Clinical Severity of SARS-CoV-2 Omicron Variant Compared with Delta among Hospitalized COVID-19 Patients in Belgium during Autumn and Winter Season 2021–2022
Abstract
:1. Introduction
2. Materials and Methods
2.1. Causal Framework and Data Linkage
2.2. Selection Study Population
2.3. Exposure
2.4. Matching
2.5. Outcome
2.6. Covariates
2.7. Statistical Analyses
2.8. Sensitivity Analyses
3. Results
3.1. Basic Descriptive Characteristics of the Matched Study Population
3.2. Causal Inference Estimates
3.3. Sensitivity Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eythorsson, E.; Helgason, D.; Ingvarsson, R.F.; Bjornsson, H.K.; Olafsdottir, L.B.; Bjarnadottir, V.; Runolfsdottir, H.L.; Bjarnadottir, S.; Agustsson, A.S.; Oskarsdottir, K.; et al. Clinical Spectrum of Coronavirus Disease 2019 in Iceland: Population Based Cohort Study. BMJ 2020, 371, m4529. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.-J.; Ni, Z.-Y.; Hu, Y.; Liang, W.-H.; Ou, C.-Q.; He, J.-X.; Liu, L.; Shan, H.; Lei, C.-L.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Booth, A.; Reed, A.B.; Ponzo, S.; Yassaee, A.; Aral, M.; Plans, D.; Labrique, A.; Mohan, D. Population Risk Factors for Severe Disease and Mortality in COVID-19: A Global Systematic Review and Meta-Analysis. PLoS ONE 2021, 16, e0247461. [Google Scholar] [CrossRef] [PubMed]
- Velavan, T.P.; Pallerla, S.R.; Rüter, J.; Augustin, Y.; Kremsner, P.G.; Krishna, S.; Meyer, C.G. Host Genetic Factors Determining COVID-19 Susceptibility and Severity. eBioMedicine 2021, 72, 103629. [Google Scholar] [CrossRef] [PubMed]
- Bravata, D.M.; Perkins, A.J.; Myers, L.J.; Arling, G.; Zhang, Y.; Zillich, A.J.; Reese, L.; Dysangco, A.; Agarwal, R.; Myers, J.; et al. Association of Intensive Care Unit Patient Load and Demand With Mortality Rates in US Department of Veterans Affairs Hospitals During the COVID-19 Pandemic. JAMA Netw. Open 2021, 4, e2034266. [Google Scholar] [CrossRef]
- Taccone, F.S.; Van Goethem, N.; Depauw, R.; Wittebole, X.; Blot, K.; Vanoyen, H.; Lernout, T.; Montourcy, M.; Meyfroidt, G.; Vanbeckhoven, D. The Role of Organizational Characteristics on the Outcome of COVID-19 Patients Admitted to the ICU in Belgium. Lancet Reg. Health-Eur. 2020, 2, 100019. [Google Scholar] [CrossRef]
- Kumar, A.; Parashar, R.; Kumar, S.; Faiq, M.A.; Kumari, C.; Kulandhasamy, M.; Narayan, R.K.; Jha, R.K.; Singh, H.N.; Prasoon, P.; et al. Emerging SARS-CoV-2 Variants Can Potentially Break Set Epidemiological Barriers in COVID-19. J. Med. Virol. 2022, 94, 1300–1314. [Google Scholar] [CrossRef]
- Harvey, W.T.; Carabelli, A.M.; Jackson, B.; Gupta, R.K.; Thomson, E.C.; Harrison, E.M.; Ludden, C.; Reeve, R.; Rambaut, A.; Peacock, S.J.; et al. SARS-CoV-2 Variants, Spike Mutations and Immune Escape. Nat. Rev. Microbiol 2021, 19, 409–424. [Google Scholar] [CrossRef]
- Wu, H.; Xing, N.; Meng, K.; Fu, B.; Xue, W.; Dong, P.; Tang, W.; Xiao, Y.; Liu, G.; Luo, H.; et al. Nucleocapsid Mutations R203K/G204R Increase the Infectivity, Fitness, and Virulence of SARS-CoV-2. Cell Host Microbe 2021, 29, 1788–1801.e6. [Google Scholar] [CrossRef]
- Zhao, L.P.; Roychoudhury, P.; Gilbert, P.; Schiffer, J.; Lybrand, T.P.; Payne, T.H.; Randhawa, A.; Thiebaud, S.; Mills, M.; Greninger, A.; et al. Mutations in Viral Nucleocapsid Protein and EndoRNase Are Discovered to Associate with COVID-19 Hospitalization Risk. Sci. Rep. 2022, 12, 1206. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control (ECDC). Methods for the Detection and Characterisation of SARS-CoV-2 Variants–First Update; European Centre for Disease Prevention and Control: Solna, Sweden, 2021. [Google Scholar]
- Van Goethem, N.; Serrien, B.; Vandromme, M.; Wyndham-Thomas, C.; Catteau, L.; Brondeel, R.; Klamer, S.; Meurisse, M.; Cuypers, L.; André, E.; et al. Conceptual Causal Framework to Assess the Effect of SARS-CoV-2 Variants on COVID-19 Disease Severity among Hospitalized Patients. Arch. Public Health 2021, 79, 185. [Google Scholar] [CrossRef] [PubMed]
- RAG Subgroup Testing. Aanbevelingen Voor de Selectie van Stalen Voor Sequentiebepaling van Het Volledige Genoom in Het Kader van Surveillance-Update Augustus 2021. Available online: https://covid-19.sciensano.be/sites/default/files/Covid19/20210830_Advice_RAG_Update%20indications%20for%20sequencing_NL.pdf (accessed on 25 March 2022).
- UZ Leuven & KU Leuven. Genomic Surveillance of SARS-CoV-2 in Belgium. Report of the National Reference Laboratory; UZ Leuven & KU Leuven: Leuven, Belgium, 2022. [Google Scholar]
- Bager, P.; Wohlfahrt, J.; Fonager, J.; Albertsen, M.; Yssing Michaelsen, T.; Holten Møller, C.; Ethelberg, S.; Legarth, R.; Fischer Button, M.S.; Gubbels, S.M.; et al. Increased Risk of Hospitalisation Associated with Infection with SARS-CoV-2 Lineage B.1.1.7 in Denmark; Social Science Research Network: Rochester, NY, USA, 2021. [Google Scholar]
- Nyberg, T.; Twohig, K.A.; Harris, R.J.; Seaman, S.R.; Flannagan, J.; Allen, H.; Charlett, A.; Angelis, D.D.; Dabrera, G.; Presanis, A.M. Risk of Hospital Admission for Patients with SARS-CoV-2 Variant B.1.1.7: Cohort Analysis. BMJ 2021, 373, n1412. [Google Scholar] [CrossRef] [PubMed]
- Challen, R.; Brooks-Pollock, E.; Read, J.M.; Dyson, L.; Tsaneva-Atanasova, K.; Danon, L. Risk of Mortality in Patients Infected with SARS-CoV-2 Variant of Concern 202012/1: Matched Cohort Study. BMJ 2021, 372, n579. [Google Scholar] [CrossRef] [PubMed]
- Davies, N.G.; Jarvis, C.I.; Edmunds, W.J.; Jewell, N.P.; Diaz-Ordaz, K.; Keogh, R.H. Increased Mortality in Community-Tested Cases of SARS-CoV-2 Lineage B.1.1.7. Nature 2021, 593, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Patone, M.; Thomas, K.; Hatch, R.; Tan, P.S.; Coupland, C.; Liao, W.; Mouncey, P.; Harrison, D.; Rowan, K.; Horby, P.; et al. Mortality and Critical Care Unit Admission Associated with the SARS-CoV-2 Lineage B.1.1.7 in England: An Observational Cohort Study. Lancet Infect. Dis. 2021, 21, 1518–1528. [Google Scholar] [CrossRef]
- Twohig, K.A.; Nyberg, T.; Zaidi, A.; Thelwall, S.; Sinnathamby, M.A.; Aliabadi, S.; Seaman, S.R.; Harris, R.J.; Hope, R.; Lopez-Bernal, J.; et al. Hospital Admission and Emergency Care Attendance Risk for SARS-CoV-2 Delta (B.1.617.2) Compared with Alpha (B.1.1.7) Variants of Concern: A Cohort Study. Lancet Infect. Dis. 2021, 22, 35–42. [Google Scholar] [CrossRef]
- Veneti, L.; Valcarcel Salamanca, B.; Seppälä, E.; Starrfelt, J.; Storm, M.L.; Bragstad, K.; Hungnes, O.; Bøås, H.; Kvåle, R.; Vold, L.; et al. No Difference in Risk of Hospitalization between Reported Cases of the SARS-CoV-2 Delta Variant and Alpha Variant in Norway. Int. J. Infect. Dis. 2022, 115, 178–184. [Google Scholar] [CrossRef]
- Sheikh, A.; McMenamin, J.; Taylor, B.; Robertson, C. Public Health Scotland and the EAVE II Collaborators SARS-CoV-2 Delta VOC in Scotland: Demographics, Risk of Hospital Admission, and Vaccine Effectiveness. Lancet 2021, 397, 2461–2462. [Google Scholar] [CrossRef]
- Bager, P.; Wohlfahrt, J.; Rasmussen, M.; Albertsen, M.; Krause, T.G. Hospitalisation Associated with SARS-CoV-2 Delta Variant in Denmark. Lancet Infect. Dis. 2021, 21, 1351. [Google Scholar] [CrossRef]
- World Health Organization. Classification of Omicron (B.1.1.529): SARS-CoV-2 Variant of Concern; World Health Organization: Geneva, Switzerland, 2021.
- Zhang, Q.; Xiang, R.; Huo, S.; Zhou, Y.; Jiang, S.; Wang, Q.; Yu, F. Molecular Mechanism of Interaction between SARS-CoV-2 and Host Cells and Interventional Therapy. Sig. Transduct. Target. Ther. 2021, 6, 233. [Google Scholar] [CrossRef]
- Hu, J.; Peng, P.; Cao, X.; Wu, K.; Chen, J.; Wang, K.; Tang, N.; Huang, A. Increased Immune Escape of the New SARS-CoV-2 Variant of Concern Omicron. Cell Mol. Immunol. 2022, 19, 293–295. [Google Scholar] [CrossRef] [PubMed]
- Plante, J.A.; Liu, Y.; Liu, J.; Xia, H.; Johnson, B.A.; Lokugamage, K.G.; Zhang, X.; Muruato, A.E.; Zou, J.; Fontes-Garfias, C.R.; et al. Spike Mutation D614G Alters SARS-CoV-2 Fitness. Nature 2021, 592, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, J.; Plante, K.S.; Plante, J.A.; Xie, X.; Zhang, X.; Ku, Z.; An, Z.; Scharton, D.; Schindewolf, C.; et al. The N501Y Spike Substitution Enhances SARS-CoV-2 Infection and Transmission. Nature 2022, 602, 294–299. [Google Scholar] [CrossRef] [PubMed]
- Jhun, H.; Park, H.-Y.; Hisham, Y.; Song, C.-S.; Kim, S. SARS-CoV-2 Delta (B.1.617.2) Variant: A Unique T478K Mutation in Receptor Binding Motif (RBM) of Spike Gene. Immune Netw. 2021, 21, e32. [Google Scholar] [CrossRef]
- Liu, Z.; VanBlargan, L.A.; Bloyet, L.-M.; Rothlauf, P.W.; Chen, R.E.; Stumpf, S.; Zhao, H.; Errico, J.M.; Theel, E.S.; Liebeskind, M.J.; et al. Identification of SARS-CoV-2 Spike Mutations That Attenuate Monoclonal and Serum Antibody Neutralization. Cell Host Microbe 2021, 29, 477–488.e4. [Google Scholar] [CrossRef]
- Vanmechelen, B.; Logist, A.-S.; Wawina-Bokalanga, T.; Verlinden, J.; Martí-Carreras, J.; Geenen, C.; Slechten, B.; Cuypers, L.; André, E.; Baele, G.; et al. Identification of the First SARS-CoV-2 Lineage B.1.1.529 Virus Detected in Europe. Microbiol. Resour. Announc. 2022, 11, e0116121. [Google Scholar] [CrossRef]
- World Health Organization. Enhancing Readiness for Omicron (B.1.1.529): Technical Brief and Priority Actions for Member States; World Health Organization: Geneva, Switzerland, 2021.
- Ulloa, A.C.; Buchan, S.A.; Daneman, N.; Brown, K.A. Estimates of SARS-CoV-2 Omicron Variant Severity in Ontario, Canada. JAMA 2022, 327, 1286–1288. [Google Scholar] [CrossRef]
- Veneti, L.; Bøås, H.; Kristoffersen, A.B.; Stålcrantz, J.; Bragstad, K.; Hungnes, O.; Storm, M.L.; Aasand, N.; Rø, G.; Starrfelt, J.; et al. Reduced Risk of Hospitalisation among Reported COVID-19 Cases Infected with the SARS-CoV-2 Omicron BA.1 Variant Compared with the Delta Variant, Norway, December 2021 to January 2022. Eurosurveillance 2022, 27, 2200077. [Google Scholar] [CrossRef]
- Wolter, N.; Jassat, W.; Walaza, S.; Welch, R.; Moultrie, H.; Groome, M.; Amoako, D.G.; Everatt, J.; Bhiman, J.N.; Scheepers, C.; et al. Early Assessment of the Clinical Severity of the SARS-CoV-2 Omicron Variant in South Africa: A Data Linkage Study. Lancet 2022, 399, 437–446. [Google Scholar] [CrossRef]
- Christensen, P.A.; Olsen, R.J.; Long, S.W.; Snehal, R.; Davis, J.J.; Saavedra, M.O.; Reppond, K.; Shyer, M.N.; Cambric, J.; Gadd, R.; et al. Signals of Significantly Increased Vaccine Breakthrough, Decreased Hospitalization Rates, and Less Severe Disease in Patients with Coronavirus Disease 2019 Caused by the Omicron Variant of Severe Acute Respiratory Syndrome Coronavirus 2 in Houston, Texas. Am. J. Pathol. 2022, 192, 642–652. [Google Scholar] [CrossRef]
- Lewnard, J.A.; Hong, V.X.; Patel, M.M.; Kahn, R.; Lipsitch, M.; Tartof, S.Y. Clinical Outcomes among Patients Infected with Omicron (B.1.1.529) SARS-CoV-2 Variant in Southern California. medRxiv 2022. [Google Scholar] [CrossRef]
- Wang, L.; Berger, N.A.; Kaelber, D.C.; Davis, P.B.; Volkow, N.D.; Xu, R. Comparison of Outcomes from COVID Infection in Pediatric and Adult Patients before and after the Emergence of Omicron. medRxiv 2022. [Google Scholar] [CrossRef]
- UK Health Security Agency. SARS-CoV-2 Variants of Concern and Variants under Investigation in England. Technical Briefing: Update on Hospitalisation and Vaccine Effectiveness for Omicron VOC-21NOV-01 (B.1.1.529); UK Health Security Agency: London, UK, 2021.
- Sheikh, A.; Kerr, S.; Woolhouse, M.; McMenamin, J.; Robertson, C. Severity of Omicron Variant of Concern and Vaccine Effectiveness against Symptomatic Disease: National Cohort with Nested Test Negative Design Study in Scotland; The University of Edinburgh: Edinburgh, UK, 2021. [Google Scholar]
- Abdullah, F.; Myers, J.; Basu, D.; Tintinger, G.; Ueckermann, V.; Mathebula, M.; Ramlall, R.; Spoor, S.; de Villiers, T.; der Walt, Z.V.; et al. Decreased Severity of Disease during the First Global Omicron Variant COVID-19 Outbreak in a Large Hospital in Tshwane, South Africa. Int. J. Infect. Dis. 2022, 116, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Bager, P.; Wohlfahrt, J.; Bhatt, S.; Edslev, S.M.; Sieber, R.N.; Ingham, A.C.; Stegger, M.; Legarth, R.; Holten Møller, C.; Skov, R.L.; et al. Reduced Risk of Hospitalisation Associated With Infection With SARS-CoV-2 Omicron Relative to Delta: A Danish Cohort Study; Social Science Research Network: Rochester, NY, USA, 2022. [Google Scholar]
- Nyberg, T.; Ferguson, N.M.; Nash, S.G.; Webster, H.H.; Flaxman, S.; Andrews, N.; Hinsley, W.; Bernal, J.L.; Kall, M.; Bhatt, S.; et al. Comparative Analysis of the Risks of Hospitalisation and Death Associated with SARS-CoV-2 Omicron (B.1.1.529) and Delta (B.1.617.2) Variants in England: A Cohort Study. Lancet 2022, 399, 1303–1312. [Google Scholar] [CrossRef]
- Van Goethem, N.; Vilain, A.; Wyndham-Thomas, C.; Deblonde, J.; Bossuyt, N.; Lernout, T.; Rebolledo Gonzalez, J.; Quoilin, S.; Melis, V.; Van Beckhoven, D. Rapid Establishment of a National Surveillance of COVID-19 Hospitalizations in Belgium. Arch. Public Health 2020, 78, 121. [Google Scholar] [CrossRef] [PubMed]
- Meurisse, M.; Lajot, A.; Dupont, Y.; Lesenfants, M.; Klamer, S.; Rebolledo, J.; Lernout, T.; Leroy, M.; Capron, A.; Van Bussel, J.; et al. One Year of Laboratory-Based COVID-19 Surveillance System in Belgium: Main Indicators and Performance of the Laboratories (March 2020–21). Arch. Public Health 2021, 79, 188. [Google Scholar] [CrossRef] [PubMed]
- Ho, D.; Imai, K.; King, G.; Stuart, E.A. MatchIt: Nonparametric Preprocessing for Parametric Causal Inference. J. Stat. Softw. 2011, 42, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Hall, V.J.; Foulkes, S.; Charlett, A.; Atti, A.; Monk, E.J.M.; Simmons, R.; Wellington, E.; Cole, M.J.; Saei, A.; Oguti, B.; et al. SARS-CoV-2 Infection Rates of Antibody-Positive Compared with Antibody-Negative Health-Care Workers in England: A Large, Multicentre, Prospective Cohort Study (SIREN). Lancet 2021, 397, 1459–1469. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Surveillance Definitions for COVID-19; European Centre for Disease Prevention and Control: Solna, Sweden, 2021. [Google Scholar]
- Eurostat International Standard Classification of Education (ISCED). Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=International_Standard_Classification_of_Education_(ISCED) (accessed on 29 April 2022).
- van Buuren, S.; Groothuis-Oudshoorn, K. Mice: Multivariate Imputation by Chained Equations in R. J. Stat. Softw. 2011, 45, 1–67. [Google Scholar] [CrossRef] [Green Version]
- Robins, J.; Hernan, M.A. Causal Inference: What If; Chapman & Hall/CRC: Boca Raton, FL, USA, 2020. [Google Scholar]
- Abadie, A.; Spiess, J. Robust Post-Matching Inference. J. Am. Stat. Assoc. 2020, 1–13. [Google Scholar] [CrossRef]
- Schomaker, M.; Heumann, C. Bootstrap Inference When Using Multiple Imputation. Stat. Med. 2018, 37, 2252–2266. [Google Scholar] [CrossRef] [PubMed]
- Little, R.J.A.; Rubin, D.B. Statistical Analysis with Missing Data; John Wiley & Sons, Inc.: New York, NY, USA, 1987. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Maslo, C.; Friedland, R.; Toubkin, M.; Laubscher, A.; Akaloo, T.; Kama, B. Characteristics and Outcomes of Hospitalized Patients in South Africa During the COVID-19 Omicron Wave Compared With Previous Waves. JAMA 2022, 327, 583–584. [Google Scholar] [CrossRef] [PubMed]
- Griffith, G.J.; Morris, T.T.; Tudball, M.J.; Herbert, A.; Mancano, G.; Pike, L.; Sharp, G.C.; Sterne, J.; Palmer, T.M.; Davey Smith, G.; et al. Collider Bias Undermines Our Understanding of COVID-19 Disease Risk and Severity. Nat. Commun. 2020, 11, 5749. [Google Scholar] [CrossRef] [PubMed]
- Comprehensive Immunovirological and Environmental Screening Reveals Risk Factors for Fatal COVID-19 during Post-Vaccination Nursing Home Outbreaks. Available online: https://www.researchsquare.com (accessed on 21 April 2022).
- Nevejan, L.; Cuypers, L.; Laenen, L.; Loo, L.V.; Vermeulen, F.; Wollants, E.; Hecke, I.V.; Desmet, S.; Lagrou, K.; Maes, P.; et al. Early SARS-CoV-2 Reinfections within 60 Days Highlight the Need to Consider Antigenic Variations Together with Duration of Immunity in Defining Retesting Policies. medRxiv 2022. [Google Scholar] [CrossRef]
- Nealon, J.; Cowling, B.J. Omicron Severity: Milder but Not Mild. Lancet 2022, 399, 412–413. [Google Scholar] [CrossRef]
- Yu, J.; Collier, A.Y.; Rowe, M.; Mardas, F.; Ventura, J.D.; Wan, H.; Miller, J.; Powers, O.; Chung, B.; Siamatu, M.; et al. Neutralization of the SARS-CoV-2 Omicron BA.1 and BA.2 Variants. N. Engl. J. Med. 2022, 386, 1579–1580. [Google Scholar] [CrossRef]
- Lyngse, F.P.; Kirkeby, C.T.; Denwood, M.; Christiansen, L.E.; Mølbak, K.; Møller, C.H.; Skov, R.L.; Krause, T.G.; Rasmussen, M.; Sieber, R.N.; et al. Transmission of SARS-CoV-2 Omicron VOC Subvariants BA.1 and BA.2: Evidence from Danish Households. medRxiv 2022. [Google Scholar] [CrossRef]
- Wolter, N.; Jassat, W.; DATCOV-Gen author group; von Gottberg, A.; Cohen, C. Clinical Severity of Omicron Sub-Lineage BA.2 Compared to BA.1 in South Africa. medRxiv 2022. [Google Scholar] [CrossRef]
- Qian, Z.; Alaa, A.M.; van der Schaar, M.; Ercole, A. Between-Centre Differences for COVID-19 ICU Mortality from Early Data in England. Intensive Care Med. 2020, 46, 1779–1780. [Google Scholar] [CrossRef]
Patients Infected with Omicron (n = 445) | Patients Infected with Delta (n = 509) | ||||||
---|---|---|---|---|---|---|---|
n | % | N | n | % | N | p Value | |
Demographics | |||||||
Age (years), median (IQR) | 78 (67–86) | 445 | 71 (58–80) | 509 | <0.001 | ||
Male gender, n (%) | 277 | 62.2 | 445 | 287 | 56.4 | 509 | 0.077 |
Nursing home resident, n (%) | 68 | 15.6 | 436 | 22 | 4.3 | 506 | <0.001 |
Comorbidities | |||||||
Cardiovascular Disease, n (%) | 228 | 51.4 | 444 | 185 | 36.4 | 508 | <0.001 |
History of Arterial Hypertension, n (%) | 197 | 44.4 | 444 | 205 | 40.4 | 508 | 0.24 |
Diabetes mellitus, n (%) | 125 | 28.2 | 444 | 136 | 26.8 | 508 | 0.69 |
Obesity, n (%) | 48 | 10.8 | 444 | 102 | 20.1 | 508 | <0.001 |
Chronic Pulmonary Disease, n (%) | 107 | 24.1 | 444 | 119 | 23.4 | 508 | 0.87 |
Chronic Neurological Disease, n (%) | 93 | 20.9 | 444 | 62 | 12.2 | 508 | <0.001 |
Chronic Cognitive Deficit, n (%) | 68 | 15.3 | 444 | 33 | 6.5 | 508 | <0.001 |
Chronic Renal Disease, n (%) | 143 | 32.2 | 444 | 106 | 20.9 | 508 | <0.001 |
Chronic Liver Disease, n (%) | 14 | 3.2 | 444 | 12 | 2.4 | 508 | 0.55 |
Solid Cancer, n (%) | 97 | 21.8 | 444 | 87 | 17.1 | 508 | 0.079 |
Hematological Cancer, n (%) | 25 | 5.6 | 444 | 28 | 5.5 | 508 | >0.99 |
Solid organ transplantation, n (%) | 11 | 2.5 | 444 | 27 | 5.3 | 508 | 0.030 |
Chronic Immunosuppression, n (%) | 21 | 4.7 | 444 | 55 | 10.8 | 508 | 0.001 |
Comorbidity groups 1, n (%) | <0.001 | ||||||
No underlying comorbidities | 53 | 11.9 | 444 | 98 | 19.3 | 508 | - |
Medium-risk comorbidity | 113 | 25.5 | 444 | 156 | 30.7 | 508 | - |
High-risk comorbidity | 278 | 62.6 | 444 | 254 | 50.0 | 508 | - |
Socio-economic status | |||||||
Education level 2, n (%) | 0.59 | ||||||
Low | 219 | 62.8 | 349 | 227 | 60.1 | 378 | - |
Middle | 80 | 22.9 | 349 | 99 | 26.2 | 378 | - |
High | 50 | 14.3 | 349 | 52 | 13.8 | 378 | - |
Income (decile) 3, n (%) | 0.20 | ||||||
Low income | 212 | 54.9 | 386 | 219 | 49.7 | 441 | - |
Middle income | 120 | 31.1 | 386 | 143 | 32.4 | 441 | - |
High income | 54 | 14.0 | 386 | 79 | 17.9 | 441 | - |
Population density 4, median (IQR) | 990 (470–2600) | 426 | 720 (380–1700) | 503 | <0.001 | ||
Median taxable income per capita 5, median (IQR) | 27,000 (24,000–29,000) | 426 | 28,000 (26,000–29,000) | 503 | 0.15 | ||
Place of infection, n (%) | <0.001 | ||||||
Community-acquired | 334 | 76.4 | 437 | 459 | 90.9 | 505 | - |
Hospital-acquired 6 | 38 | 8.7 | 437 | 25 | 5.0 | 505 | - |
Nursing home-acquired | 65 | 14.8 | 437 | 21 | 4.2 | 505 | - |
Preexisting immunity | |||||||
Documented previous infection, n (%) | 12 | 2.7 | 445 | 1 | 0.2 | 509 | 0.001 |
Vaccination status 7, n (%) | <0.001 | ||||||
Not or partially vaccinated | 66 | 14.8 | 445 | 128 | 25.1 | 509 | - |
Primary course completed | 90 | 20.2 | 445 | 322 | 63.3 | 509 | - |
Primary course completed and booster | 289 | 64.9 | 445 | 59 | 11.6 | 509 | - |
Hospital organizational characteristics | |||||||
ICU occupancy rate 8, median (IQR) | 17 (11–20) | 445 | 25 (15–33) | 509 | <0.001 | ||
Disease characteristics | |||||||
CRP 9 (mg/l) on admission, median (IQR) | 35 (14–72) | 428 | 66 (29–130) | 503 | <0.001 | ||
Clinical outcomes | |||||||
Severe 10 COVID-19, n (%) | 69 | 15.7 | 440 | 161 | 31.8 | 507 | <0.001 |
ICU admission, n (%) | 31 | 7.0 | 445 | 106 | 20.9 | 507 | <0.001 |
In-hospital mortality, n (%) | 51 | 11.6 | 438 | 89 | 17.6 | 505 | 0.012 |
Invasive ventilation, n (%) | 8 | 1.8 | 440 | 40 | 8.1 | 494 | 0.37 |
ECLS 11, n (%) | 2 | 0.5 | 440 | 2 | 0.4 | 494 | 0.21 |
ARDS 12, n (%) | 12 | 2.7 | 445 | 60 | 11.8 | 509 | <0.001 |
Hospital length of stay (days), median (IQR) | 8 (5–15) | 445 | 10 (5–18) | 509 | 0.001 | ||
ICU length of stay (days), median (IQR) | 5 (2–7) | 26 | 9 (5–17) | 92 | 0.003 |
Outcome | Standardized Risk [95% CI] in % | RR [95% CI] | RD [95% CI] in % | |
---|---|---|---|---|
Omicron | Delta | |||
Severe COVID-19 1 | 22.3 [12.0; 32.6] | 35.2 [26.5; 43.8] | 0.63 [0.30; 0.97] | −12.9 [−26.7; 0.1] |
ICU admission | 12.2 [3.0; 21.4] | 21.7 [17.7; 25.8] | 0.56 [0.14; 0.99] | −9.5 [−19.1; 0.1] |
In-hospital mortality | 19.1 [9.2; 29.0] | 24.4 [16.1; 32.6] | 0.78 [0.28; 1.29] | −5.2 [−17.8; 7.2] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van Goethem, N.; Chung, P.Y.J.; Meurisse, M.; Vandromme, M.; De Mot, L.; Brondeel, R.; Stouten, V.; Klamer, S.; Cuypers, L.; Braeye, T.; et al. Clinical Severity of SARS-CoV-2 Omicron Variant Compared with Delta among Hospitalized COVID-19 Patients in Belgium during Autumn and Winter Season 2021–2022. Viruses 2022, 14, 1297. https://doi.org/10.3390/v14061297
Van Goethem N, Chung PYJ, Meurisse M, Vandromme M, De Mot L, Brondeel R, Stouten V, Klamer S, Cuypers L, Braeye T, et al. Clinical Severity of SARS-CoV-2 Omicron Variant Compared with Delta among Hospitalized COVID-19 Patients in Belgium during Autumn and Winter Season 2021–2022. Viruses. 2022; 14(6):1297. https://doi.org/10.3390/v14061297
Chicago/Turabian StyleVan Goethem, Nina, Pui Yan Jenny Chung, Marjan Meurisse, Mathil Vandromme, Laurane De Mot, Ruben Brondeel, Veerle Stouten, Sofieke Klamer, Lize Cuypers, Toon Braeye, and et al. 2022. "Clinical Severity of SARS-CoV-2 Omicron Variant Compared with Delta among Hospitalized COVID-19 Patients in Belgium during Autumn and Winter Season 2021–2022" Viruses 14, no. 6: 1297. https://doi.org/10.3390/v14061297
APA StyleVan Goethem, N., Chung, P. Y. J., Meurisse, M., Vandromme, M., De Mot, L., Brondeel, R., Stouten, V., Klamer, S., Cuypers, L., Braeye, T., Catteau, L., Nevejan, L., van Loenhout, J. A. F., & Blot, K. (2022). Clinical Severity of SARS-CoV-2 Omicron Variant Compared with Delta among Hospitalized COVID-19 Patients in Belgium during Autumn and Winter Season 2021–2022. Viruses, 14(6), 1297. https://doi.org/10.3390/v14061297