Exploring the Mumps Virus Glycoproteins: A Review
Abstract
:1. Introduction
2. Search Strategy
3. The Hemagglutinin-Neuraminidase Protein
4. HN Protein Structure
5. HN B-Cell and T-Cell Epitopes
6. Other HN SNVs
Amino Acid Variant | Position (Amino Acid) | Strain/Genotype | Specific Area in Protein | Potential Effect | Reference |
---|---|---|---|---|---|
L6F * | 6 | F | N/A | N/A | [56] |
N12S * | 12 | G | Glycosylation site | Removal of Glycosylation | [57] |
D25N * | 25 | F | N/A | N/A | [56] |
A37G | 37 | G | Membrane Anchorage | N/A | [8] |
T51N | 51 | L-Zagreb | Membrane Anchorage | N/A | [47] |
G63S | 63 | G | N/A | N/A | [8] |
K74M | 74 | I | T-cell Epitope | Change in Epitope | [50] |
R76K | 76 | C | T-cell Epitope | Change in Epitope | [50] |
E77A * | 77 | G | T-cell Epitope | Change in Epitope | [50] |
A80T | 80 | JL2, C, D, F, G, H, I | T-cell Epitope | Change in Epitope | [50] |
V81M/T * | 81 | JL2, C, D, F, G, H, I | T-cell Epitope | N/A | [50,56] |
H94Y | 94 | G | N/A | N/A | [8] |
T97M | 97 | G | N/A | N/A | [8] |
N121S * | 121 | F, H, I | N/A | N/A | [7] |
R122K * | 122 | F, H, I | N/A | N/A | [7] |
N123K * N123E * | 123 | F, H, I | N/A | N/A | [7] |
T129S | 129 | G | Glycosylation Site | Loss of N-glycosylation | [8] |
A153S | 153 | G | N/A | N/A | [8] |
S158A/F * | 158 | K | T-cell Epitope | Change in Epitope | [50] |
H161R | 161 | I | T-cell Epitope | Change in Epitope | [50] |
T265A | 265 | A (SBL-1) | B-cell Epitope | Change in epitope | [49] |
V249I * | 249 | F | N/A | N/A | [56] |
I279T * | 279 | A (JL-5), F | B-cell and T-cell Epitope | Change in epitope (escape mutation) | [57] |
I287V * | 287 | A (JL-2, JL-5, Enders, Rubini, Kilham, SBL-1,), C, D, F, I | B-cell and T-cell Epitope | Change in epitope (escape mutation) | [7,29,55,57,58] |
T288I * | 288 | F | N/A | N/A | [56] |
K317R | 317 | G | N/A | N/A | [8] |
S330G | 330 | G | N/A | N/A | [8] |
V334I/L | 334 | D, H | T-cell Epitope | Change in Epitope | [50] |
E335 < K *, E/K335R * | 335 | B (Urabe), C *, I | B-cell Epitope | Change in Epitope | [10,44] |
S336L * | 336 | A (JL-5), D, F, G, I, J, K | B-cell Epitope | Change in Epitope | [7,11,53,54] |
Q354P *, Q354H *, P354H * | 354 | A (JL2, Enders, Rubini, Kilham *) C | B-cell Epitope | Change in Epitope | [11,44,53,58] |
D356E *, E356S *, D356S * | 356 | A (JL2, JL5, Enders, SBL-1, Rubini, Kilham *) C, F | B-cell Epitope | Change in epitope | [7,11,44,53,58] |
A406S * | 406 | F | N/A | N/A | [56] |
Y442S * | 442 | F, H, I | N/A | N/A | [7] |
N464K * | 464 | A (JL2, JL5) | Glycosylation site | Loss of N-glycosylation | [49] |
T474A/V * | 474 | F | N/A | N/A | [21,56] |
T511A | 511 | J | T-cell Epitope | Change in Epitope | [50] |
T513A/I | 513 | K, F | T-cell Epitope | Change in Epitope | [50] |
N523D | 523 | H (RS-12) | N/A | N/A | [59] |
7. The Fusion Protein
8. F Protein Structure
9. F Protein Epitopes
10. F Protein SNVs
Amino Acid Variant | Position (Amino Acid) | Strain/Genotype | Specific Area in Protein | Potential Effect | Reference |
---|---|---|---|---|---|
T7I | 7 | A (SBL-1, Enders, Kilham) | Signal peptide region | N/A | [65] |
V13I | 13 | A (SBL-1, Enders, Kilham) | Signal peptide region | N/A | [65] |
I49V | 49 | A (SBL-1, Enders, Kilham) | Signal peptide region | N/A | [65] |
S97L * | 97 | G | Close to cleavage site | N/Aouma | [8] |
V151I * | 151 | F | B-cell Epitope | N/A | [56] |
S195F * | 195 | B (Urabe), C, D, F G, I, N, L-Zagreb | N/A | Increase Neurovirulence and Fusogenicity | [10,24,47,53,65] |
M269I | 269 | H (RS-12) | N/A | N/A | [59] |
S318R, S318G * | 318 | A (SBL-1, Enders, Kilham), C *, D * | Signal peptide region | N/A | [65] |
H329Y * | 329 | F | N/A | N/A | [56] |
S345T * | 345 | A (SBL-1, Enders, Kilham), | Signal peptide region | N/A | [65] |
A409S, A409T * | 409 | A (SBL-1, Enders, Kilham), C *, D * | Signal peptide region | N/A | [65] |
N480S * | 480 | A (SBL-1, Enders, Kilham), | Signal peptide region | N/A | [65] |
A489T * | 489 | L-Zagreb | Membrane anchorage | N/A | [47] |
11. Discussion
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mühlemann, K. The Molecular Epidemiology of Mumps Virus. Infect. Genet. Evol. 2004, 4, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Galazka, A.M.; Robertson, S.E.; Kraigher, A. Mumps and Mumps Vaccine: A Global Review. Bull. World Health Organ. 1999, 77, 3–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dayan, G.H.; Rubin, S. Mumps Outbreaks in Vaccinated Populations: Are Available Mumps Vaccines Effective Enough to Prevent Outbreaks? Clin. Infect. Dis. 2008, 47, 1458–1467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferenczi, A.; Gee, S.; Cotter, S.; Kelleher, K. Ongoing Mumps Outbreak among Adolescents and Young Adults, Ireland, August 2018 to January 2020. Eurosurveillance 2020, 25, 2000047. [Google Scholar] [CrossRef] [Green Version]
- Rubin, S.; Eckhaus, M.; Rennick, L.J.; Bamford, C.G.; Duprex, W.P. Molecular Biology, Pathogenesis and Pathology of Mumps Virus. J. Pathol. 2015, 235, 242–252. [Google Scholar] [CrossRef]
- Gouma, S.; ten Hulscher, H.I.; Schurink-van ’t Klooster, T.M.; de Melker, H.E.; Boland, G.J.; Kaaijk, P.; van Els, C.A.C.M.; Koopmans, M.P.G.; van Binnendijk, R.S. Mumps-Specific Cross-Neutralization by MMR Vaccine-Induced Antibodies Predicts Protection against Mumps Virus Infection. Vaccine 2016, 34, 4166–4171. [Google Scholar] [CrossRef]
- Won, H.; Kim, A.R.; Yoo, J.S.; Chung, G.T.; Kang, H.J.; Kim, S.J.; Kim, S.S.; Lee, J.W. Cross-Neutralization between Vaccine and Circulating Wild-Type Mumps Viruses in Korea. Vaccine 2021, 39, 1870–1876. [Google Scholar] [CrossRef]
- Gouma, S.; Vermeire, T.; Van Gucht, S.; Martens, L.; Hutse, V.; Cremer, J.; Rota, P.A.; Leroux-Roels, G.; Koopmans, M.; van Binnendijk, R.; et al. Differences in Antigenic Sites and Other Functional Regions between Genotype A and G Mumps Virus Surface Proteins. Sci. Rep. 2018, 8, 13337. [Google Scholar] [CrossRef] [Green Version]
- Lewnard, J.A.; Grad, Y.H. Vaccine Waning and Mumps Re-Emergence in the United States. Sci. Transl. Med. 2018, 10, eaao5945. [Google Scholar] [CrossRef] [Green Version]
- Jin, L.; Rima, B.; Brown, D.; Örvell, C.; Tecle, T.; Afzal, M.; Uchida, K.; Nakayama, T.; Song, J.-W.; Kang, C.; et al. Proposal for Genetic Characterisation of Wild-Type Mumps Strains: Preliminary Standardisation of the Nomenclature Brief Report. Arch. Virol. 2005, 150, 1903–1909. [Google Scholar] [CrossRef]
- Jin, L.; Örvell, C.; Myers, R.; Rota, P.A.; Nakayama, T.; Forcic, D.; Hiebert, J.; Brown, K.E. Genomic Diversity of Mumps Virus and Global Distribution of the 12 Genotypes. Rev. Med. Virol. 2015, 25, 85–101. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Wilkinson, K.; Rusk, R.; Kadkhoda, K.; Loeppky, C. Large Community Mumps Outbreak in Manitoba, Canada, September 2016–December 2018. Canada Commun. Dis. Rep. 2020, 46, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Alkam, D.; Jenjaroenpun, P.; Wongsurawat, T.; Udaondo, Z.; Patumcharoenpol, P.; Robeson, M.; Haselow, D.; Mason, W.; Nookaew, I.; Ussery, D.; et al. Genomic Characterization of Mumps Viruses from a Large-Scale Mumps Outbreak in Arkansas, 2016. Infect. Genet. Evol. 2019, 75, 103965. [Google Scholar] [CrossRef] [PubMed]
- Moncla, L.H.; Black, A.; Debolt, C.; Lang, M.; Graff, N.R.; Pé Rez-Osorio, A.C.; Mü Ller, N.F.; Haselow, D.; Lindquist, S.; Bedford, T.; et al. Repeated Introductions and Intensive Community Transmission Fueled a Mumps Virus Outbreak in Washington State. Elife 2021, 10, e66448. [Google Scholar] [CrossRef]
- Gouma, S.; Cremer, J.; Parkkali, S.; Veldhuijzen, I.; van Binnendijk, R.S.; Koopmans, M.P.G. Mumps Virus F Gene and HN Gene Sequencing as a Molecular Tool to Study Mumps Virus Transmission. Infect. Genet. Evol. 2016, 45, 145–150. [Google Scholar] [CrossRef]
- Saboui, M.; Squires, S.G. Mumps Outbreaks across Canada, 2016 to 2018. Canada Commun. Dis. Rep. 2020, 46, 427–431. [Google Scholar] [CrossRef]
- Afzal, M.A.; Pickford, A.R.; Forsey, T.; Heath, A.B.; Minor, P.D. The Jeryl Lynn Vaccine Strain of Mumps Virus Is a Mixture of Two Distinct Isolates. J. Gen. Virol. 1993, 74, 917–920. [Google Scholar] [CrossRef]
- Maymay, A.M.; Rieder, C.A.; Rebecca, J. Emergent Lineages of Mumps Virus Suggest the Need for a Polyvalent Vaccine. Int. J. Infect. Dis. 2017, 116, 19071–19076. [Google Scholar] [CrossRef] [Green Version]
- Rasheed, M.A.U.; Hickman, C.J.; Mcgrew, M.; Sowers, S.B.; Mercader, S.; Hopkins, A.; Grimes, V.; Yu, T.; Wrammert, J.; Mulligan, M.J.; et al. Decreased Humoral Immunity to Mumps in Young Adults Immunized with MMR Vaccine in Childhood. Proc. Natl. Acad. Sci. USA 2019, 116, 19071–19076. [Google Scholar] [CrossRef] [Green Version]
- Vermeire, T.; Gouma, S.; Van Gucht, S.; Martens, L.; Hutse, V.; Cremer, J.; Rota, P.; Leroux-Roels, G.; Koopmans, M.; Van Binnendijk, R.; et al. Differences among Mumps Virus Surface Proteins between Genotype G and Other Genotypes and Their Potential Effect on Mumps Virus Immunity and Pathogenesis. J. Clin. Virol. 2016, 82, S20. [Google Scholar] [CrossRef]
- Cui, A.; Zhu, Z.; Mao, N.; Si, Y.; Ma, Y.; Hu, Y.; Deng, X.; Wang, L.; Zeng, L.; Zhang, Y.; et al. Assessment of One-Dose Mumps-Containing Vaccine Effectiveness on Wild-Type Genotype F Mumps Viruses Circulating in Mainland China. Vaccine 2018, 36, 5725–5731. [Google Scholar] [CrossRef] [PubMed]
- Rubin, S.A.; Amexis, G.; Pletnikov, M.; Vanderzanden, J.; Mauldin, J.; Sauder, C.; Malik, T.; Chumakov, K.; Carbone, K.M. Changes in Mumps Virus Gene Sequence Associated with Variability in Neurovirulent Phenotype. J. Virol. 2003, 77, 11616–11624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elango, N.; Varsanyi, T.M.; Kovamees, J.; Norrby, E. Molecular Cloning and Characterization of Six Genes, Determination of Gene Order and Intergenic Sequences and Leader Sequence of Mumps Virus. J. Gen. Virol. 1988, 69 Pt 11, 2893–2900. [Google Scholar] [CrossRef] [PubMed]
- Tanabayashi, K.; Takeuchi, K.; Okazaki, K.; Hishiyama, M.; Yamada, A. Expression of Mumps Virus Glycoproteins in Mammalian Cells from Cloned CDNAs: Both F and HN Proteins Are Required for Cell Fusion. Virology 1992, 187, 801–804. [Google Scholar] [CrossRef]
- Lamb, R.A.; Paterson, R.G.; Jardetzky, T.S. Paramyxovirus Membrane Fusion: Lessons from the F and HN Atomic Structures. Virology 2006, 344, 30–37. [Google Scholar] [CrossRef] [Green Version]
- Kubota, M.; Takeuchi, K.; Watanabe, S.; Ohno, S.; Matsuoka, R.; Kohda, D.; Nakakita, S.-I.; Hiramatsu, H.; Suzuki, Y.; Nakayama, T.; et al. Trisaccharide Containing A2,3-Linked Sialic Acid Is a Receptor for Mumps Virus. Proc. Natl. Acad. Sci. USA 2016, 113, 11579–11584. [Google Scholar] [CrossRef] [Green Version]
- Orvell, C. The Reactions of Monoclonal Antibodies with Structural Proteins of Mumps Virus. J. Immunol. 1984, 132, 2622–2629. [Google Scholar]
- Wolinsky, J.S.; Waxham, M.N.; Server, A.C. Protective Effects of Glycoprotein-Specific Monoclonal Antibodies on the Course of Experimental Mumps Virus Meningoencephalitis. J. Virol. 1985, 53, 727–734. [Google Scholar] [CrossRef] [Green Version]
- Homan, E.J.; Bremel, R.D. Are Cases of Mumps in Vaccinated Patients Attributable to Mismatches in Both Vaccine T-Cell and B-Cell Epitopes? An Immunoinformatic Analysis. Hum. Vaccines Immunother. 2014, 10, 290–300. [Google Scholar] [CrossRef] [Green Version]
- Kgvamees, J.; Norrby, E.; Elango, N. Complete Nucleotide Sequence of the Hemagglutinin-Neuraminidase (HN) MRNA of Mumps Virus and Comparison of Paramyxovirus HN-Proteins. Virus Res. 1989, 12, 87–96. [Google Scholar] [CrossRef]
- Bossart, K.N.; Fusco, D.L.; Broder, C.C. Chapter 6 Paramyxovirus Entry. Adv. Exp. Med. Biol. 2013, 790, 95–127. [Google Scholar] [PubMed]
- Mirza, A.M.; Deng, R.; Iorio, R.M. Site-Directed Mutagenesis of a Conserved Hexapeptide in the Paramyxovirus Hemagglutinin-Neuraminidase Glycoprotein: Effects on Antigenic Structure and Function. J. Virol. 1994, 68, 5093–5099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jorgensen, E.D.; Collins, P.L.; Lomedico, P.T. Cloning and Nucleotide Sequence of Newcastle Disease Virus Hemagglutinin-Neuraminidase MRNA: Identification of a Putative Sialic Acid Binding Site. Virology 1987, 156, 12–24. [Google Scholar] [CrossRef]
- Forgione, R.E.; Di Carluccio, C.; Kubota, M.; Manabe, Y.; Fukase, K.; Molinaro, A.; Hashiguchi, T.; Marchetti, R.; Silipo, A. Structural Basis for Glycan-Receptor Binding by Mumps Virus Hemagglutinin-Neuraminidase. Sci. Rep. 2020, 10, 1589. [Google Scholar] [CrossRef] [PubMed]
- Kubota, M.; Matsuoka, R.; Suzuki, T.; Yonekura, K. Molecular Mechanism of the Flexible Glycan Receptor Recognition by Mumps Virus. J. Virol. 2019, 93, e02185-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takimoto, T.; Taylor, G.L.; Connaris, H.C.; Crennell, S.J.; Portner, A. Role of the Hemagglutinin-Neuraminidase Protein in the Mechanism of Paramyxovirus-Cell Membrane Fusion. J. Virol. 2002, 76, 13028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.K.; Prussia, A.; Paal, T.; White, L.K.; Snyder, J.P.; Plemper, R.K. Functional Interaction between Paramyxovirus Fusion and Attachment Proteins. J. Biol. Chem. 2008, 283, 16561–16572. [Google Scholar] [CrossRef] [Green Version]
- Kubota, M.; Okabe, I.; Nakakita, S.; Ueo, A.; Shirogane, Y.; Yanagi, Y.; Hashiguchi, T. Disruption of the Dimer-Dimer Interaction of the Mumps Virus Attachment Protein Head Domain, Aided by an Anion Located at the Interface, Compromises Membrane Fusion Triggering. J. Virol. 2020, 94, e01732-19. [Google Scholar] [CrossRef]
- Rubin, S.A.; Link, M.A.; Sauder, C.J.; Zhang, C.; Ngo, L.; Rima, B.K.; Duprex, W.P. Recent Mumps Outbreaks in Vaccinated Populations: No Evidence of Immune Escape. J. Virol. 2012, 86, 615–620. [Google Scholar] [CrossRef] [Green Version]
- Örvell, C.; Alsheikhly, A.-R.; Kalantari, M.; Johansson, B. Characterization of Genotype-Specific Epitopes of the HN Protein of Mumps Virus. J. Gen. Virol. 1997, 78, 3187–3193. [Google Scholar] [CrossRef]
- Yates, P.J.; Afzal, M.A.; Minor, P.D. Antigenic and Genetic Variation of the HN Protein of Mumps Virus Strains. J. Gen. Virol. 1996, 77, 2491–2497. [Google Scholar] [CrossRef] [PubMed]
- Šantak, M.; Lang-balija, M.; Ivancic-Jelecki, J.; Kosutic-Gulija, T.; Ljubin-Sternak, S.; Forcic, D. Antigenic Differences between Vaccine and Circulating Wild-Type Mumps Viruses Decreases Neutralization Capacity of Vaccine-Induced Antibodies. Epidemiol. Infect. 2013, 141, 1298–1309. [Google Scholar] [CrossRef] [PubMed]
- Örvell, C.; Tecle, T.; Johansson, B.; Saito, H.; Samuelson, A. Antigenic Relationships between Six Genotypes of the Small Hydrophobic Protein Gene of Mumps Virus. J. Gen. Virol. 2002, 83, 2489–2496. [Google Scholar] [CrossRef] [PubMed]
- Cui, A.; Brown, D.W.G.; Xu, W.; Jin, L. Genetic Variation in the HN and SH Genes of Mumps Viruses: A Comparison of Strains from Mumps Cases with and without Neurological Symptoms. PLoS ONE 2013, 8, e61791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kövamees, J.; Rydbeck, R.; Örvell, C.; Norrby, E. Hemagglutinin-Neuraminidase (HN) Amino Acid Alterations in Neutralization Escape Mutants of Kilham Mumps Virus. Virus Res. 1990, 17, 119–129. [Google Scholar] [CrossRef]
- Neal Waxham, M.; Aronowski, J.; Server, A.C.; Wolinsky, J.S.; Smith, J.A.; Goodman, H.M. Sequence Determination of the Mumps Virus HN Gene. Virology 1988, 164, 318–325. [Google Scholar] [CrossRef]
- Ivancic, J.; Gulija, T.K.; Forcic, D.; Baricevic, M.; Jug, R.; Mesko-Prejac, M.; Mazuran, R. Genetic Characterization of L-Zagreb Mumps Vaccine Strain. Virus Res. 2005, 109, 95–105. [Google Scholar] [CrossRef]
- Cusi, M.G.; Fischer, S.; Sedlmeier, R.; Valassina, M.; Valensin, P.E.; Donati, M.; Neubert, W.J. Localization of a New Neutralizing Epitope on the Mumps Virus Hemagglutinin-Neuraminidase Protein. Virus Res. 2001, 74, 133–137. [Google Scholar] [CrossRef]
- Kulkarni-Kale, U.; Ojha, J.; Sunitha Manjari, G.; Deobagkar, D.D.; Mallya, A.D.; Dhere, R.M.; Kapre, S. V Mapping Antigenic Diversity and Strain Specificity of Mumps Virus: A Bioinformatics Approach. Virology 2006, 359, 436–446. [Google Scholar] [CrossRef] [Green Version]
- Kaaijk, P.; Emmelot, M.E.; Kerkhof, J.; van Els, C.A.C.M.; Meiring, H.D.; de Wit, J.; Bodewes, R. Genetic Analysis Reveals Differences in CD8+ T Cell Epitope Regions That May Impact Cross-Reactivity of Vaccine-Induced T Cells against Wild-Type Mumps Viruses. Vaccines 2021, 9, 699. [Google Scholar] [CrossRef]
- Reyes-Leyva, J.; Baños, R.; Borraz-Argüello, M.; Santos-López, G.; Rosas, N.; Alvarado, G.; Herrera, I.; Vallejo, V.; Tapia-Ramírez, J. Amino Acid Change 335 E to K Affects the Sialic-Acid-Binding and Neuraminidase Activities of Urabe AM9 Mumps Virus Hemagglutinin-Neuraminidase Glycoprotein. Microbes Infect. 2007, 9, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Santos-López, G.; Cruz, C.; Pazos, N.; Vallejo, V.; Reyes-Leyva, J.; Tapia-Ramírez, J. Two Clones Obtained from Urabe AM9 Mumps Virus Vaccine Differ in Their Replicative Efficiency in Neuroblastoma Cells. Microbes Infect. 2006, 8, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Rafiefard, F.; Johansson, B.; Tecle, T.; Örvell, C. Characterization of Mumps Virus Strains with Varying Neurovirulence. Scand. J. Infect. Dis. 2005, 37, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.S.; Chan, K.P.; Goh, K.T.; Chow, V.T.K. Hemagglutinin-Neuraminidase Sequence and Phylogenetic Analyses of Mumps Virus Isolates from a Vaccinated Population in Singapore. J. Med. Virol. 2003, 70, 287–292. [Google Scholar] [CrossRef]
- Bryant, P.; Caldwell, H.; Lamson, D.M.; Yildirim, T.; St. George, K. Streamlined Whole-Genome Sequencing of Mumps Virus for High-Resolution Outbreak Analysis. J. Clin. Microbiol. 2022, 60, e00841-21. [Google Scholar] [CrossRef]
- Cui, A.; Rivailler, P.; Zhu, Z.; Deng, X.; Hu, Y.; Wang, Y.; Li, F.; Sun, Z.; He, J.; Si, Y.; et al. Evolutionary Analysis of Mumps Viruses of Genotype F Collected in Mainland China in 2001–2015. Sci. Rep. 2017, 7, 17144. [Google Scholar] [CrossRef] [Green Version]
- Šantak, M.; Košutić-Gulija, T.; Tešović, G.; Ljubin-Sternak, S.; Gjenero-Margan, I.; Betica-Radić, L.; Forčić, D. Mumps Virus Strains Isolated in Croatia in 1998 and 2005: Genotyping and Putative Antigenic Relatedness to Vaccine Strains. J. Med. Virol. 2006, 78, 638–643. [Google Scholar] [CrossRef]
- Ivancic-Jelecki, J.; Santak, M.; Forcic, D. Variability of Hemagglutinin-Neuraminidase and Nucleocapsid Protein of Vaccine and Wild-Type Mumps Virus Strains. Infect. Genet. Evol. 2008, 8, 603–613. [Google Scholar] [CrossRef]
- Alirezaie, B.; Aghaiypour, K.; Shafyi, A. Genetic Characterization of RS-12 (S-12), an Iranian Isolate of Mumps Virus, by Sequence Analysis and Comparative Genomics of F, SH, and HN Genes. J. Med. Virol. 2008, 80, 702–710. [Google Scholar] [CrossRef]
- White, J.M.; Delos, S.E.; Brecher, M.; Schornberg, K. Structures and Mechanisms of Viral Membrane Fusion Proteins. Crit. Rev. Biochem. Mol. Biol. 2008, 43, 189–219. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Xu, Y.; Lou, Z.; Zhu, J.; Hu, X.; Gao, G.F.; Qiu, B.; Rao, Z.; Tien, P. Structural Characterization of Mumps Virus Fusion Protein Core. Biochem. Biophys. Res. Commun. 2006, 348, 916–922. [Google Scholar] [CrossRef] [PubMed]
- Elango, N.; Varsanyi, T.M.; Kovamees, J.; Norrby, E. The Mumps Virus Fusion Protein MRNA Sequence and Homology among the Paramyxoviridae Proteins. J. Gen. Virol. 1989, 70, 801–807. [Google Scholar] [CrossRef] [PubMed]
- Merz, D.C.; Server, A.C.; Neal, M.; And, W.; Wolinsky, J.S. Biosynthesis of Mumps Virus F Glycoprotein: Non-Fusing Strains Efficiently Cleave the F Glycoprotein Precursor. J. Gen. Virol 1983, 64, 1457–1467. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, J.; Feng, M.G.; Tien, P.; Gao, G.F. Six-Helix Bundle Assembly and Analysis of the Central Core of Mumps Virus Fusion Protein. Arch. Biochem. Biophys. 2004, 421, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Tecle, T.; Johansson, B.; Yun, Z.; Örvell, C. Antigenic and Genetic Characterization of the Fusion (F) Protein of Mumps Virus Strains. Arch. Virol 2000, 145, 1199–1210. [Google Scholar] [CrossRef] [PubMed]
- Control, V.; Tanabayashi, K.; Takeuchi, K.; Okazaki, K.; Hishiyama, M.; Yamada, A. Identification of an Amino Acid That Defines the Fusogenicity of Mumps Virus. Virology 1993, 67, 2928–2931. [Google Scholar]
- Šantak, M.; Örvell, C.; Gulija, T.K. Identification of Conformational Neutralization Sites on the Fusion Protein of Mumps Virus. J. Gen. Virol. 2015, 96, 982–990. [Google Scholar] [CrossRef]
- Mahallawi, W.H.; Kurdi, M.M.; Ibrahim, N.A. Serostatus of IgG Antibody against Mumps Virus in Adult Population of Al Madinah Al Munawarah, Saudi Arabia. Saudi Med. J. 2021, 42, 862–868. [Google Scholar] [CrossRef]
- Da Silva, D.B.B.; Santos, C.L.S.; de Santos Oliveira, K.C.; Theobaldo, M.; Paulino, R.d.S.; Sasaki, N.A.; Benega, A.M.; de Paiva, T.M. Mumps Virus Genotypes Identified during Disease Outbreaks in the State of São Paulo, Brazil: 2011–2016. Rev. Inst. Adolfo Lutz. 2016, 75, 1–5. [Google Scholar]
- Wohl, S.; Metsky, H.C.; Schaffner, S.F.; Piantadosi, A.; Burns, M.; Lewnard, J.A.; Chak, B.; Krasilnikova, L.A.; Siddle, K.J.; Matranga, C.B.; et al. Combining Genomics and Epidemiology to Track Mumps Virus Transmission in the United States. PLoS Biol. 2020, 18, e3000611. [Google Scholar] [CrossRef] [Green Version]
- Principi, N.; Esposito, S. Mumps Outbreaks: A Problem in Need of Solutions. J. Infect. 2018, 76, 503–506. [Google Scholar] [CrossRef] [PubMed]
- Vaidya, S.; Dvivedi, G.; Jadhav, S. Cross-Neutralization between Three Mumps Viruses & Mapping of Haemagglutinin-Neuraminidase (HN) Epitopes. Indian J. Med. Res. 2016, 143, 37. [Google Scholar] [CrossRef] [PubMed]
- Beaty, S.M.; Nachbagauer, R.; Hirsh, A.; Vigant, F.; Duehr, J.; Azarm, K.; Stelfox, A.J.; Bowden, T.A.; Duprex, W.P.; Krammer, F.; et al. Cross-Reactive and Cross-Neutralizing Activity of Human Mumps Antibodies against a Novel Mumps Virus from Bats. J. Infect. Dis. 2016, 215, 209–213. [Google Scholar] [CrossRef] [PubMed]
# | Searches | Results |
---|---|---|
1 | * mumps/or mumps virus/ | 4617 |
2 | (mumps or parotit *).tw,kw. | 10,226 |
3 | or/1–2 | 10,979 |
4 | exp mumps vaccine/or exp vaccination/or genotype/ | 553,092 |
5 | “virus neutralization”/ or“neutralizing antibody”/ | 44,343 |
6 | (Jeryl Lynn or genotyp * or strain * or vaccin * or immuni * or neutral *).tw,kw. | 1,998,068 |
7 | or/4–6 | 2,103,476 |
8 | exp glycoprotein/ or exp fusion protein/ or HN protein/ or exp membrane protein/ or matrix protein/ or virus protein/ | 1,593,994 |
9 | ((f or fusion or HN or hemagglutinin or membrane or surface or m or matix or virus or viral) adj3 (protein? or glycoprotein?)).tw,kw. | 312,005 |
10 | (haemagglutinin neuraminidase or haemagglutininneuraminidase or glycoprotein?).tw,kw. | 177,388 |
11 | or/8–10 | 1,810,253 |
12 | exp antigenicity/ or epitope/ | 150,132 |
13 | (antigenic * or immunogenetic * or immunogenic * or epitop *).tw,kw. | 251,994 |
14 | (antigen * adj2 (strength * or activit * or propert * or determinant *)).tw,kw. | 19,464 |
15 | or/12–14 | 297,523 |
16 | and/3,7,11,15 | 88 |
17 | limit 16 to (english and yr = “2000–Current”) | 65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frost, J.R.; Shaikh, S.; Severini, A. Exploring the Mumps Virus Glycoproteins: A Review. Viruses 2022, 14, 1335. https://doi.org/10.3390/v14061335
Frost JR, Shaikh S, Severini A. Exploring the Mumps Virus Glycoproteins: A Review. Viruses. 2022; 14(6):1335. https://doi.org/10.3390/v14061335
Chicago/Turabian StyleFrost, Jasmine Rae, Saba Shaikh, and Alberto Severini. 2022. "Exploring the Mumps Virus Glycoproteins: A Review" Viruses 14, no. 6: 1335. https://doi.org/10.3390/v14061335
APA StyleFrost, J. R., Shaikh, S., & Severini, A. (2022). Exploring the Mumps Virus Glycoproteins: A Review. Viruses, 14(6), 1335. https://doi.org/10.3390/v14061335