Novel Pegylated Interferon for the Treatment of Chronic Viral Hepatitis
Abstract
:1. Introduction
2. Pharmacokinetics (PK) and Pharmacodynamics (PD) of Ropeginterferon alfa-2b in Healthy Volunteers
3. Clinical Studies in Patients with Chronic Hepatitis
3.1. Ropeginterferon alfa-2b in Chronic Hepatitis C (CHC)
3.2. Ropeginterferon alfa-2b in Chronic Hepatitis B (CHB)
4. Future Perspectives for Ropeginterferon alfa-2b in the Chronic Viral Hepatitis Treatment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Foser, S.; Schacher, A.; Weyer, K.A.; Brugger, D.; Dietel, E.; Marti, S.; Schreitmüller, T. Isolation, structural characterization, and antiviral activity of positional isomers of monopegylated interferon alpha-2a (PEGASYS). Protein Expr. Purif. 2003, 30, 78–87. [Google Scholar] [CrossRef]
- Wang, Y.-S.; Youngster, S.; Grace, M.; Bausch, J.; Bordens, R.; Wyss, D.F. Structural and biological characterization of pegylated recombinant interferon alpha-2b and its therapeutic implications. Adv. Drug Deliv. Rev. 2002, 54, 547–570. [Google Scholar] [CrossRef]
- Huang, Y.-W.; Qin, A.; Fang, J.; Wang, T.-F.; Tsai, C.-W.; Lin, K.-C.; Teng, C.-L.; Larouche, R. Novel long-acting ropeginterferon alfa-2b: Pharmacokinetics, pharmacodynamics, and safety in a phase 1 clinical trial. Br. J. Clin. Pharmacol. 2021, 88, 2396–2407. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-W.; Tsai, C.-Y.; Tsai, C.-W.; Wang, W.; Zhang, J.; Qin, A.; Teng, C.; Song, B.; Wang, M. Pharmacokinetics and pharmacodynamics of novel long acting ropeginterferon alfa-2b in healthy Chinese subjects. Adv. Ther. 2021, 38, 4756–4770. [Google Scholar] [CrossRef]
- Miyachi, N.; Zagrijtschuk, O.; Kang, L.; Yonezu, K.; Qin, A. Pharmacokinetics and pharmacodynamics of ropeginterferon alfa-2b in healthy Japanese and Caucasian subjects after single subcutaneous administration. Clin. Drug Investig. 2021, 41, 391–404. [Google Scholar] [CrossRef] [PubMed]
- Gisslinger, H.; Klade, C.; Georgiev, P.; Krochmalczyk, D.; Gercheva-Kyuchukova, L.; Egyed, M.; Rossiev, V.; Dulicek, P.; Illes, A.; Pylypenko, H.; et al. Ropeginterferon alfa-2b versus standard therapy for polycythaemia vera (PROUD-PV and CONTINUATION-PV): A randomised, non-inferiority, phase 3 trial and its extension study. Lancet Haematol. 2020, 7, e196–e208. [Google Scholar] [CrossRef]
- US FDA. FDA Approves Treatment for Rare Blood Disease. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-treatment-rare-blood-disease (accessed on 12 November 2021).
- Červinek, L. Ropeginterferon alfa-2 b for the therapy of polycythemia vera. Vnitr. Lek. 2020, 66, 309–313. [Google Scholar] [CrossRef]
- The National Comprehensive Cancer Network. Guidelines Panel for Myeloproliferative Neoplasms. 2022. Available online: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1477 (accessed on 12 May 2022).
- Lin, H.-H.; Hsu, S.-J.; Lu, S.-N.; Chuang, W.-L.; Hsu, C.-W.; Chien, R.-N.; Yang, S.-S.; Su, W.-W.; Wu, J.-C.; Lee, T.-H.; et al. Ropeginterferon alfa-2b in patients with genotype 1 chronic hepatitis C: Pharmacokinetics, safety, and preliminary efficacy. JGH Open 2021, 5, 929–940. [Google Scholar] [CrossRef]
- Hsu, S.-J.; Yu, M.-L.; Su, C.-W.; Peng, C.-Y.; Chien, R.-N.; Lin, H.-H.; Lo, G.-H.; Su, W.-W.; Kuo, H.-T.; Hsu, C.-W.; et al. Ropeginterferon alfa-2b administered every two weeks for patients with genotype 2 chronic hepatitis C. J. Formos. Med. Assoc. 2021, 120, 956–964. [Google Scholar] [CrossRef]
- Huang, Y.-W.; Hsu, C.-W.; Lu, S.-N.; Yu, M.-L.; Su, C.-W.; Su, W.-W.; Chien, R.-N.; Hsu, C.-S.; Hsu, S.-J.; Lai, H.-C.; et al. Ropeginterferon alfa-2b every 2 weeks as a novel pegylated interferon for patients with chronic hepatitis B. Hepatol. Int. 2020, 14, 997–1008. [Google Scholar] [CrossRef]
- Sebastiani, G.; Gkouvatsos, K.; Pantopoulos, K. Chronic hepatitis C and liver fibrosis. World J. Gastroenterol. 2014, 20, 11033–11053. [Google Scholar] [CrossRef] [PubMed]
- El-Serag, H.B.; Kanwal, F. Epidemiology of hepatocellular carcinoma in the United States: Where are we? Where do we go? Hepatology 2014, 60, 1767–1775. [Google Scholar] [CrossRef] [PubMed]
- WHO. Hepatitis C Fact Sheets (Updated July 2021). Available online: https://www.who.int/news-room/fact-sheets/detail/hepatitis-c (accessed on 12 May 2022).
- Gower, E.; Estes, C.; Blach, S.; Razavi-Shearer, K.; Razavi, H. Global epidemiology and genotype distribution of the hepatitis C virus infection. J. Hepatol. 2014, 61, S45–S57. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.B.; Bukh, J.; Kuiken, C.; Muerhoff, A.S.; Rice, C.M.; Stapleton, J.T.; Simmonds, P. Expanded classification of hepatitis C virus into 7 genotypes and 67 subtypes: Updated criteria and genotype assignment web resource. Hepatology 2014, 59, 318–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, R.T.; Gale, M., Jr.; Polyak, S.J.; Lemon, S.M.; Liang, T.J.; Hoofnagle, J.H. Mechanisms of action of interferon and ribavirin in chronic hepatitis C: Summary of a workshop. Hepatology 2008, 47, 306–320. [Google Scholar] [CrossRef] [Green Version]
- Zanin, N.; Viaris de Lesegno, C.; Lamaze, C.; Blouin, C.M. Interferon receptor trafficking and signaling: Journey to the cross roads. Front. Immunol. 2021, 11, 3512. [Google Scholar] [CrossRef]
- Aricò, E.; Castiello, L.; Capone, I.; Gabriele, L.; Belardelli, F. Type I interferons and cancer: An evolving story demanding novel clinical applications. Cancers 2019, 11, 1943. [Google Scholar] [CrossRef] [Green Version]
- Lagging, M.; Langeland, N.; Pedersen, C.; Färkkilä, M.; Buhl, M.R.; Mørch, K.; Dhillon, A.P.; Alsiö, A.; Hellstrand, K.; Westin, J.; et al. Randomized comparison of 12 or 24 weeks of peginterferon alpha-2a and ribavirin in chronic hepatitis C virus genotype 2/3 infection. Hepatology 2008, 47, 1837–1845. [Google Scholar] [CrossRef]
- Tsubota, A.; Satoh, K.; Aizawa, M.; Takamatsu, S.; Namiki, Y.; Ohkusa, T.; Fujise, K.; Tajiri, H. Four-week pegylated interferon alpha-2a monotherapy for chronic hepatitis C with genotype 2 and low viral load: A pilot, randomized study. World J. Gastroenterol. 2008, 14, 7220–7224. [Google Scholar] [CrossRef]
- Toyoda, H.; Kumada, T.; Kiriyama, S.; Sone, Y.; Tanikawa, M.; Hisanaga, Y.; Kanamori, A.; Atsumi, H.; Nakano, S.; Arakawa, T. Eight-week regimen of antiviral combination therapy with peginterferon and ribavirin for patients with chronic hepatitis C virus genotype 2 and a rapid virological response. Liver Int. 2009, 29, 120–125. [Google Scholar] [CrossRef]
- Hsu, C.-S.; Chao, Y.-C.; Lin, H.H.; Chen, D.-S.; Kao, J.-H. Systematic review: Impact of interferon-based therapy on HCV-related hepatocellular carcinoma. Sci. Rep. 2015, 5, 9954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, C.-S.; Huang, C.-J.; Kao, J.-H.; Lin, H.H.; Chao, Y.-C.; Fan, Y.-C.; Tsai, P.-S. Interferon-based therapy decreases risks of hepatocellular carcinoma and complications of cirrhosis in chronic hepatitis C patients. PLoS ONE 2013, 8, e70458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Y.-C.; Hsu, C.; Cheng, C.-C.; Hu, F.-C.; Cheng, A.-L. A critical evaluation of the preventive effect of antiviral therapy on the development of hepatocellular carcinoma in patients with chronic hepatitis C or B: A novel approach by using meta-regression. Oncology 2012, 82, 275–289. [Google Scholar] [CrossRef] [PubMed]
- Merck Sharp & Dohme Corp. Package Insert: PEGINTRON® (Peginterferon alfa-2b); U.S. Food and Drug Administration: Silver Spring, MD, USA, 2019. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/103949s5313lbl.pdf (accessed on 12 May 2022).
- Roche. Package Insert: PEGASYS® (Peginterferon alfa-2a); U.S. Food and Drug Administration: Silver Spring, MD, USA, 2002. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/103964s5204lbl.pdf (accessed on 12 May 2022).
- WHO. Hepatitis B Fact Sheets (Updated July 2021). Available online: https://www.who.int/news-room/fact-sheets/detail/hepatitis-b (accessed on 12 May 2022).
- Tseng, T.-C.; Kao, J.-H. Elimination of hepatitis B: Is it a mission possible? BMC Med. 2017, 15, 53. [Google Scholar] [CrossRef] [Green Version]
- Alexopoulou, A.; Vasilieva, L.; Karayiannis, P. New approaches to the treatment of chronic hepatitis B. J. Clin. Med. 2020, 9, 3187. [Google Scholar] [CrossRef]
- Suk-Fong Lok, A. Hepatitis B treatment: What we know now and what remains to be researched. Hepatol. Commun. 2019, 3, 8–19. [Google Scholar] [CrossRef] [Green Version]
- Di Stefano, M.; Faleo, G.; Farhan Mohamed, A.M.; Morella, S.; Bruno, S.R.; Tundo, P.; Fiore, J.R.; Santantonio, T.A. Resistance associated mutations in HCV patients failing DAA treatment. New Microbiol. 2021, 44, 12–18. [Google Scholar]
- Starace, M.; Minichini, C.; De Pascalis, S.; Macera, M.; Occhiello, L.; Messina, V.; Sangiovanni, V.; Adinolfi, L.E.; Claar, E.; Precone, D.; et al. Virological patterns of HCV patients with failure to interferon-free regimens. J. Med. Virol. 2018, 90, 942–950. [Google Scholar] [CrossRef]
- Sarrazin, C. Treatment failure with DAA therapy: Importance of resistance. J. Hepatol. 2021, 74, 1472–1482. [Google Scholar] [CrossRef]
- Malandris, K.; Kalopitas, G.; Theocharidou, E.; Germanidis, G. The role of RASs/RVs in the current management of HCV. Viruses 2021, 13, 2096. [Google Scholar] [CrossRef]
- Reig, M.; Mariño, Z.; Perelló, C.; Iñarrairaegui, M.; Ribeiro, A.; Lens, S.; Díaz, A.; Vilana, R.; Darnell, A.; Varela, M.; et al. Unexpected high rate of early tumor recurrence in patients with HCV-related HCC undergoing interferon-free therapy. J. Hepatol. 2016, 65, 719–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conti, F.; Buonfiglioli, F.; Scuteri, A.; Crespi, C.; Bolondi, L.; Caraceni, P.; Foschi, F.G.; Lenzi, M.; Mazzella, G.; Verucchi, G.; et al. Early occurrence and recurrence of hepatocellular carcinoma in HCV-related cirrhosis treated with direct-acting antivirals. J. Hepatol. 2016, 65, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, H.; Vale, A.M.; Rodrigues, S.; Gonçalves, R.; Albuquerque, A.; Pereira, P.; Lopes, S.; Silva, M.; Andrade, P.; Morais, R.; et al. High incidence of hepatocellular carcinoma following successful interferon-free antiviral therapy for hepatitis C associated cirrhosis. J. Hepatol. 2016, 65, 1070–1071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urbanowicz, A.; Zagożdżon, R.; Ciszek, M. Modulation of the immune system in chronic hepatitis C and during antiviral interferon-free therapy. Arch. Immunol. Ther. Exp. 2019, 67, 79–88. [Google Scholar] [CrossRef] [Green Version]
- Oe, N.; Takeda, H.; Eso, Y.; Takai, A.; Marusawa, H. Clinical and molecular basis of hepatocellular carcinoma after hepatitis C virus eradication. Pathogens 2022, 11, 430. [Google Scholar] [CrossRef]
- Qin, X.-Q.; Runkel, L.; Deck, C.; DeDios, C.; Barsoum, J. Interferon-beta induces S phase accumulation selectively in human transformed cells. J. Interferon Cytokine Res. 1997, 17, 355–367. [Google Scholar] [CrossRef]
- Qin, X.-Q.; Beckham, C.; Brown, J.L.; Lukashev, M.; Barsoum, J. Human and mouse IFN-β gene therapy exhibits different anti-tumor mechanisms in mouse models. Mol. Ther. 2001, 4, 356–364. [Google Scholar] [CrossRef]
- Kaynor, C.; Xin, M.; Wakefield, J.; Barsoum, J.; Qin, X.-Q. Direct evidence that IFN-beta functions as a tumor-suppressor protein. J. Interferon Cytokine Res. 2002, 22, 1089–1098. [Google Scholar] [CrossRef]
- Brickelmaier, M.; Carmillo, A.; Goelz, S.; Barsoum, J.; Qin, X.-Q. Cytotoxicity of combinations of IFN-beta and chemotherapeutic drugs. J. Interferon Cytokine Res. 2002, 22, 873–880. [Google Scholar] [CrossRef]
- Qin, X.-Q.; Tao, N.; Dergay, A.; Moy, P.; Fawell, S.; Davis, A.; Wilson, J.M.; Barsoum, J. Interferon-beta gene therapy inhibits tumor formation and causes regression of established tumors in immune-deficient mice. Proc. Natl. Acad. Sci. USA 1998, 95, 14411–14416. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann-La Roche, Inc. Package Insert: ROFERON®—A (Interferon alfa-2a, Recombinant); U.S. Food and Drug Administration: Silver Spring, MD, USA, 2008. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2006/103145s5060LBL.pdf (accessed on 12 May 2022).
- Sondak, V.K.; Kudchadkar, R. Pegylated interferon for the adjuvant treatment of melanoma: FDA approved, but what is its role? Oncologist 2012, 17, 1223–1224. [Google Scholar] [CrossRef] [Green Version]
- MERCK & Co., Inc. Package Insert: SYLATRONTM (Peginterferon alfa-2b); U.S. Food and Drug Administration: Silver Spring, MD, USA, 2021. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/103949Orig1s5310lbl.pdf (accessed on 12 May 2022).
- Magenau, J.M.; Pawarode, A.; Riwes, M.M.; Parkin, B.; Anand, S.; Ghosh, M.; Bixby, D.L.; Choi, S.; Bischoff, L.; Yanik, G.A.; et al. A Phase I/II clinical trial of type 1 interferon for reduction of relapse after HCT in high risk AML. Biol. Blood Marrow Transplant. 2019, 25, S12–S13. [Google Scholar] [CrossRef]
- Mishra, P.; Nayak, B.; Dey, R.K. PEGylation in anti-cancer therapy: An overview. Asian J. Pharm. Sci. 2016, 11, 337–348. [Google Scholar] [CrossRef] [Green Version]
- Hjorth-Hansen, H.; Stentoft, J.; Richter, J.; Koskenvesa, P.; Höglund, M.; Dreimane, A.; Porkka, K.; Gedde-Dahl, T.; Gjertsen, B.T.; Gruber, F.X.; et al. Safety and efficacy of the combination of pegylated interferon-α2b and dasatinib in newly diagnosed chronic-phase chronic myeloid leukemia patients. Leukemia 2016, 30, 1853–1860. [Google Scholar] [CrossRef] [PubMed]
- Healy, F.M.; Dahal, L.N.; Jones, J.R.E.; Floisand, Y.; Woolley, J.F. Recent progress in interferon therapy for myeloid malignancies. Front. Oncol. 2021, 11, 769628. [Google Scholar] [CrossRef]
- Hung, H.-C.; Liao, H.-H.; Chen, S.-C.; Tsao, S.-M.; Lee, Y.-T. Maintenance interferon therapy in chronic hepatitis C patients who failed initial antiviral therapy: A meta-analysis. Medicine 2019, 98, e15563. [Google Scholar] [CrossRef]
- Ma, L.; Liu, J.; Wang, W.; Yang, F.; Li, P.; Cai, S.; Zhou, X.; Chen, X.; Zhuang, X.; Zhang, H.; et al. Direct-acting antivirals and interferon-based therapy on hepatocellular carcinoma risk in chronic hepatitis-C patients. Future Oncol. 2020, 16, 675–686. [Google Scholar] [CrossRef]
- Gisslinger, H.; Zagrijtschuk, O.; Buxhofer-Ausch, V.; Thaler, J.; Schloegl, E.; Gastl, G.A.; Wolf, D.; Kralovics, R.; Gisslinger, B.; Strecker, K.; et al. Ropeginterferon alfa-2b, a novel IFNα-2b, induces high response rates with low toxicity in patients with polycythemia vera. Blood 2015, 126, 1762–1769. [Google Scholar] [CrossRef]
- Verger, E.; Soret-Dulphy, J.; Maslah, N.; Roy, L.; Rey, J.; Ghrieb, Z.; Kralovics, R.; Gisslinger, H.; Grohmann-Izay, B.; Klade, C.; et al. Ropeginterferon alpha-2b targets JAK2V617F-positive polycythemia vera cells in vitro and in vivo. Blood Cancer J. 2018, 8, 94. [Google Scholar] [CrossRef] [Green Version]
- Alavian, S.-M.; Tabatabaei, S.V.; Behnava, B.; Rizzetto, M. Standard and pegylated interferon therapy of HDV infection: A systematic review and meta- analysis. J. Res. Med. Sci. 2012, 17, 967–974. [Google Scholar]
- Wang, G.; Guan, J.; Khan, N.U.; Li, G.; Shao, J.; Zhou, Q.; Xu, L.; Huang, C.; Deng, J.; Zhu, H.; et al. Potential capacity of interferon-α to eliminate covalently closed circular DNA (cccDNA) in hepatocytes infected with hepatitis B virus. Gut Pathog. 2021, 13, 22. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.-L.; Wong, D.; Ip, P.; Kopaniszen, M.; Seto, W.-K.; Fung, J.; Huang, F.-Y.; Lee, B.; Cullaro, G.; Chong, C.K.; et al. Reduction of covalently closed circular DNA with long-term nucleos(t)ide analogue treatment in chronic hepatitis B. J. Hepatol. 2017, 66, 275–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamai, H.; Ida, Y.; Shingaki, N.; Shimizu, R.; Fukatsu, K.; Itonaga, M.; Yoshida, T.; Maeda, Y.; Moribata, K.; Maekita, T.; et al. Add-on pegylated interferon alpha-2a therapy in chronic hepatitis B Japanese patients treated with entecavir. Hepat. Res. Treat. 2017, 2017, 2093847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, G.-Y.; Su, T.-H.; Kao, J.-H. Successful treatment of chronic hepatitis B and D with pegylated-interferon plus entecavir. J. Formos. Med. Assoc. 2015, 114, 1140–1141. [Google Scholar] [CrossRef] [Green Version]
- Kim, V.; Abreu, R.M.; Nakagawa, D.M.; Baldassare, R.M.; Carrilho, F.J.; Ono, S.K. Pegylated interferon alfa for chronic hepatitis B: Systematic review and meta-analysis. J. Viral Hepat. 2016, 23, 154–169. [Google Scholar] [CrossRef] [Green Version]
- Ahn, S.H.; Marcellin, P.; Ma, X.; Caruntu, F.A.; Tak, W.Y.; Elkhashab, M.; Chuang, W.-L.; Tabak, F.; Mehta, R.; Petersen, J.; et al. Hepatitis B surface antigen loss with tenofovir disoproxil fumarate plus peginterferon alfa-2a: Week 120 analysis. Dig. Dis. Sci. 2018, 63, 3487–3497. [Google Scholar] [CrossRef] [Green Version]
- Chi, H.; Hansen, B.E.; Guo, S.; Zhang, N.P.; Qi, X.; Chen, L.; Guo, Q.; Arends, P.; Wang, J.-Y.; Verhey, E.; et al. Pegylated interferon alfa-2b add-on treatment in hepatitis B virus envelope antigen-positive chronic hepatitis B patients treated with nucleos(t)ide analogue: A randomized, controlled trial (PEGON). J. Infect. Dis. 2017, 215, 1085–1093. [Google Scholar] [CrossRef]
- Yang, J.-M.; Chen, L.-P.; Wang, Y.-J.; Lyu, B.; Zhao, H.; Shang, Z.-Y.; Li, J.; Fan, Z.-Y.; Wu, S.-D.; Ming, X.; et al. Entecavir add-on Peg-interferon therapy plays a positive role in reversing hepatic fibrosis in treatment-naïve chronic hepatitis B patients: A prospective and randomized controlled trial. Chin. Med. J. 2020, 133, 1639–1648. [Google Scholar] [CrossRef]
- Qi, W.; Zhang, Q.; Xu, Y.; Wang, X.; Yu, F.; Zhang, Y.; Zhao, P.; Guo, H.; Zhou, C.; Wang, Z.; et al. Peg-interferon and nucleos(t)ide analogue combination at inception of antiviral therapy improves both anti-HBV efficacy and long-term survival among HBV DNA-positive hepatocellular carcinoma patients after hepatectomy/ablation. J. Viral Hepat. 2020, 27, 387–396. [Google Scholar] [CrossRef]
- WHO. Hepatitis D Fact Sheets (Updated July 2021). Available online: https://www.who.int/news-room/fact-sheets/detail/hepatitis-d (accessed on 12 May 2022).
- Papatheodoridi, M.; Papatheodoridis, G.V. Current status of hepatitis delta. Curr. Opin. Pharmacol. 2021, 58, 62–67. [Google Scholar] [CrossRef]
- Urban, S.; Neumann-Haefelin, C.; Lampertico, P. Hepatitis D virus in 2021: Virology, immunology and new treatment approaches for a difficult-to-treat disease. Gut 2021, 70, 1782–1794. [Google Scholar] [CrossRef] [PubMed]
- Rizzetto, M.; Hamid, S.; Negro, F. The changing context of hepatitis D. J. Hepatol. 2021, 74, 1200–1211. [Google Scholar] [CrossRef] [PubMed]
- Alfaiate, D.; Clément, S.; Gomes, D.; Goossens, N.; Negro, F. Chronic hepatitis D and hepatocellular carcinoma: A systematic review and meta-analysis of observational studies. J. Hepatol. 2020, 73, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Terrault, N.A.; Lok, A.S.F.; McMahon, B.J.; Chang, K.-M.; Hwang, J.P.; Jonas, M.M.; Brown, R.S., Jr.; Bzowej, N.H.; Wong, J.B. Update on prevention, diagnosis, and treatment of chronic hepatitis B: AASLD 2018 hepatitis B guidance. Hepatology 2018, 67, 1560–1599. [Google Scholar] [CrossRef]
- Sagnelli, C.; Sagnelli, E.; Russo, A.; Pisaturo, M.; Occhiello, L.; Coppola, N. HBV/HDV co-Infection: Epidemiological and clinical changes, recent knowledge and future challenges. Life 2021, 11, 169. [Google Scholar] [CrossRef]
- Wedemeyer, H.; Yurdaydìn, C.; Dalekos, G.N.; Erhardt, A.; Çakaloğlu, Y.; Değertekin, H.; Gürel, S.; Zeuzem, S.; Zachou, K.; Bozkaya, H.; et al. Peginterferon plus adefovir versus either drug alone for hepatitis delta. N. Engl. J. Med. 2011, 364, 322–331. [Google Scholar] [CrossRef] [Green Version]
- Farci, P.; Roskams, T.; Chessa, L.; Peddis, G.; Mazzoleni, A.P.; Scioscia, R.; Serra, G.; Lai, M.E.; Loy, M.; Caruso, L.; et al. Long-term benefit of interferon alpha therapy of chronic hepatitis D: Regression of advanced hepatic fibrosis. Gastroenterology 2004, 126, 1740–1749. [Google Scholar] [CrossRef] [Green Version]
- Bazinet, M.; Pântea, V.; Cebotarescu, V.; Cojuhari, L.; Jimbei, P.; Anderson, M.; Gersch, J.; Holzmayer, V.; Elsner, C.; Krawczyk, A.; et al. Persistent control of hepatitis B virus and hepatitis delta virus infection following REP 2139-Ca and pegylated interferon therapy in chronic hepatitis B virus/hepatitis delta virus coinfection. Hepatol. Commun. 2021, 5, 189–202. [Google Scholar] [CrossRef]
- Wranke, A.; Hardtke, S.; Heidrich, B.; Dalekos, G.; Yalçin, K.; Tabak, F.; Gürel, S.; Çakaloğlu, Y.; Akarca, U.S.; Lammert, F.; et al. Ten-year follow-up of a randomized controlled clinical trial in chronic hepatitis delta. J. Viral Hepat. 2020, 27, 1359–1368. [Google Scholar] [CrossRef]
- Heidrich, B.; Yurdaydın, C.; Kabaçam, G.; Ratsch, B.A.; Zachou, K.; Bremer, B.; Dalekos, G.N.; Erhardt, A.; Tabak, F.; Yalcin, K.; et al. Late HDV RNA relapse after peginterferon alpha-based therapy of chronic hepatitis delta. Hepatology 2014, 60, 87–97. [Google Scholar] [CrossRef]
- Kang, C.; Syed, Y.Y. Bulevirtide: First approval. Drugs 2020, 80, 1601–1605. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Hepcludex-EPAR-Assessment-Report_en. 2020. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/hepcludex (accessed on 12 May 2022).
- Hepatera Ltd. Study Results of ClinicalTrials.gov No. NCT03546621, Last Updated 10 May 2021. Available online: https://clinicaltrials.gov/ct2/show/results/NCT03546621 (accessed on 12 May 2022).
- Hepatera Ltd. Study Results of ClinicalTrials.gov No. NCT02888106, Last Updated 30 April 2021. Available online: https://clinicaltrials.gov/ct2/show/results/NCT02888106 (accessed on 12 May 2022).
- Yurdaydin, C.; Keskin, O.; Yurdcu, E.; Çalişkan, A.; Önem, S.; Karakaya, F.; Kalkan, Ç.; Karatayli, E.; Karatayli, S.; Choong, I.; et al. A phase 2 dose-finding study of lonafarnib and ritonavir with or without interferon alpha for chronic delta hepatitis. Hepatology 2021. Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, T.; Hu, Z.; Kato, T.; Dreux, M.; Zhang, Y.-Y.; Imamura, M.; Hiraga, N.; Juteau, J.-M.; Cosset, F.-L.; Chayama, K.; et al. Amphipathic DNA polymers inhibit hepatitis C virus infection by blocking viral entry. Gastroenterology 2009, 137, 673–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaillant, A.; Juteau, J.-M.; Lu, H.; Liu, S.; Lackman-Smith, C.; Ptak, R.; Jiang, S. Phosphorothioate oligonucleotides inhibit human immunodeficiency virus type 1 fusion by blocking gp41 core formation. Antimicrob. Agents Chemother. 2006, 50, 1393–1401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardin, R.D.; Bravo, F.J.; Sewell, A.P.; Cummins, J.; Flamand, L.; Juteau, J.-M.; Bernstein, D.I.; Vaillant, A. Amphipathic DNA polymers exhibit antiviral activity against systemic murine cytomegalovirus infection. Virol. J. 2009, 6, 214. [Google Scholar] [CrossRef] [Green Version]
- Guzman, E.M.; Cheshenko, N.; Shende, V.; Keller, M.J.; Goyette, N.; Juteau, J.-M.; Boivin, G.; Vaillant, A.; Herold, B.C. Amphipathic DNA polymers are candidate vaginal microbicides and block herpes simplex virus binding, entry and viral gene expression. Antivir. Ther. 2007, 12, 1147–1156. [Google Scholar] [CrossRef]
- Beilstein, F.; Blanchet, M.; Vaillant, A.; Sureau, C. Nucleic acid polymers are active against hepatitis delta virus infection in vitro. J. Virol. 2018, 92, e01416–e01417. [Google Scholar] [CrossRef] [Green Version]
- Noordeen, F.; Vaillant, A.; Jilbert, A.R. Nucleic acid polymers prevent the establishment of duck hepatitis B virus infection in vivo. Antimicrob. Agents Chemother. 2013, 57, 5299–5306. [Google Scholar] [CrossRef] [Green Version]
- Al-Mahtab, M.; Bazinet, M.; Vaillant, A. Safety and efficacy of nucleic acid polymers in monotherapy and combined with immunotherapy in treatment-naive bangladeshi patients with HBeAg+ chronic hepatitis B infection. PLoS ONE 2016, 11, e0156667. [Google Scholar] [CrossRef] [Green Version]
- Bazinet, M.; Pântea, V.; Cebotarescu, V.; Cojuhari, L.; Jimbei, P.; Albrecht, J.; Schmid, P.; LeGal, F.; Gordien, E.; Krawczyk, A.; et al. Safety and efficacy of REP 2139 and pegylated interferon alfa-2a for treatment-naive patients with chronic hepatitis B virus and hepatitis D virus co-infection (REP 301 and REP 301-LTF): A non-randomised, open-label, phase 2 trial. Lancet Gastroenterol. Hepatol. 2017, 2, 877–889. [Google Scholar] [CrossRef]
- Carolina, B.; Paola, F.; Caterina, V.; Barbara, A.; Paola, D.V.; Tiziana, G.; Diletta, L.; Alessandro, Z.; Albertina, C.; Gabriele, M.; et al. Characterization of hepatitis B virus (HBV)-specific T-cell dysfunction in chronic HBV infection. J. Virol. 2007, 81, 4215–4225. [Google Scholar]
- Feng, C.; Cao, L.-J.; Song, H.-F.; Xu, P.; Chen, H.; Xu, J.-C.; Zhu, X.-Y.; Zhang, X.-G.; Wang, X.-F. Expression of PD-L1 on CD4+CD25+Foxp3+ regulatory T Cells of patients with chronic HBV infection and its correlation with clinical parameters. Viral Immunol. 2015, 28, 418–424. [Google Scholar] [CrossRef] [PubMed]
- Tzeng, H.-T.; Tsai, H.-F.; Liao, H.-J.; Lin, Y.-J.; Chen, L.; Chen, P.-J.; Hsu, P.-N. PD-1 blockage reverses immune dysfunction and hepatitis B viral persistence in a mouse animal model. PLoS ONE 2012, 7, e39179. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Zhang, E.; Ma, Z.; Wu, W.; Kosinska, A.; Zhang, X.; Möller, I.; Seiz, P.; Glebe, D.; Wang, B.; et al. Enhancing virus-specific immunity in vivo by combining therapeutic vaccination and PD-L1 blockade in chronic hepadnaviral infection. PLoS Pathog. 2014, 10, e1003856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Khoueiry, A.B.; Sangro, B.; Yau, T.; Crocenzi, T.S.; Kudo, M.; Hsu, C.; Kim, T.-Y.; Choo, S.-P.; Trojan, J.; Welling, T.H.R.; et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): An open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 2017, 389, 2492–2502. [Google Scholar] [CrossRef]
- Gane, E.; Verdon, D.J.; Brooks, A.E.; Gaggar, A.; Nguyen, A.H.; Subramanian, G.M.; Schwabe, C.; Dunbar, P.R. Anti-PD-1 blockade with nivolumab with and without therapeutic vaccination for virally suppressed chronic hepatitis B: A pilot study. J. Hepatol. 2019, 71, 900–907. [Google Scholar] [CrossRef] [PubMed]
- Pu, D.; Yin, L.; Zhou, Y.; Li, W.; Huang, L.; Cai, L.; Zhou, Q. Safety and efficacy of immune checkpoint inhibitors in patients with HBV/HCV infection and advanced-stage cancer: A systematic review. Medicine 2020, 99, e19013. [Google Scholar] [CrossRef]
- Burns, E.A.; Muhsen, I.N.; Anand, K.; Xu, J.; Umoru, G.; Arain, A.N.; Abdelrahim, M. Hepatitis B virus reactivation in cancer patients treated with immune checkpoint inhibitors. J. Immunother. 2021, 44, 132–139. [Google Scholar] [CrossRef]
- Féray, C.; López-Labrador, F.X. Is PD-1 blockade a potential therapy for HBV? JHEP Rep. 2019, 1, 142–144. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.L.; Barsoum, J.; Qin, X.-Q. CD4+ T helper cell-independent antitumor response mediated by murine IFN-beta gene delivery in immunocompetent mice. J. Interferon Cytokine Res. 2002, 22, 719–728. [Google Scholar] [CrossRef]
Parameter | Healthy Subjects | |||
---|---|---|---|---|
A09-102 Study [3] | A17-101 Study [4] | A17-102 Study [5] | ||
Study population | Canadian | Chinese | Japanese | Caucasian |
SC dosing | Single dose | |||
Dose range (µg) | 24 to 270 | 90 to 270 | 100 to 300 | |
Sampling time (h) range | 0 to 672 | 0 to 672 | 0 to 672 | |
PK parameters | ||||
Tmax (h) range * | 75 to 116 | 92 to 142 | 108 to 111 | 84 to 108 |
t1/2 (h) range | 61 to 118 | 78 to 129 | 67 to 69 | 52 to 112 |
Cmax (ng/mL) range | 1.8 to 24.8 | 4.2 to 24.1 | 8.4 to 41.4 | 4.5 to 19.2 |
AUC0-t (ng·h/mL) range | 273 to 6068 | 957 to 6983 | 1445 to 7658 | 945 to 3933 |
AUC0-inf (ng·h/mL) range | 372 to 6258 | 1287 to 7998 | 1927 to 7843 | 1510 to 5433 |
Dose proportionality analysis | ||||
ln (AUC0-inf) | ||||
Slope (95% CI) | 1.22 (1.00–1.44) | 1.84 (1.13–2.55) | 1.35 (0.93–1.76) | 1.11 (0.06–2.16) |
ln (AUC0-t) | ||||
Slope (95% CI) | 1.36 (1.11–1.61) | 2.52 (0.69–4.35) | 1.73 (1.30–2.16) | 1.52 (0.31–2.72) |
ln (Cmax) | ||||
Slope (95% CI) | 1.19 (0.99–1.39) | 1.87 (0.79–2.95) | 1.52 (1.11–1.94) | 1.49 (0.59–2.40) |
PD parameters | ||||
2′,5′-Oligoadenylate synthetase | ||||
Emax (pmol/dL) range | 266–568 | NA | NA | NA |
ETmax (h) range | 160–222 | NA | NA | NA |
AUEC0-t (h·pmol/dL) range | 51,970–175,233 | NA | NA | NA |
Neopterin | ||||
Emax (nmol/L) range | 14–20 | NA | 19.70–42.87 | 26.06–40.50 |
ETmax (h) range * | 48–104 | NA | 36–48 | 48 |
AUEC0-t (h·nmol/L) range | 1213–3328 | NA | 6298–11,690 | 8897–12,510 |
β2-microglobulin | ||||
Emax (µg/mL) range | NA | 3.126–3.341 | 2.356–3.252 | 2.681–3.644 |
ETmax (h) range * | NA | 118–132 | 84–120 | 72–84 |
AUEC0-t (h·µg/mL) range | NA | 1608–1775 | 1207–1649 | 1341–1856 |
Parameters | CHC Genotype 1 | CHC Genotype 2 | ||||||
---|---|---|---|---|---|---|---|---|
A11-201 Study [10] | A11-203 Study [11] | |||||||
Peginterferon alfa-2a | Ropeginterferon alfa-2b | Peginterferon alfa-2a | Ropeginterferon alfa-2b | |||||
180 µg (Group 1) n = 27 | 180 µg (Group 2) n = 30 | 270 µg (Group 3) n = 20 | 450 µg (Group 4) n = 29 | 180 µg (Group 1) n = 22 | 270 µg (Group 2) n = 23 | 360 µg (Group 3) n = 21 | 450 µg (Group 4) n = 20 | |
SVR12 | 74.1% | 70.0% | 80.0% | 69.0% | 95.5% | 82.6% | 85.7% | 70.0% |
SVR24 | 77.8% | 66.7% | 80.0% | 69.0% | 95.5% | 78.3% | 85.7% | 60.0% |
Treatment Regimens | Study Type | Study Populations | Clinical Efficacy | References |
---|---|---|---|---|
PEG-IFN alfa + Lam vs. PEG-IFN alfa alone | MA | HBeAg-positive CHB |
| [63] |
HBeAg-negative CHB |
| |||
PEG-IFN alfa + ADV vs. PEG-IFN alfa alone | MA | HBeAg-positive CHB | HBeAg seroconversion c: 51% vs. 34% | [63] |
PEG-IFN alfa 2a + TDF vs. TDF alone vs. PEG-IFN alfa 2a alone | RCT | CHB |
| [64] |
HBeAg-positive CHB | HBsAg loss d: 9.7% vs. 0% vs. 5.2% | |||
HBeAg-negative CHB | HBsAg loss d: 11.0% vs. 0% vs. 1.3% | |||
PEG-IFN alfa 2b + NA f vs. NA f alone | RCT | HBeAg-positive CHB | HBeAg seroconversion g: 30% vs. 7% | [65] |
PEG-IFN alfa 2a + ETV vs. ETV alone | RCT | HBeAg-positive CHB | Liver cirrhosis evaluation by transient elastography value: 6.6 [4.9, 9.8] vs. 7.8 [5.4, 11.1] kPa, p = 0.028 | [66] |
Early combination of PEG-IFN alfa 2a + NA h vs. NA h | RCT | HBV DNA (+) HCC |
| [67] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.-W.; Qin, A.; Tsai, C.-Y.; Chen, P.-J. Novel Pegylated Interferon for the Treatment of Chronic Viral Hepatitis. Viruses 2022, 14, 1128. https://doi.org/10.3390/v14061128
Huang Y-W, Qin A, Tsai C-Y, Chen P-J. Novel Pegylated Interferon for the Treatment of Chronic Viral Hepatitis. Viruses. 2022; 14(6):1128. https://doi.org/10.3390/v14061128
Chicago/Turabian StyleHuang, Yi-Wen, Albert Qin, Chan-Yen Tsai, and Pei-Jer Chen. 2022. "Novel Pegylated Interferon for the Treatment of Chronic Viral Hepatitis" Viruses 14, no. 6: 1128. https://doi.org/10.3390/v14061128
APA StyleHuang, Y. -W., Qin, A., Tsai, C. -Y., & Chen, P. -J. (2022). Novel Pegylated Interferon for the Treatment of Chronic Viral Hepatitis. Viruses, 14(6), 1128. https://doi.org/10.3390/v14061128