Fraternal Twins: The Enigmatic Role of the Immune System in Alphaherpesvirus Pathogenesis and Latency and Its Impacts on Vaccine Efficacy
Abstract
:1. Introduction
2. Review
2.1. The Highlights of HSV Pathogenesis
2.2. Immunity and VZV Latency
2.3. The Quest for an Efficacious HSV Vaccine
2.4. What Differences Account for the Difficulty in Developing Effective HSV Vaccines Contrasted with the Success of VZV Vaccines?
2.5. What Factors Have Contributed to the Success of VZV Vaccines?
3. Coda
Author Contributions
Funding
Conflicts of Interest
References
- Bloom, D.C. Alphaherpesvirus Latency: A Dynamic State of Transcription and Reactivation. Adv. Virus Res. 2016, 94, 53–80. [Google Scholar] [CrossRef] [PubMed]
- Roizman, B.; Whitley, R.J. An Inquiry into the Molecular Basis of HSV Latency and Reactivation. Ann. Rev. Microbiol. 2013, 67, 355–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, J.I. Herpesvirus latency. J. Clin. Investig. 2020, 130, 3361–3369. [Google Scholar] [CrossRef] [PubMed]
- Jones, C. Reactivation from latency by alpha-herpesvirinae submfamily members: A stressful stimulation. Curr. Top. Virol. 2014, 12, 99–118. [Google Scholar]
- Azarkh, Y.; Gilden, D.; Cohrs, R.J. Molecular characterization of varicella zoster virus in latently infected human ganglia: Physical state and abundance of VZV DNA, quantitation of viral transcripts and detection of VZV-specific proteins. Curr. Top. Microbiol. Immunol. 2010, 342, 229–241. [Google Scholar] [CrossRef] [Green Version]
- Depledge, D.P.; Ouwendijk, W.J.D.; Braspenning, S.E.; Mori, Y.; Cohrs, R.J.; Verjans, G.M.G.M.; Breuer, J. A spliced latency-associated VZV transcript maps antisense to the viral transactivator gene 61. Nat. Commun. 2018, 9, 1167. [Google Scholar] [CrossRef]
- Braspenning, S.; Lebbink, R.J.; Depledge, D.P.; Schapendonk, C.M.E.; Anderson, L.A.; Verjans, G.M.G.M.; Sadaoka, T.; Ouwendijk, E.J.D. Mutagenesis of the varicella-zoster virus genome demonstrates that VLT and VLT-ORF63 proteins are dispensable for lytic infection. Viruses 2021, 13, 2289. [Google Scholar] [CrossRef]
- Zhu, S.; Viejo-Borbolla, A. Pathogenesis and virulence of herpes simplex virus. Virulence 2021, 12, 2670–2702. [Google Scholar] [CrossRef]
- Wald, A. Genital HSV-1 infections. Sex. Trans. Infect. 2006, 82, 189–190. [Google Scholar] [CrossRef]
- St. Leger, A.J.; Koelle, D.M.; Kinchington, P.R.; Verjans, G.M.G.M. Local immune control of latent herpes simplex type 1 in ganglia of mice and man. Front. Immunol. 2021, 12, 723809. [Google Scholar] [CrossRef]
- Zhang, S.Y. Herpes simplex virus encephalitis of childhood: Inborn errors of central nervous system cell-intrinsic immunity. Hum. Genet. 2020, 139, 911–918. [Google Scholar] [CrossRef] [PubMed]
- Strick, L.B.; Wald, A.; Celum, C. Management of Herpes Simplex Virus Type 2 Infection in HIV Type 1–Infected Persons. Clin. Infect. Dis. 2006, 43, 347–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rezaei, N.; Hedayat, M.; Aghamohammadi, A.; Nichols, K.E. Primary immunodeficiency diseases associated with increased susceptibility to viral infections and malignancies. J. Allergy Clin. Immunol. 2011, 127, 1329–1341.e2. [Google Scholar] [CrossRef] [PubMed]
- Johnston, C.; Magaret, A.; Roychoudhury, P.; Greninger, A.L.; Reeves, D.; Schiffer, J.; Jerome, K.R.; Sather, C.; Diem, K.; Lingappa, J.R.; et al. Dual-strain genital herpes simplex virus type 2 (HSV-2) infection in the US, Peru, and 8 countries in sub-Saharan Africa: A nested cross-sectional viral genotyping study. PLoS Med. 2017, 14, e1002475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedman, H.M. Immune evasion by herpes simplex virus type 1, strategies for virus survival. Trans. Am. Clin. Clim. Assoc. 2003, 114, 103–112. [Google Scholar]
- Koyuncu, O.O.; Hogue, I.B.; Enquist, L.W. Virus Infections in the Nervous System. Cell Host Microbe 2013, 13, 379–393. [Google Scholar] [CrossRef] [Green Version]
- Miranda-Saksena, M.; Denes, C.E.; Diefenbach, R.J.; Cunningham, A.L. Infection and Transport of Herpes Simplex Virus Type 1 in Neurons: Role of the Cytoskeleton. Viruses 2018, 10, 92. [Google Scholar] [CrossRef] [Green Version]
- Singh, N.; Tscharke, D.C. Herpes simplex virus latency Is noisier the closer we look. J. Virol 2020, 94, e01701-19. [Google Scholar] [CrossRef] [Green Version]
- Khanna, K.M.; Lepisto, A.J.; Decman, V.; Hendricks, R.L. Immune control of herpes simplex virus during latency. Curr. Opin. Immunol. 2004, 16, 463–469. [Google Scholar] [CrossRef]
- Cantin, E.; Tanamachi, B.; Openshaw, H. Role for Gamma Interferon in Control of Herpes Simplex Virus Type 1 Reactivation. J. Virol. 1999, 73, 3418–3423. [Google Scholar] [CrossRef] [Green Version]
- Valyi-Nagy, T.; Deshmane, S.L.; Raengsakulrach, B.; Nicosia, M.; Gesser, R.M.; Wysocka, M.; Dillner, A.; Fraser, N.W. Herpes simplex virus type 1 mutant strain in1814 establishes a unique, slowly progressing infection in SCID mice. J. Virol. 1992, 66, 7336–7345. [Google Scholar] [CrossRef] [Green Version]
- Lampreht, T.U.; Horvat, S.; Cemazar, M. Transgenic Mouse Models in Cancer Research. Front. Oncol. 2018, 8, 268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sellers, R.S. Translating Mouse Models: Immune Variation and Efficacy Testing. Toxicol. Pathol. 2017, 45, 134–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mott, K.R.; Ghiasi, H. Role of Dendritic Cells in Enhancement of Herpes Simplex Virus Type 1 Latency and Reactivation in Vaccinated Mice. Clin. Vaccine Immunol. 2008, 15, 1859–1867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gnann, J.W.; Whitley, R.J., Jr. Herpes Simplex Encephalitis: An Update. Curr. Infect. Dis Rep. 2017, 19, 13. [Google Scholar] [CrossRef]
- Hilliard, J. Monkey B virus. In Human Herpesviruses Biology, Therapy, and Immunoprophylaxis, 1st ed.; Arvin, A., Campadelli-Fiume, G., Mocarski, E., Moore, P.S., Roizman, B., Whitley, R., Yamanishi, K., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 1031–1042. [Google Scholar]
- Berber, E.; Sumbria, D.; Newkirk, K.M.; Rouse, B.T. Inhibiting Glucose Metabolism Results in Herpes Simplex Encephalitis. J. Immunol. 2021, 207, 1824–1835. [Google Scholar] [CrossRef]
- Zhu, J.; Peng, T.; Johnston, C.; Phasouk, K.; Kask, A.S.; Klock, A.; Jin, L.; Diem, K.; Koelle, D.M.; Wald, A.; et al. Immune surveillance by CD8αα+ skin-resident T cells in human herpes virus infection. Nature 2013, 497, 494–497. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Koelle, D.M.; Cao, J.; Vazquez, J.; Huang, M.L.; Hladik, F.; Wald, A.; Corey, L. Virus-specific CD8+ T cells accumulate near sensory nerve endings in genital skin during subclinical HSV-2 reactivation. J. Exp. Med. 2007, 204, 595–603. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; University of Washington, Seattle, WA, USA. Personal communication, 2022.
- Peng, T.; Phasouk, K.; Sodroski, C.N.; Sun, S.; Hwangbo, Y.; Layton, E.D.; Jin, L.; Klock, A.; Diem, K.; Magaret, A.S.; et al. Tissue-Resident-Memory CD8+ T Cells Bridge Innate Immune Responses in Neighboring Epithelial Cells to Control Human Genital Herpes. Front. Immunol. 2021, 12, 735643. [Google Scholar] [CrossRef]
- Sumbria, D.; Berber, E.; Mathayan, M.; Rouse, B.T. Virus Infections and Host Metabolism—Can We Manage the Interactions? Front. Immunol. 2021, 11, 594963. [Google Scholar] [CrossRef]
- Steain, M.; Slobedman, B.; Abendroth, A. Experimental models to study varicella-zoster virus infection of neurons. Curr. Top. Microbiol. Immunol. 2010, 342, 211–228. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.J.; Gershon, A.A.; Li, Z.S.; Lungu, O.; Gershon, M.D. Latent and lytic infection of isolated guinea pig enteric ganglia by varicella zoster virus. J. Med. Virol. 2003, 70, S71–S78. [Google Scholar] [CrossRef] [PubMed]
- Messaoudi, I.; Barron, A.; Wellish, M.; Engelmann, F.; Legasse, A.; Planer, S.; Gilden, D.; Nicolich-Zugich, J.; Mahalingam, R. Simian varicella virus infection of rhesus macaques recapitulates essential features of varicella-zoster virus infection in humans. PLoS Pathog 2009, 5, e1000657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zerboni, L.; Reichelt, M.; Arvin, A. Varicella-zoster virus neurotropism in SCID mouse-human dorsal root ganglia xenografts. Curr. Top. Microbiol. Immunol. 2010, 342, 255–276. [Google Scholar] [CrossRef]
- Steain, M.; Sutherland, J.P.; Rodriguez, M.; Cunningham, A.L.; Slobedman, B.; Abendroth, A. Analysis of T cell responses during active varicella-zoster virus reactivation in human ganglia. J. Virol. 2014, 88, 2704–2716. [Google Scholar] [CrossRef] [Green Version]
- Ouwendijk, W.J.D.; Choe, A.; Nagel, M.A.; Gilden, D.; Osterhaus, A.D.M.E.; Cohrs, R.J.; Verjans, G.M.G.M. Restricted varicella-zoster virus transcription in human trigeminal ganglia obtained soon after death. J. Virol. 2012, 86, 10203–10206. [Google Scholar] [CrossRef] [Green Version]
- Kinchington, P.R. Latency of varicella zoster virus; a persistently perplexing state. Front. Biosci. 1999, 4, 200–211. [Google Scholar] [CrossRef] [Green Version]
- Bisht, P.; Das, B.; Kinchington, P.R.; Goldstein, R.S. Varicella-zoster virus (VZV) small noncoding RNAs antisense to the VZV latency-encoded transcript VLT enhance viral replication. J. Virol. 2020, 94, e00123-20. [Google Scholar] [CrossRef]
- Zerboni, L.; Sobel, R.A.; Lai, M.; Triglia, R.; Steain, M.; Abendroth, A.; Arvin, A. Apparent Expression of Varicella-Zoster Virus Proteins in Latency Resulting from Reactivity of Murine and Rabbit Antibodies with Human Blood Group A Determinants in Sensory Neurons. J. Virol. 2012, 86, 578–583. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, A.; Levin, M.J. VZV T cell-mediated immunity. Curr. Top. Microbiol. Immunol. 2010, 342, 341–357. [Google Scholar] [CrossRef]
- Asada, H.; Nagayama, K.; Okazaki, A.; Mori, Y.; Okuno, Y.; Takao, Y.; Miyazaki, Y.; Onishi, F.; Okeda, M.; Yano, S.; et al. Shozu Herpes Zoster Study. An inverse correlation of VZV skin-test reaction, but not antibody, with severity of herpes zoster skin symptoms and zoster-associated pain. J. Derm. Sci. 2013, 69, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Levin, M.J.; Weinberg, A.; Schmid, D.S. Herpes simplex virus and varicella-zoster virus. Microbiol. Spectr. 2016, 4, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Ouwendijk, W.J.; Getu, S.; Mahalingam, R.; Gilden, D.; Osterhaus, A.D.; Verjans, G.M. Characterization of the immune response in ganglia after primary simian varicella virus infection. J. Neurovirol. 2016, 22, 376–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnold, N.; Girke, T.; Sureshchandra, S.; Messaoudi, I. Acute Simian Varicella Virus infection causes robust and sustained changes in gene expression in the sensory ganglia. J. Virol. 2016, 90, 10823–10843. [Google Scholar] [CrossRef] [Green Version]
- Gowrishankar, K.; Steain, M.; Cunningham, A.L.; Rodriguez, M.; Blumbergs, P.; Slobedman, B.; Abendroth, A. Characterization of the host immune response in human ganglia after herpes zoster. J. Immunol. 2010, 84, 8861–8870. [Google Scholar] [CrossRef] [Green Version]
- Zerboni, L.; Ku, C.C.; Jones, C.D.; Zehnder, J.L.; Arvin, A.M. Varicella-zoster virus infection of human dorsal root ganglia in vivo. Proc. Natl. Acad. Sci. USA 2005, 102, 6490–6495. [Google Scholar] [CrossRef] [Green Version]
- Mitterreiter, J.G.; Ouwendijk, W.J.D.; van Velzen, M.; van Nierop, G.P.; Osterhaus, A.D.M.E.; Verjans, G.M.G.M. Satellite glial cells in human trigeminal ganglia have a broad expression of functional Toll-like receptors. J. Immunol. 2017, 47, 1181–1187. [Google Scholar] [CrossRef] [Green Version]
- Steain, M.; Gowrishanker, K.; Rodriguez, M.; Slobedman, B.; Abendroth, A. Upregulation of CXCL10 in human dorsal root ganglia during experimental and natural varicella-zoster virus infection. J. Virol. 2011, 85, 626–631. [Google Scholar] [CrossRef] [Green Version]
- Arnold, N.; Meyer, C.; Engelmann, F.; Massaoudi, I. Robust gene expression changes in the ganglia following subclinical reactivation in rhesus macaques infected with simian varicella virus. J. Neurovirol. 2017, 23, 520–538. [Google Scholar] [CrossRef] [Green Version]
- Laemmle, L.; Goldstein, R.S.; Kinchington, P.R. Modeling varicella zoster virus persistence and reactivation—Closer to resolving a perplexing persistent state. Front. Microbiol. 2019, 10, 1634. [Google Scholar] [CrossRef] [Green Version]
- Azarkh, Y.; Bos, N.; Gilden, D.; Cohrs, R.J. Human trigeminal ganglionic explants as a model to study alphaherpesvirus reactivation. J. Neurovirol. 2012, 18, 456–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baird, N.L.; Zhu, S.; Pearce, K.M.; Veijo-Barbolla, A. Current in virto models to study varicella zoster virus latency and reactivation. Viruses 2019, 11, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.S.; Zhou, W.; Scott-MCKean, J.J.; Emmerling, K.L.; Cai, G.; Krah, D.L.; Costa, A.C.; Freed, C.R.; Levin, M.J. Human sensory neurons derived from induced pluripotent stem cels support varicella-zoster virus infection. PLoS ONE 2012, 7, e53010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markus, A.; Lebenthal-Loinger, I.; Yang, I.H.; Kinchington, P.R.; Goldstein, R.S. An in vitro model of latency and reactivation of varicella zoster virus in human stem cell-derived neurons. PLoS Pathog. 2015, 11, e1004885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Y.; Yu, P.; Cheng, L. Current progress in the derivation and therapeutic application of neural stem cells. Cell Death Dis. 2017, 8, e3108. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Seitz, S.; Pointon, T.; Bowlin, J.L.; Cohrs, R.J.; Jonjić, S.; Haas, J.; Wellish, M.; Gilden, D. Varicella zoster virus infection of highly pure terminally differentiated human neurons. J. Neurovirol. 2013, 19, 75–81. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Vogel, J.L.; Narayanan, A.; Peng, H.; Kristie, T.M. Inhibition of the histone demethylase LSD1 blocks alpha-herpesvirus lytic replication and reactivation from latency. Nat. Med. 2009, 15, 1312–1317. [Google Scholar] [CrossRef]
- Liang, Y.; Quenelle, D.; Vogel, J.L.; Mascaro, C.; Ortega, A.; Kristie, T.M. A novel selective LSD1/KDM1A inhibitor epigenetically blocks herpes simplex virus lytic replication and reactivation from latency. mBio 2013, 4, e00558-12. [Google Scholar] [CrossRef] [Green Version]
- James, C.; Harfouche, M.; Welton, N.J.; Turner, K.M.; Abu-Raddad, L.J.; Gottlieb, S.L.; Looker, K.J. Herpes simplex virus: Global infection prevalence and incidence estimates, 2016. Bull. World Health Organ. 2020, 98, 315–329. [Google Scholar] [CrossRef]
- Keet, I.P.; Lee, F.K.; van Griensven, G.J.; Lange, J.M.; Nahmias, A.; Coutinho, R.A. Herpes simplex virus type 2 and other genital ulcerative infections as a risk factor for HIV-1 acquisition. Genitourin. Med. 1990, 66, 330–333. [Google Scholar] [CrossRef] [Green Version]
- Spicknell, I.H.; Looker, K.J.; Gottlieb, S.L.; Chesson, H.W.; Schiffer, J.T.; Elmes, J.; Boily, M.-C. Review of mathematical models of HSV-2 vaccination: Implications for vaccine development. Vaccine 2019, 37, 7396–7407. [Google Scholar] [CrossRef] [PubMed]
- Alsallaq, R.A.; Schiffer, J.T.; Longini, I.R., Jr.; Wald, A.; Corey, L.; Abu-Raddad, L.J. Population level impact of an imperfect prophylactic vaccine for herpes simplex virus-2. Sex. Transm. Dis. 2010, 37, 290–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.C.; Lee, H.K. Vaccines against genital herpes: Where are we? Vaccines 2020, 8, 420. [Google Scholar] [CrossRef] [PubMed]
- Bradley, H.; Markowitz, L.E.; Gibson, T.; McQuillan, G.M. Seroprevalence of herpes simplex virus types 1 and 2—United States, 1999–2010. J. Infect. Dis. 2014, 209, 325–333. [Google Scholar] [CrossRef]
- Schulte, J.M.; Bellamy, A.R.; Hook, E.W., 3rd; Berstein, D.I.; Levin, M.J.; Leone, P.A.; Sokol-Anderson, M.L.; Ewell, M.G.; Wolff, P.A.; Heinemann, T.C.; et al. HSV-1 and HSV-2 seroprevalence in the United States among asymptomatic women unaware of any herpes simplex virus infection (Herpevac Trial for Women). South. Med. J. 2014, 107, 79–84. [Google Scholar] [CrossRef]
- Reeves, D.B.; Magaret, A.S.; Greninger, A.L.; Johnston, C.; Schiffer, J.T. Model-based estimation of superinfection prevalence from limited datasets. J. R Soc. Interface 2018, 15, 20170968. [Google Scholar] [CrossRef]
- Renner, D.W.; Szpara, M.L. Impacts of genome-wide analyses on our understanding of human herpesvirus diversity and evolution. J. Virol. 2017, 92, e00908-17. [Google Scholar] [CrossRef] [Green Version]
- Douglas, R.G.; Couch, R.B. A prospective study of chronic herpes simplex virus infection and recurrent herpes labialis in humans. J. Immunol. 1970, 104, 289–295. [Google Scholar]
- Zweerink, H.J.; Stanton, L.W. Immune response to herpes simplex virus infections: Virus-specific antibodies from patients with recurrent facial infections. Infect. Immun. 1981, 31, 624–630. [Google Scholar] [CrossRef] [Green Version]
- Kilgore, P.E.; Kruszon-Moran, D.; Seward, J.F.; Jumaan, A.; Van Loon, F.P.; Forghani, B.; McQuillan, G.M.; Wharton, M.; Fehrs, L.J.; Cossen, C.K.; et al. Varicella in Americans from NHANES III: Implications for control through routine immunization. J. Med. Virol. 2003, 70, S111–S118. [Google Scholar] [CrossRef]
- Marin, M.; Guris, D.; Chaves, S.S.; Schmid, S.; Seward, J.F. Prevention of varicella: Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm. Rep. 2007, 56, 1–40. [Google Scholar] [PubMed]
- Thomas, C.A.; Shwe, T.; Bixler, D.; del Rosario, M.; Grytdal, S.; Wang, C.; Haddy, L.E.; Bialek, S.R. Two-dose Varicella Vaccine Effectiveness and Rash Severity in Outbreaks of Varicella Among Public School Students. Ped. Infect. Dis. J. 2014, 33, 1164–1168. [Google Scholar] [CrossRef]
- Arvin, A.M.; Moffat, J.F.; Sommer, M.; Oliver, S.; Che, X.; Vleck, S.; Zerboni, L.; Ku, C.-C. Varicella-zoster virus T cell tropism and the pathogenesis of skin infection. Curr. Top. Microbiol. Immunol. 2010, 342, 189–209. [Google Scholar] [PubMed] [Green Version]
- Lal, H.; Cunningham, A.L.; Godeaux, O.; Chlibek, R.; Diaz-Domingo, J.; Hwang, S.-J.; Levin, M.J.; McElhaney, J.E.; Poder, A.; Puig-Barbarà, J.; et al. ZOE-50 Study Group. Efficacy of an adjuvanted herpes zoster subunit vaccine in older adults. N. Engl. J. Med. 2015, 372, 2087–2096. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, A.; Kroehl, M.E.; Johnson, M.J.; Hammes, A.; Reinhold, D.; Lang, N.; Levin, M.J. Comparative immune responses to licensed herpes zoster vaccines. J. Infect. Dis. 2018, 218, S81–S87. [Google Scholar] [CrossRef] [PubMed]
- Patterson-Bartlett, J.; Levin, M.J.; Lang, N.; Schödel, F.P.; Vessey, R. Phenotypic and functional characterization of ex vivo T cell responses to the live attenuated herpes zoster vaccine. Vaccine 2007, 25, 7087–7093. [Google Scholar] [CrossRef] [PubMed]
- Levin, M.J.; Weinberg, A. Immune responses to zoster vaccines. Hum. Vaccines Immunother. 2019, 15, 772–777. [Google Scholar] [CrossRef] [Green Version]
- Schmid, D.S.; Miao, C.; Leung, J.; Johnson, M.; Weinberg, A.; Levin, M.J. Comparative Antibody Responses to the Live-Attenuated and Recombinant Herpes Zoster Vaccines. J. Virol. 2021, 95, e00240-21. [Google Scholar] [CrossRef]
- McGuire, H.M.; Vogelzang, A.; Loetsch, W.J.; Natividad, K.D.; Chan, T.D.; Brink, R.; Batten, M.; King, C. IL-21 and IL-4 collaborate to shape T-dependent antibody responses. J. Immunol. 2015, 195, 5123–5135. [Google Scholar] [CrossRef]
- Chang, X.; Krenger, P.; Kreuger, C.C.; Han, J.; Yermanos, A.; Roongta, S.; Mohsen, M.O.; Oxenius, A.; Vogel, M.; Bachman, M.F. TLR signaling shapes and maintains antibody diversity upon virus-like particle immunization. Front. Immunol. 2022, 12, 827256. [Google Scholar] [CrossRef]
- Garçon, N.; van Mechelen, M. Recent clinical experience with vaccines using MPL- and QS-21-containing adjuvant systems. Expert Rev. Vaccines 2011, 10, 471–486. [Google Scholar] [CrossRef] [PubMed]
- Weinmann, S.; Chun, C.; Schmid, D.S.; Roberts, M.; Vandermeer, M.; Riedlinger, L.; Bialek, S.; Marin, M. Incidence and clinical characteristics of herpes zoster among children in the varicella vaccine era, 2005–2009. J. Infect. Dis. 2013, 208, 1859–1868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
VZV | HSV | Caveats |
---|---|---|
Primary infections are generally asymptomatic | About half of primary infections are asymptomatic | None |
Transmission by aerosol droplets or contact with vesicles | Transmission through physical contact with active shedder | Some evidence of remote transmission through air handling systems |
Generalized pruritic vesicular rash (centripetal distribution) | Typically a single local lesion; painful but not pruritic | Primary HSV infection can be occasionally viremic |
Reactivates infrequently | Reactivates often | Some VZV reactivations may be missed |
Extremely fastidious. Infects primarily T lymphocytes, neurons, epithelial cells; less efficiently Vero cells, guinea pig embryonic cells | Infects a broad variety of cells and animals | None |
No animal models; SVV model in African green monkeys and macaques | Animals are available but do not generally replicate human disease | HSV-2 guinea pig genital herpes model approximates human disease |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rouse, B.T.; Schmid, D.S. Fraternal Twins: The Enigmatic Role of the Immune System in Alphaherpesvirus Pathogenesis and Latency and Its Impacts on Vaccine Efficacy. Viruses 2022, 14, 862. https://doi.org/10.3390/v14050862
Rouse BT, Schmid DS. Fraternal Twins: The Enigmatic Role of the Immune System in Alphaherpesvirus Pathogenesis and Latency and Its Impacts on Vaccine Efficacy. Viruses. 2022; 14(5):862. https://doi.org/10.3390/v14050862
Chicago/Turabian StyleRouse, Barry T., and D. Scott Schmid. 2022. "Fraternal Twins: The Enigmatic Role of the Immune System in Alphaherpesvirus Pathogenesis and Latency and Its Impacts on Vaccine Efficacy" Viruses 14, no. 5: 862. https://doi.org/10.3390/v14050862
APA StyleRouse, B. T., & Schmid, D. S. (2022). Fraternal Twins: The Enigmatic Role of the Immune System in Alphaherpesvirus Pathogenesis and Latency and Its Impacts on Vaccine Efficacy. Viruses, 14(5), 862. https://doi.org/10.3390/v14050862