Resistance of Xanthomonas oryzae pv. oryzae to Lytic Phage X2 by Spontaneous Mutation of Lipopolysaccharide Synthesis-Related Glycosyltransferase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains, Phages, and Media
2.2. Phage Propagation Assays
2.3. Isolation of Phage-Resistant Mutants
2.4. Genome Analysis of Phage-Resistant Mutants
2.5. Construction and Complementation of Mutants
2.6. Quantitative Real-Time RT-PCR
2.7. Phage Adsorption Assays
2.8. Electron Microscopic Observation
2.9. Assays of LPS
2.10. Assay of Hypersensitive Response (HR) and Rice Seedlings Pathogenicity
2.11. Statistical Analysis
3. Results
3.1. Spontaneous Mutant C2R Showed Clear Resistance to Phage X2
3.2. Genomic Analysis Identified Mutated Gene Encoding Glycosyltransferase
3.3. Verification by Constructing Insertional Mutant and Complement
3.4. Mutation of Glycosyltransferase Gene Reduces Phage Adsorption
3.5. Mutation of Glycosyltransferase Gene Alters the Bacterial Surface Morphology and Motility
3.6. Mutation of Glycosyltransferase Gene Inhibits Phage Infection by Changing LPS Structure
3.7. Mutation of Glycosyltransferase Gene Reduces Xoo Virulence
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mew, T.W. Current Status and Future-Prospects of Research on Bacterial-Blight of Rice. Annu. Rev. Phytopathol. 1987, 25, 359–382. [Google Scholar] [CrossRef]
- Buttimer, C.; McAuliffe, O.; Ross, R.P.; Hill, C.; O’Mahony, J.; Coffey, A. Bacteriophages and Bacterial Plant Diseases. Front. Microbiol. 2017, 8, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhunchoth, A.; Phironrit, N.; Leksomboon, C.; Chatchawankanphanich, O.; Kotera, S.; Narulita, E.; Kawasaki, T.; Fujie, M.; Yamada, T. Isolation of Ralstonia solanacearum-infecting bacteriophages from tomato fields in Chiang Mai, Thailand, and their experimental use as biocontrol agents. J. Appl. Microbiol. 2015, 118, 1023–1033. [Google Scholar] [CrossRef]
- Abedon, S.T.; Garcia, P.; Mullany, P.; Aminov, R. Editorial: Phage Therapy: Past, Presentand Future. Front. Microbiol. 2017, 8, 981. [Google Scholar] [CrossRef] [Green Version]
- Labrie, S.J.; Samson, J.E.; Moineau, S. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 2010, 8, 317–327. [Google Scholar] [CrossRef]
- Oechslin, F. Resistance Development to Bacteriophages Occurring during Bacteriophage Therapy. Viruses 2018, 10, 351. [Google Scholar] [CrossRef] [Green Version]
- Kulikov, E.E.; Golomidova, A.K.; Prokhorov, N.S.; Ivanov, P.A.; Letarov, A.V. High-throughput LPS profiling as a tool for revealing of bacteriophage infection strategies. Sci. Rep. 2019, 9, 2958. [Google Scholar] [CrossRef]
- Cai, R.P.; Wang, G.; Lee, S.; Wu, M.; Cheng, M.J.; Guo, Z.M.; Ji, Y.L.; Xi, H.Y.; Zhao, C.J.; Wang, X.W.; et al. Three Capsular Polysaccharide Synthesis-Related Glucosyltransferases, GT-1, GT-2 and WcaJ, Are Associated With Virulence and Phage Sensitivity of Klebsiella pneumoniae. Front. Microbiol. 2019, 10, 1189. [Google Scholar] [CrossRef] [Green Version]
- Whitfield, C.; Paiment, A. Biosynthesis and assembly of Group 1 capsular polysaccharides in Escherichia coli and related extracellular polysaccharides in other bacteria. Carbohydr. Res. 2003, 338, 2491–2502. [Google Scholar] [CrossRef]
- Zhao, X.N.; Cui, Y.J.; Yan, Y.F.; Du, Z.M.; Tan, Y.F.; Yang, H.Y.; Bi, Y.J.; Zhang, P.P.; Zhou, L.; Zhou, D.S.; et al. Outer Membrane Proteins Ail and OmpF of Yersinia pestis Are Involved in the Adsorption of T7-Related Bacteriophage Yep-phi. J. Virol. 2013, 87, 12260–12269. [Google Scholar] [CrossRef] [Green Version]
- Lindberg, A.A. Bacteriophage Receptors. Annu. Rev. Microbiol. 1973, 27, 205–241. [Google Scholar] [CrossRef] [PubMed]
- Holtappels, D.; Kerremans, A.; Busschots, Y.; Van Vaerenbergh, J.; Maes, M.; Lavigne, R.; Wagemans, J. Preparing for the KIL: Receptor Analysis of Pseudomonas syringae pv. porri Phages and Their Impact on Bacterial Virulence. Int. J. Mol. Sci. 2020, 21, 2930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mushtaq, N.; Redpath, M.B.; Luzio, J.P.; Taylor, P.W. Treatment of experimental Escherichia coli infection with recombinant bacteriophage-derived capsule depolymerase. J. Antimicrob. Chemother. 2005, 56, 160–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nobrega, F.L.; Vlot, M.; de Jonge, P.A.; Dreesens, L.L.; Beaumont, H.J.E.; Lavigne, R.; Dutilh, B.E.; Brouns, S.J.J. Targeting mechanisms of tailed bacteriophages. Nat. Rev. Microbiol. 2018, 16, 760–773. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Bao, H.D.; Zhang, H.; Pang, M.D.; Zhu, S.J.; Wang, R. A Spontaneous rapZ Mutant Impairs Infectivity of Lytic Bacteriophage vB EcoM JS09 against Enterotoxigenic Escherichia coli. mSphere 2021, 6, e01286-20. [Google Scholar] [CrossRef]
- Altamirano, F.G.; Forsyth, J.H.; Patwa, R.; Kostoulias, X.; Trim, M.; Subedi, D.; Archer, S.K.; Morris, F.C.; Oliveira, C.; Kielty, L.; et al. Bacteriophage-resistant Acinetobacter baumannii are resensitized to antimicrobials. Nat. Microbiol. 2021, 6, 157–161. [Google Scholar] [CrossRef]
- Hampton, H.G.; Watson, B.N.J.; Fineran, P.C. The arms race between bacteria and their phage foes. Nature 2020, 577, 327–336. [Google Scholar] [CrossRef]
- Silva, J.B.; Storms, Z.; Sauvageau, D. Host receptors for bacteriophage adsorption. FEMS Microbiol. Lett. 2016, 363, fnw002. [Google Scholar] [CrossRef] [Green Version]
- Ogunyemi, S.O.; Chen, J.; Zhang, M.C.; Wang, L.; Masum, M.M.I.; Yan, C.Q.; An, Q.L.; Li, B.; Chen, J.P. Identification and characterization of five new OP2-related Myoviridae bacteriophages infecting different strains of Xanthomonas oryzae pv. oryzae. J. Plant Pathol. 2019, 101, 263–273. [Google Scholar] [CrossRef]
- Wu, Z.F.; Zhang, Y.; Xu, X.Y.; Ahmed, T.; Yang, Y.; Loh, B.; Leptihn, S.; Yan, C.Q.; Chen, J.P.; Li, B. The Holin-Endolysin Lysis System of the OP2-Like Phage X2 Infecting Xanthomonas oryzae pv. oryzae. Viruses 2021, 13, 1949. [Google Scholar] [CrossRef]
- Simon, R.; Priefer, U.; Puhler, A. A Broad Host Range Mobilization System for Invivo Genetic-Engineering-Transposon Mutagenesis in Gram-Negative Bacteria. Bio-Technology 1983, 1, 784–791. [Google Scholar] [CrossRef]
- Penfold, R.J.; Pemberton, J.M. An Improved Suicide Vector for Construction of Chromosomal Insertion Mutations in Bacteria. Gene 1992, 118, 145–146. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, X.; Ahmed, T.; Liu, M.; Wu, Z.; Luo, J.; Tian, Y.; Jiang, H.; Wang, Y.; Sun, G.; et al. Identification of Genes Involved in Antifungal Activity of Burkholderia seminalis Against Rhizoctonia solani Using Tn5 Transposon Mutation Method. Pathogens 2020, 9, 797. [Google Scholar] [CrossRef] [PubMed]
- Carlson, K. Working with Bacteriophages: Common Techniques and Methodological Approaches; CRC Press: Boca Raton, FL, USA, 2005; pp. 437–494. [Google Scholar]
- Zhang, M.C.; Wang, Y.L.; Chen, J.; Hong, X.X.; Xu, X.Y.; Wu, Z.F.; Ahmed, T.; Loh, B.; Leptihn, S.; Hassan, S.; et al. Identification and Characterization of a New Type of Holin-Endolysin Lysis Cassette in Acidovorax oryzae Phage AP1. Viruses 2022, 14, 167. [Google Scholar] [CrossRef]
- Guglielmotti, D.M.; Reinheimer, J.A.; Binetti, A.G.; Giraffa, G.; Carminati, D.; Quiberoni, A. Characterization of spontaneous phage-resistant derivatives of Lactobacillus delbrueckii commercial strains. Int. J. Food Microbiol. 2006, 111, 126–133. [Google Scholar] [CrossRef]
- Geng, J.; Liu, H.Y.; Chen, S.Y.; Long, J.Z.; Jin, Y.F.; Yang, H.Y.; Duan, G.C. Comparative genomic analysis of Escherichia coli strains obtained from continuous imipenem stress evolution. FEMS Microbiol. Lett. 2022, 369, fnac015. [Google Scholar] [CrossRef]
- Chiaromonte, F.; Yap, V.B.; Miller, W. Scoring Pairwise Genomic Sequence Alignments; World Scientific: Singapore, 2002; pp. 115–126. [Google Scholar]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhang, M.; Loh, B.; Leptihn, S.; Ahmed, T.; Li, B. A novel NRPS cluster, acquired by horizontal gene transfer from algae, regulates siderophore iron metabolism in Burkholderia seminalis R456. Int. J. Biol. Macromol. 2021, 182, 838–848. [Google Scholar] [CrossRef]
- Sahebi, M.; Taheri, E.; Tarighi, S. CitB is required for full virulence of Xanthomonas oryzae pv. oryzae. World J. Microbiol. Biotechnol. 2015, 31, 1619–1627. [Google Scholar] [CrossRef]
- Lyu, X.Y.; Li, C.G.; Zhang, J.; Wang, L.; Jiang, Q.S.; Shui, Y.S.; Chen, L.; Luo, Y.F.; Xu, X. A Novel Small Molecule, LCG-N25, Inhibits Oral Streptococcal Biofilm. Front. Microbiol. 2021, 12, 654692. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.F.; Wang, X.P.; Xiang, Y.; Zhang, B.; Li, Y.R.; Xiao, Y.L.; Wang, J.S.; Walmsley, A.R.; Chen, G.Y. Elucidation of the hrp clusters of Xanthomonas oryzae pv. oryzicola that control the hypersensitive response in nonhost tobacco and pathogenicity in susceptible host rice. Appl. Environ. Microbiol. 2006, 72, 6212–6224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kauffman, H.E.; Reddy, A.P.K.; Hsieh, S.P.Y.; Merca, S.D. Improved Technique for Evaluating Resistance of Rice Varieties to Xanthomonas-Oryzae. Plant Dis. Report. 1973, 57, 537–541. [Google Scholar]
- Martin, J.; Schackwitz, W.; Lipzen, A. Genomic Sequence Variation Analysis by Resequencing. In Fungal Genomics: Methods and Protocols, 2nd ed.; DeVries, R.P., Tsang, A., Grigoriev, I.V., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; Volume 1775, pp. 229–239. [Google Scholar]
- Rakhuba, D.V.; Kolomiets, E.I.; Dey, E.S.; Novik, G.I. Bacteriophage Receptors, Mechanisms of Phage Adsorption and Penetration into Host Cell. Pol. J. Microbiol. 2010, 59, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Lairson, L.L.; Henrissat, B.; Davies, G.J.; Withers, S.G. Glycosyltransferases: Structures, functions, and mechanisms. Annu. Rev. Biochem. 2008, 77, 521–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unligil, U.M.; Rini, J.M. Glycosyltransferase structure and mechanism. Curr. Opin. Struct. Biol. 2000, 10, 510–517. [Google Scholar] [CrossRef]
- Newman, M.A.; Dow, J.M.; Daniels, M.J. Bacterial lipopolysaccharides and plant-pathogen interactions. Eur. J. Plant Pathol. 2001, 107, 95–102. [Google Scholar] [CrossRef]
- Hussan, R.H.; Dubery, I.A.; Piater, L.A. Identification of MAMP-Responsive Plasma Membrane-Associated Proteins in Arabidopsis thaliana Following Challenge with Different LPS Chemotypes from Xanthomonas campestris. Pathogens 2020, 9, 787. [Google Scholar] [CrossRef]
- Larrouy-Maumus, G.; Clements, A.; Filloux, A.; McCarthy, R.R.; Mostowy, S. Direct detection of lipid A on intact Gram-negative bacteria by MALDI-TOF mass spectrometry. J. Microbiol. Methods 2016, 120, 68–71. [Google Scholar] [CrossRef] [Green Version]
- Hung, C.H.; Wu, H.C.; Tseng, Y.H. Mutation in the Xanthomonas campestris xanA gene required for synthesis of xanthan and lipopolysaccharide drastically reduces the efficiency of bacteriophage phi L7 adsorption. Biochem. Biophys. Res. Commun. 2002, 291, 338–343. [Google Scholar] [CrossRef]
- Leiman, P.G.; Shneider, M.M. Contractile Tail Machines of Bacteriophages. In Viral Molecular Machines; Rossmann, M.G., Rao, V.B., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 726, pp. 93–114. [Google Scholar]
- Zhu, P.L.; Zhao, S.A.; Tang, J.L.; Feng, J.X. The rsmA-like gene rsmA(Xoo) of Xanthomonas oryzae pv. oryzae regulates bacterial virulence and production of diffusible signal factor. Mol. Plant Pathol. 2011, 12, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Stefani, E.; Obradovic, A.; Gasic, K.; Altin, I.; Nagy, I.K.; Kovacs, T. Bacteriophage-Mediated Control of Phytopathogenic Xanthomonads: A Promising Green Solution for the Future. Microorganisms 2021, 9, 1056. [Google Scholar] [CrossRef] [PubMed]
- Di Lorenzo, F.; Silipo, A.; Gersby, L.B.A.; Palmigiano, A.; Lanzetta, R.; Garozzo, D.; Boyer, C.; Pruvost, O.; Newman, M.A.; Molinaro, A. Xanthomonas citri pv. citri Pathotypes: LPS Structure and Function as Microbe-Associated Molecular Patterns. Chembiochem 2017, 18, 772–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Vinogradov, E.V.; Bogdanove, A.J. Requirement of the Lipopolysaccharide O-Chain Biosynthesis Gene wxocB for Type III Secretion and Virulence of Xanthomonas oryzae pv. Oryzicola. J. Bacteriol. 2013, 195, 1959–1969. [Google Scholar] [CrossRef] [Green Version]
- Ottemann, K.M.; Miller, J.F. Roles for motility in bacterial-host interactions. Mol. Microbiol. 1997, 24, 1109–1117. [Google Scholar] [CrossRef]
- Duerkop, B.A.; Huo, W.W.; Bhardwaj, P.; Palmer, K.L.; Hooper, L.V. Molecular Basis for Lytic Bacteriophage Resistance in Enterococci. Mbio 2016, 7, e01304-16. [Google Scholar] [CrossRef] [Green Version]
- Yen, M.M.; Cairns, L.S.; Camilli, A. A cocktail of three virulent bacteriophages prevents Vibrio cholerae infection in animal models. Nat. Commun. 2017, 8, 14187. [Google Scholar] [CrossRef] [Green Version]
Strains and Plasmids | Description | Source or Reference |
---|---|---|
Xanthomonas oryzae pv. oryzae | ||
C2 | pathogen of BLB | Lab collection |
C2R | Spontaneous phage-resistant strain of C2 | This study |
k2289 | Km, glycosyltransferase--deficient strain, insertional mutant | This study |
c2289 | Km, Cm, complementation of CDS2289 gene | This study |
Escherichia coli | ||
DH5α | F-Φ80d lacZΔM15Δ(lacZYA-argF) U169 recA1 endA1, hsdR17(rk-, mk+) phoAsupE44 λ- thi-1 gyrA96 relA1 | Vazyme, Nanjing, China |
S17-1 λ pir | λ Lysogenic S17-1 derivative producing π protein for replication of plasmids carrying oriR6K; recA pro hsdR RP4-2-Tc: Mu-Km::Tn7 λ− pir | [21] |
Plasmids | ||
pJP5603 | Km; R6K-based suicide vector; requires the pir-encoded π protein for replication | [22] |
pRADK | Km, Cm; host broad expression vector | [23] |
Primers Name | Sequences (5′-3′) | Length |
---|---|---|
Gene knockout primers | ||
k2289-F | CGGGATCCGCCGGCCTGCACTATCAC | 1549 bp |
k2289-R | CGGAATTCGGTGCATGCCTTCCACCG | |
Gene complementation primers | ||
c2289-F | CAAGCTCGCGAGGCCTCGAGTCTCGTTGAACTTGCGCGTC | 3113 bp |
c2289-R | GTGAATCGATAGATCTCGAGTCACTCCGCAATAAACAACGCC | |
RT-qPCR primers | ||
q2289-F | ATGTCGATGTCTTTGGCCGA | 195 bp |
q2289-R | CGCAAATGCGGCGAACG | |
qgyrB-F | CGCCTACCAGGAAACCATGT | 120 bp |
qgyrB-R | TTCTGCTCGATGTAGGTGCC |
Genetic Variants | Gene | Annotation | Position | Reference Bases | Alternate Bases | Quality |
---|---|---|---|---|---|---|
Indel | CDS 949 upstream | Mobile element protein | 910,589 | AGG | A, AG | 572.78 |
Indel | CDS 1674 upstream | Maltodextrin ABC transporter, ATP-binding protein MsmX | 1,639,078 | CGG | C, CG | 772.39 |
Indel | CDS 2146 upstream | Cold shock protein of CSP family | 2,103,224 | CA | C | 40,774.04 |
Indel | CDS 2289 | Glycosyltransferase | 2,266,307 | G | GC | 10,079.96 |
Indel | CDS 4567 downstream | avirulence protein | 4,437,505 | GC | G | 13,253.19 |
SV | CDS 1 | Cysteinyl-tRNA synthetase | 10 | N | <DUP> | 3639.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Qian, J.; Xu, X.; Ahmed, T.; Yang, Y.; Yan, C.; Elsharkawy, M.M.; Hassan, M.M.; Alorabi, J.A.; Chen, J.; et al. Resistance of Xanthomonas oryzae pv. oryzae to Lytic Phage X2 by Spontaneous Mutation of Lipopolysaccharide Synthesis-Related Glycosyltransferase. Viruses 2022, 14, 1088. https://doi.org/10.3390/v14051088
Zhang M, Qian J, Xu X, Ahmed T, Yang Y, Yan C, Elsharkawy MM, Hassan MM, Alorabi JA, Chen J, et al. Resistance of Xanthomonas oryzae pv. oryzae to Lytic Phage X2 by Spontaneous Mutation of Lipopolysaccharide Synthesis-Related Glycosyltransferase. Viruses. 2022; 14(5):1088. https://doi.org/10.3390/v14051088
Chicago/Turabian StyleZhang, Muchen, Jiahui Qian, Xinyan Xu, Temoor Ahmed, Yong Yang, Chenqi Yan, Mohsen Mohamed Elsharkawy, Mohamed M. Hassan, Jamal A. Alorabi, Jianping Chen, and et al. 2022. "Resistance of Xanthomonas oryzae pv. oryzae to Lytic Phage X2 by Spontaneous Mutation of Lipopolysaccharide Synthesis-Related Glycosyltransferase" Viruses 14, no. 5: 1088. https://doi.org/10.3390/v14051088
APA StyleZhang, M., Qian, J., Xu, X., Ahmed, T., Yang, Y., Yan, C., Elsharkawy, M. M., Hassan, M. M., Alorabi, J. A., Chen, J., & Li, B. (2022). Resistance of Xanthomonas oryzae pv. oryzae to Lytic Phage X2 by Spontaneous Mutation of Lipopolysaccharide Synthesis-Related Glycosyltransferase. Viruses, 14(5), 1088. https://doi.org/10.3390/v14051088