March 2022).
- World Health Organization (WHO). Tracking SARS-CoV-2 Variants. Available online: https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/ (accessed on 14 March 2022).
- The Lancet Infectious Diseases. Unmet need for COVID-19 therapies in community settings. Lancet Infect. Dis. 2021, 21, 1471. [Google Scholar] [CrossRef]
- Dadashi, M.; Khaleghnejad, S.; Abedi Elkhichi, P.; Goudarzi, M.; Goudarzi, H.; Taghavi, A.; Vaezjalali, M.; Hajikhani, B. COVID-19 and influenza co-infection: A systematic review and meta-analysis. Front. Med. 2021, 8, 681469. [Google Scholar] [CrossRef]
- Lansbury, L.; Lim, B.; Baskaran, V.; Lim, W.S. Co-infections in people with COVID-19: A systematic review and meta-analysis. J. Infect. 2020, 81, 266–275. [Google Scholar] [CrossRef]
- Stowe, J.; Tessier, E.; Zhao, H.; Guy, R.; Muller-Pebody, B.; Zambon, M.; Andrews, N.; Ramsay, M.; Lopez Bernal, J. Interactions between SARS-CoV-2 and influenza, and the impact of coinfection on disease severity: A test-negative design. Int. J. Epidemiol. 2021, 50, 1124–1133. [Google Scholar] [CrossRef]
- Antimisiaris, S.G.; Marazioti, A.; Kannavou, M.; Natsaridis, E.; Gkartziou, F.; Kogkos, G.; Mourtas, S. Overcoming barriers by local drug delivery with liposomes. Adv. Drug. Deliv. Rev. 2021, 174, 53–86. [Google Scholar] [CrossRef]
- Pilicheva, B.; Boyuklieva, R. Can the nasal cavity help tackle COVID-19? Pharmaceutics 2021, 13, 1612. [Google Scholar] [CrossRef]
- Farrell, N.F.; Klatt-Cromwell, C.; Schneider, J.S. Benefits and safety of nasal saline irrigations in a pandemic-washing COVID-19 away. JAMA Otolaryngol. Head Neck Surg. 2020, 146, 787–788. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Q.; Hu, J.; Zhou, M.; Yu, M.Q.; Li, K.Y.; Xu, D.; Xiao, Y.; Yang, J.Y.; Lu, Y.J.; et al. Nasopharyngeal swabs are more sensitive than oropharyngeal swabs for COVID-19 diagnosis and monitoring the SARS-CoV-2 load. Front. Med. 2020, 7, 334. [Google Scholar] [CrossRef]
- Yoon, J.G.; Yoon, J.; Song, J.Y.; Yoon, S.Y.; Lim, C.S.; Seong, H.; Noh, J.Y.; Cheong, H.J.; Kim, W.J. Clinical significance of a high SARS-CoV-2 viral load in the saliva. J. Korean Med. Sci. 2020, 35, e195. [Google Scholar] [CrossRef]
- Wölfel, R.; Corman, V.M.; Guggemos, W.; Seilmaier, M.; Zange, S.; Müller, M.A.; Niemeyer, D.; Jones, T.C.; Vollmar, P.; Rothe, C.; et al. Virological assessment of hospitalized patients with COVID-2019. Nature 2020, 581, 465–469. [Google Scholar] [CrossRef] [Green Version]
- Hou, Y.J.; Okuda, K.; Edwards, C.E.; Martinez, D.R.; Asakura, T.; Dinnon, K.H., 3rd; Kato, T.; Lee, R.E.; Yount, B.L.; Mascenik, T.M.; et al. SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract. Cell 2020, 182, 429–446. [Google Scholar] [CrossRef]
- Kawasuji, H.; Takegoshi, Y.; Kaneda, M.; Ueno, A.; Miyajima, Y.; Kawago, K.; Fukui, Y.; Yoshida, Y.; Kimura, M.; Yamada, H.; et al. Transmissibility of COVID-19 depends on the viral load around onset in adult and symptomatic patients. PLoS ONE 2020, 15, e0243597. [Google Scholar] [CrossRef]
- Burton, M.J.; Clarkson, J.E.; Goulao, B.; Glenny, A.M.; McBain, A.J.; Schilder, A.G.; Webster, K.E.; Worthington, H.V. Antimicrobial mouthwashes (gargling) and nasal sprays administered to patients with suspected or confirmed COVID-19 infection to improve patient outcomes and to protect healthcare workers treating them. Cochrane Database Syst. Rev. 2020, 9, CD013627. [Google Scholar]
- Winchester, S.; John, S.; Jabbar, K.; John, I. Clinical efficacy of nitric oxide nasal spray (NONS) for the treatment of mild COVID-19 infection. J. Infect. 2021, 83, 237–279. [Google Scholar] [CrossRef]
- Guenezan, J.; Garcia, M.; Strasters, D.; Jousselin, C.; Lévêque, N.; Frasca, D.; Mimoz, O. Povidone iodine mouthwash, gargle, and nasal spray to reduce nasopharyngeal viral load in patients with COVID-19: A randomized clinical trial. JAMA Otolaryngol. Head Neck Surg. 2021, 147, 400–401. [Google Scholar] [CrossRef]
- Zarabanda, D.; Vukkadala, N.; Phillips, K.M.; Qian, Z.J.; Mfuh, K.O.; Hatter, M.J.; Lee, I.T.; Rao, V.K.; Hwang, P.H.; Domb, G.; et al. The effect of povidone-iodine nasal spray on nasopharyngeal SARS-CoV-2 viral load: A randomized control trial. Laryngoscope 2021. [Google Scholar] [CrossRef]
- Block, M.S.; Rowan, B.G. Hypochlorous acid: A review. J. Oral. Maxillofac. Surg. 2020, 78, 1461–1466. [Google Scholar] [CrossRef]
- Kim, H.J.; Lee, J.G.; Kang, J.W.; Cho, H.J.; Kim, H.S.; Byeon, H.K.; Yoon, J.H. Effects of a low concentration hypochlorous acid nasal irrigation solution on bacteria, fungi, and virus. Laryngoscope 2008, 118, 1862–1867. [Google Scholar] [CrossRef]
- Hatanaka, N.; Yasugi, M.; Sato, T.; Mukamoto, M.; Yamasaki, S. Hypochlorous acid solution is a potent antiviral agent against SARS-CoV-2. J. Appl. Microbiol. 2022, 132, 1496–1502. [Google Scholar] [CrossRef]
- Liao, L.B.; Chen, W.M.; Xiao, X.M. The generation and inactivation mechanism of oxidation–reduction potential of electrolyzed oxidizing water. J. Food Eng. 2007, 78, 1326–1332. [Google Scholar] [CrossRef]
- Schneider, L.A.; Korber, A.; Grabbe, S.; Dissemond, J. Influence of pH on wound-healing: A new perspective for wound-therapy? Arch. Dermatol. Res. 2007, 298, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Giarratana, N.; Rajan, B.; Kamala, K.; Mendenhall, M.; Reiner, G. A sprayable Acid-Oxidizing solution containing hypochlorous acid (AOS2020) efficiently and safely inactivates SARS-Cov-2: A new potential solution for upper respiratory tract hygiene. Eur. Arch. Otorhinolaryngol. 2021, 278, 3099–3103. [Google Scholar] [CrossRef] [PubMed]
- NCT04909996. Available online: https://clinicaltrials.gov/ct2/show/NCT04909996 (accessed on 14 March 2022).
- Schulz, K.F.; Altman, D.G.; Moher, D.; CONSORT Group. CONSORT 2010 statement: Updated guidelines for reporting parallel group randomised trials. BMJ 2010, 340, c322. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Living Guidance for Clinical Management of COVID-19. Available online: https://www.who.int/publications/i/item/WHO-2019-nCoV-clinical-2021-2 (accessed on 14 March 2022).
- NEJM Procedure: Collection of Nasopharyngeal Specimens with the Swab Technique. Available online: https://www.youtube.com/watch?v=DVJNWefmHjEù (accessed on 14 March 2022).
- Seegene Inc. Allplex 2019-nCoV Assay (Version 2.2; 15 April 2021) (Cat no. RP10250X/RP10252W). Instructions for Use. Available online: https://www.fda.gov/media/137178/download (accessed on 14 March 2022).
- Domnich, A.; De Pace, V.; Pennati, B.M.; Caligiuri, P.; Varesano, S.; Bruzzone, B.; Orsi, A. Evaluation of extraction-free RT-qPCR methods for SARS-CoV-2 diagnostics. Arch. Virol. 2021, 166, 2825–2828. [Google Scholar] [CrossRef]
- Jefferson, T.; Spencer, E.A.; Brassey, J.; Heneghan, C. Viral cultures for coronavirus sisease 2019 infectivity assessment: A systematic review. Clin. Infect. Dis. 2021, 73, e3884–e3899. [Google Scholar] [CrossRef]
- Chang, M.C.; Hur, J.; Park, D. Interpreting the COVID-19 test results: A guide for physiatrists. Am. J. Phys. Med. Rehabil. 2020, 99, 583–585. [Google Scholar] [CrossRef]
- Esteve, C.; Catherine, F.X.; Chavanet, P.; Blot, M.; Piroth, L. How should a positive PCR test result for COVID-19 in an asymptomatic individual be interpreted and managed? Med. Mal. Infect. 2020, 50, 633–638. [Google Scholar] [CrossRef]
- Clonit, S.R.L. Quanty COVID-19v2. Available online: https://www.clonit.it/en/products/infectious-diseases/respiratory-infection/rt-25v2-quanty-covid-19v2/ (accessed on 14 March 2022).
- Liotti, F.M.; Menchinelli, G.; Marchetti, S.; Morandotti, G.A.; Sanguinetti, M.; Posteraro, B.; Cattani, P. Evaluation of three commercial assays for SARS-CoV-2 molecular detection in upper respiratory tract samples. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 269–277. [Google Scholar] [CrossRef]
- Saraiello, A.; Ferrentino, F.; Cuomo, N.; Grimaldi, M.; Falco, E.; Raffone, M.; Di Spirito, A.; Melillo, N.; Montanino, G.; Guarino, V.; et al. Correlation between cycle threshold and viral load through comparison of RT-PCR qualitative versus quantitative assay for SARS-CoV-2. Microbiol. Med. 2021, 36, 9999. [Google Scholar] [CrossRef]
- Ramakrishnan, M.A. Determination of 50% endpoint titer using a simple formula. World J. Virol. 2016, 5, 85–86. [Google Scholar] [CrossRef]
- Jin, X.; Ren, J.; Li, R.; Gao, Y.; Zhang, H.; Li, J.; Zhang, J.; Wang, X.; Wang, G. Global burden of upper respiratory infections in 204 countries and territories, from 1990 to 2019. EClinicalMedicine 2021, 37, 100986. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.S.; Kim, B.H.; Kang, S.H.; Lim, D.J. Low-concentration hypochlorous acid nasal irrigation for chronic sinonasal symptoms: A prospective randomized placebo-controlled study. Eur. Arch. Otorhinolaryngol. 2017, 274, 1527–1533. [Google Scholar] [CrossRef] [PubMed]
- Jiang, R.S.; Liang, K.L. Effect of hypochlorous acid nasal spray as an adjuvant therapy after functional endoscopic sinus surgery. Am. J. Otolaryngol. 2022, 43, 103264. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.C.; Kim, D.K.; Kim, J.S.; Lee, H.J.; Bae, M.R.; Choi, W.R.; Jang, Y.J. Hypochlorous acid versus saline nasal irrigation in allergic rhinitis: A multicenter, randomized, double-blind, placebo-controlled study. Am. J. Rhinol. Allergy. 2022, 36, 129–134. [Google Scholar] [CrossRef]
- Cho, H.J.; Min, H.J.; Chung, H.J.; Park, D.Y.; Seong, S.Y.; Yoon, J.H.; Lee, J.G.; Kim, C.H. Improved outcomes after low-concentration hypochlorous acid nasal irrigation in pediatric chronic sinusitis. Laryngoscope 2016, 126, 791–795. [Google Scholar] [CrossRef]
- Sender, R.; Bar-On, Y.M.; Gleizer, S.; Bernshtein, B.; Flamholz, A.; Phillips, R.; Milo, R. The total number and mass of SARS-CoV-2 virions. Proc. Natl. Acad. Sci. USA 2021, 118, e2024815118. [Google Scholar] [CrossRef]
- Smith, A.P.; Moquin, D.J.; Bernhauerova, V.; Smith, A.M. Influenza virus infection model with density dependence supports biphasic viral decay. Front. Microbiol. 2018, 9, 1554. [Google Scholar] [CrossRef] [Green Version]
- Contreras, C.; Newby, J.M.; Hillen, T. Personalized virus load curves for acute viral infections. Viruses 2021, 13, 1815. [Google Scholar] [CrossRef]
- Italian National Institute of Health. Prevalence and Distribution of SARS-CoV-2 Variants of Public Health Interest in Italy. Available online: https://www.epicentro.iss.it/coronavirus/pdf/sars-cov-2-monitoraggio-varianti-rapporti-periodici-10-dicembre-2021.pdf (accessed on 14 March 2022).
- Luo, C.H.; Morris, C.P.; Sachithanandham, J.; Amadi, A.; Gaston, D.C.; Li, M.; Swanson, N.J.; Schwartz, M.; Klein, E.Y.; Pekosz, A.; et al. Infection with the SARS-CoV-2 Delta variant is associated with higher recovery of infectious virus compared to the Alpha variant in both unvaccinated and vaccinated individuals. Clin. Infect. Dis. 2021, ciab986. [Google Scholar] [CrossRef] [PubMed]
- Han, M.S.; Byun, J.H.; Cho, Y.; Rim, J.H. RT-PCR for SARS-CoV-2: Quantitative versus qualitative. Lancet Infect. Dis. 2021, 21, 165. [Google Scholar] [CrossRef]
- Marc, A.; Kerioui, M.; Blanquart, F.; Bertrand, J.; Mitjà, O.; Corbacho-Monné, M.; Marks, M.; Guedj, J. Quantifying the relationship between SARS-CoV-2 viral load and infectiousness. Elife 2021, 10, e69302. [Google Scholar] [CrossRef] [PubMed]
- Higgins, T.S.; Wu, A.W.; Ting, J.Y. SARS-CoV-2 nasopharyngeal swab testing-false-negative results from a pervasive anatomical misconception. JAMA Otolaryngol. Head Neck Surg. 2020, 146, 993–994. [Google Scholar] [CrossRef] [PubMed]
- Snapinn, S.M.; Jiang, Q.; Iqlewicz, B. Informative noncompliance in endpoint trials. Curr. Control. Trials Cardiovasc. Med. 2004, 5, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freedman, L.S. The effect of partial noncompliance on the power of a clinical trial. Control. Clin. Trials 1990, 11, 157–168. [Google Scholar] [CrossRef]
Characteristic | STX-3 (n = 17) | STX-5 (n = 19) | C (n = 18) | Total (n = 54) |
---|---|---|---|---|
Age, mean ± SD (range) | 37.0 ± 12.3 (21–60) | 40.3 ± 14.5 (19–57) | 42.7 ± 14.1 (18–63) | 40.1 ± 13.7 (18–63) |
Sex, % (n) females | 23.5 (4) | 52.6 (10) | 27.8 (5) | 35.2 (19) |
Underlying medical conditions, % (n) | 5.9 (1) | 10.5 (2) | 5.6 (1) | 7.4 (4) |
≥1 concomitant medication, % (n) | 41.2 (7) | 52.6 (10) | 22.2 (4) | 38.9 (21) |
n of symptoms, median (range) | 5 (1–10) | 5 (1–10) | 7 (3–10) | 6 (1–9) |
Viral load at t0, log10 mean ± SD (range) | 9.9 ± 1.2 (8.1–11.4) | 10.4 ± 1.1 (7.7–12.1) | 9.9 ± 1.2 (7.1–11.6) | 10.1 ± 1.2 (7.1–12.1) |
Adverse Event | STX-3 (n = 17) | STX-5 (n = 19) | C (n = 18) |
---|---|---|---|
Any, % (n) | 17.6 (3) | 21.1 (4) | 22.2 (4) |
Any related, % (n) | 5.9 (1) | 0 (0) | 0 (0) |
Any serious, % (n) | 0 (0) | 5.3 (1) | 16.7 (3) |
Virus | Contact Time, s | Log10 Viral Load Reduction | % Viral Reduction |
---|---|---|---|
Influenza virus A(H1N1) | 15 | ≥5.75 | ≥99.9998 |
55 | ≥5.75 | ≥99.9998 | |
Influenza virus B | 15 | ≥3.00 | ≥99.9 |
55 | ≥3.00 | ≥99.9 | |
RSV A | 30 | ≥4.00 | ≥99.99 |
120 | ≥4.00 | ≥99.99 | |
Rhinovirus 14 | 30 | ≥3.25 | ≥99.94 |
120 | ≥3.00 | ≥99.9 | |
Adenovirus 5 | 15 | 6.00 | ≥99.9999 |
55 | ≥6.25 | ≥99.99994 | |
Parainfluenza virus 3 | 15 | ≥5.25 | ≥99.9994 |
55 | ≥4.75 | ≥99.9998 | |
Coronavirus 229E | 15 | ≥3.00 | ≥99.9 |
55 | ≥3.00 | ≥99.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panatto, D.; Orsi, A.; Bruzzone, B.; Ricucci, V.; Fedele, G.; Reiner, G.; Giarratana, N.; Domnich, A.; Icardi, G.; STX Study Group. Efficacy of the Sentinox Spray in Reducing Viral Load in Mild COVID-19 and Its Virucidal Activity against Other Respiratory Viruses: Results of a Randomized Controlled Trial and an In Vitro Study. Viruses 2022, 14, 1033. https://doi.org/10.3390/v14051033
Panatto D, Orsi A, Bruzzone B, Ricucci V, Fedele G, Reiner G, Giarratana N, Domnich A, Icardi G, STX Study Group. Efficacy of the Sentinox Spray in Reducing Viral Load in Mild COVID-19 and Its Virucidal Activity against Other Respiratory Viruses: Results of a Randomized Controlled Trial and an In Vitro Study. Viruses. 2022; 14(5):1033. https://doi.org/10.3390/v14051033
Chicago/Turabian StylePanatto, Donatella, Andrea Orsi, Bianca Bruzzone, Valentina Ricucci, Guido Fedele, Giorgio Reiner, Nadia Giarratana, Alexander Domnich, Giancarlo Icardi, and STX Study Group. 2022. "Efficacy of the Sentinox Spray in Reducing Viral Load in Mild COVID-19 and Its Virucidal Activity against Other Respiratory Viruses: Results of a Randomized Controlled Trial and an In Vitro Study" Viruses 14, no. 5: 1033. https://doi.org/10.3390/v14051033
APA StylePanatto, D., Orsi, A., Bruzzone, B., Ricucci, V., Fedele, G., Reiner, G., Giarratana, N., Domnich, A., Icardi, G., & STX Study Group. (2022). Efficacy of the Sentinox Spray in Reducing Viral Load in Mild COVID-19 and Its Virucidal Activity against Other Respiratory Viruses: Results of a Randomized Controlled Trial and an In Vitro Study. Viruses, 14(5), 1033. https://doi.org/10.3390/v14051033