The Potyviral Protein 6K1 Reduces Plant Proteases Activity during Turnip mosaic virus Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plants and Growth Conditions
2.2. Virus Inoculation
2.3. Plasmid Constructs
2.4. Transient Protein Expression in Nicotiana Benthamiana
2.5. Chemical Inhibitors Treatments
2.6. Western Blotting
2.7. Quantification of RNA
2.8. RNA-Seq Experiment
2.9. Library Preparation, and Sequencing
2.10. RNA-Seq Data Analysis
2.11. Gene Set Enrichment Analysis (GSEA)
2.12. Protease Activity Assays
2.13. Statistical Analysis
3. Results
3.1. 6K1 Expression Inhibits Transcripts Related to Jasmonic Acid Biosynthesis and Protease Inhibitors
3.2. The Ectopically Expressed 6K1 Protein Is Degraded by Cysteine Proteases
3.3. Transcriptome Wide Analyses Revealed That Aphid and TuMV Differentially Affect Host Protein Degradation Pathways in A. thaliana
3.4. TuMV Infection Increases 6K1 Protein Stability and 6K1 Decreases Protease Activity
3.5. 6K1:GFP Expression Inhibits Plant Protease Activity in Infected Leaves and Increases TuMV Accumulation in Systemic Leaves
4. Discussion
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elena, S.F.; Fraile, A.; García-Arenal, F. Evolution and Emergence of Plant Viruses. Adv. Virus Res. 2014, 88, 161–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlub, T.E.; Holmes, E.C. Properties and Abundance of Overlapping Genes in Viruses. Virus Evol. 2020, 6, veaa009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callaway, A.; Gillock, E.T.; Sit, T.L.; Lommel, S.A. The Multifunational Capsid Proteins of Plant RNA Viruses. Annu. Rev. Phytopathol. 2001, 39, 419–460. [Google Scholar] [CrossRef] [PubMed]
- Valli, A.A.; Gallo, A.; Rodamilans, B.; López-Moya, J.J.; García, J.A. The HCPro from the Potyviridae Family: An Enviable Multitasking Helper Component That Every Virus Would like to Have. Mol. Plant Pathol. 2018, 19, 744–763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- May, J.P.; Johnson, P.Z.; Ilyas, M.; Gao, F.; Simon, E. The Multifunctional Long-Distance Movement Protein of Pea Enation Mosaic Virus 2 Protects Viral and Host Transcripts from Nonsense-Mediated Decay. MBio 2020, 11, e00204-20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, P.; Wu, Z.; Wang, A. The Multifunctional Protein CI of Potyviruses Plays Interlinked and Distinct Roles in Viral Genome Replication and Intercellular Movement. Virol. J. 2015, 12, 141. [Google Scholar] [CrossRef] [Green Version]
- Bak, A.; Cheung, A.L.; Yang, C.; Whitham, S.A.; Casteel, C.L. A Viral Protease Relocalizes in the Presence of the Vector to Promote Vector Performance. Nat. Commun. 2017, 8, 14493. [Google Scholar] [CrossRef]
- Ivanov, K.I.; Puustinen, P.; Gabrenaite, R.; Vihinen, H.; Rönnstrand, L.; Valmu, L.; Kalkkinen, N.; Mäkinen, K. Phosphorylation of the Potyvirus Capsid Protein by Protein Kinase CK2 and Its Relevance for Virus Infection. Plant Cell 2003, 15, 2124–2139. [Google Scholar] [CrossRef] [Green Version]
- Hafrén, A.; Üstün, S.; Hochmuth, A.; Svenning, S.; Johansen, T.; Hofius, D. Turnip Mosaic Virus Counteracts Selective Autophagy of the Viral Silencing Suppressor HCpro. Plant Physiol. 2018, 176, 649–662. [Google Scholar] [CrossRef] [Green Version]
- Hafrén, A.; Macia, J.-L.; Love, A.J.; Milner, J.J.; Drucker, M.; Hofius, D. Selective Autophagy Limits Cauliflower Mosaic Virus Infection by NBR1-Mediated Targeting of Viral Capsid Protein and Particles. Proc. Natl. Acad. Sci. USA 2017, 114, E2026–E2035. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.; Wang, A. The Potyvirus Silencing Suppressor Protein VPg Mediates Degradation of SGS3 via Ubiquitination and Autophagy Pathways. J. Virol. 2017, 91, e01478-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, M.; Zhang, Y.; Xie, X.; Yue, N.; Li, J.; Wang, X.; Han, C.; Yu, J.; Liu, Y.; Li, D. Barley Stripe Mosaic Virus γ b Protein Subverts Autophagy to Promote Viral Infection by Disrupting the ATG7-ATG8 Interaction. Plant Cell 2018, 30, 1582–1595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ismayil, A.; Yang, M.; Liu, Y. Role of Autophagy during Plant-Virus Interactions. Semin. Cell Dev. Biol. 2019, 101, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Zhang, C.; Li, Y.; Wu, G.; Hou, X.; Zhou, X.; Wang, A. Beclin1 Restricts RNA Virus Infection in Plants through Suppression and Degradation of the Viral Polymerase. Nat. Commun. 2018, 9, 1268. [Google Scholar] [CrossRef] [PubMed]
- Howe, G.A.; Jander, G. Plant Immunity to Insect Herbivores. Annu. Rev. Plant Biol. 2008, 59, 41–66. [Google Scholar] [CrossRef] [Green Version]
- Chapman, K.M.; Marchi-Werle, L.; Hunt, T.E.; Heng-Moss, T.M.; Louis, J. Abscisic and Jasmonic Acids Contribute to Soybean Tolerance to the Soybean Aphid (Aphis Glycines Matsumura). Sci. Rep. 2018, 8, 15148. [Google Scholar] [CrossRef] [Green Version]
- Rubil, N.; Kalachova, T.; Hauser, T.P.; Burketová, L. Specialist Aphid Feeding Causes Local Activation of Salicylic and Jasmonic Acid Signaling in Arabidopsis Veins. Mol. Plant-Microbe Interact. 2022, 35, 119–124. [Google Scholar] [CrossRef]
- Slesak, E.; Slesak, M.; Gabrys, B. Effect of Methyl Jasmonate on Hydroxamic Acid Content, Protease Activity, and Bird Cherry–Oat Aphid Rhopalosiphum Padi (L.) Probing Behavior. J. Chem. Ecol. 2001, 27, 2529–2543. [Google Scholar] [CrossRef]
- Morkunas, I.; Mai, V.C.; Gabryś, B. Phytohormonal Signaling in Plant Responses to Aphid Feeding. Acta Physiol. Plant. 2011, 33, 2057–2073. [Google Scholar] [CrossRef] [Green Version]
- Pasin, F.; Shan, H.; García, B.; Müller, M.; San León, D.; Ludman, M.; Fresno, D.H.; Fátyol, K.; Munné-Bosch, S.; Rodrigo, G.; et al. Abscisic Acid Connects Phytohormone Signaling with RNA Metabolic Pathways and Promotes an Antiviral Response That Is Evaded by a Self-Controlled RNA Virus. Plant Commun. 2020, 1, 100099. [Google Scholar] [CrossRef]
- Casteel, C.L.; de Alwis, M.; Bak, A.; Dong, H.; Whitham, S.A.; Jander, G. Disruption of Ethylene Responses by Turnip Mosaic Virus Mediates Suppression of Plant Defense against the Green Peach Aphid Vector. Plant Physiol. 2015, 169, 209–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casteel, C.L.; Yang, C.; Nanduri, A.C.; de Jong, H.N.; Whitham, S.A.; Jander, G. The NIa-Pro Protein of Turnip Mosaic Virus Improves Growth and Reproduction of the Aphid Vector, Myzus Persicae (Green Peach Aphid). Plant J. 2014, 77, 653–663. [Google Scholar] [CrossRef] [PubMed]
- Kekarainen, T.; Savilahti, H.; Valkonen, J.P.T. Functional Genomics on Potato Virus A: Virus Genome-Wide Map of Sites Essential for Virus Propagation. Genome Res. 2002, 12, 584–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merits, A.; Rajamäki, M.L.; Lindholm, P.; Runeberg-Roos, P.; Kekarainen, T.; Puustinen, P.; Mäkeläinen, K.; Valkonen, J.P.T.; Saarma, M. Proteolytic Processing of Potyviral Proteins and Polyprotein Processing Intermediates in Insect and Plant Cells. J. Gen. Virol. 2002, 83, 1211–1221. [Google Scholar] [CrossRef]
- Waltermann, A.; Maiss, E. Detection of 6K1 as a Mature Protein of 6 KDa in Plum Pox Virus-Infected Nicotiana Benthamiana. J. Gen. Virol. 2006, 87, 2381–2386. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Wang, A. Plum Pox Virus 6K1 Protein Is Required for Viral Replication and Targets the Viral Replication Complex at the Early Stage of Infection. J. Virol. 2016, 90, 5119–5131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geng, C.; Yan, Z.; Ch, D.; Liu, J.; Tian, Y.; Zhu, C. Tobacco Vein Banding Mosaic Virus 6K2 Protein Hijacks NbPsbO1 for Virus Replication. Sci. Rep. 2017, 7, 43455. [Google Scholar] [CrossRef]
- Hong, X.Y.; Chen, J.; Shi, Y.H.; Chen, J.P. The “6K1” Protein of a Strain of Soybean Mosaic Virus Localizes to the Cell Periphery. Arch. Virol. 2007, 152, 1547–1551. [Google Scholar] [CrossRef]
- Johansen, I.E.; Lund, O.S.; Hjulsager, C.K.; Laursen, J. Recessive Resistance in Pisum Sativum and Potyvirus Pathotype Resolved in a Gene-for-Cistron Correspondence between Host and Virus. J. Virol. 2001, 75, 6609–6614. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Patarroyo, C.; Garcia Cabanillas, D.; Zheng, H.; Laliberté, J.-F. The Vesicle-Forming 6K2 Protein of Turnip Mosaic Virus Interacts with the COPII Coatomer Sec24a for Viral Systemic Infection. J. Virol. 2015, 89, 6695–6710. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, F.; Wang, X.; Jenner, C.E.; Walsh, J.A.; Ponz, F. Strains of Turnip Mosaic Potyvirus as Defined by the Molecular Analysis of the Coat Protein Gene of the Virus. Virus Res. 2003, 94, 33–43. [Google Scholar] [CrossRef]
- Sánchez, F.; Martínez-Herrera, D.; Aguilar, I.; Ponz, F. Infectivity of Turnip Mosaic Potyvirus CDNA Clones and Transcripts on the Systemic Host Arabidopsis Thaliana and Local Lesion Hosts. Virus Res. 1998, 55, 207–219. [Google Scholar] [CrossRef]
- Tomimura, K.; Gibbs, A.J.; Jenner, C.E.; Walsh, J.A.; Ohshima, K. The Phylogeny of Turnip Mosaic Virus; Comparisons of 38 Genomic Sequences Reveal a Eurasian Origin and a Recent “emergence” in East Asia. Mol. Ecol. 2003, 12, 2099–2111. [Google Scholar] [CrossRef] [PubMed]
- Chu, M.; Desvoyes, B.; Turina, M.; Noad, R.; Scholthof, H.B. Genetic Dissection of Tomato Bushy Stunt Virus P19-Protein-Mediated Host-Dependent Symptom Induction and Systemic Invasion. Virology 2000, 266, 79–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Zhong, S.; Joung, J.G.; Zheng, Y.; Chen, Y.R.; Liu, B.; Shao, Y.; Xiang, J.Z.; Fei, Z.; Giovannoni, J.J. High-Throughput Illumina Strand-Specific RNA Sequencing Library Preparation. Cold Spring Harb. Protoc. 2011, 6, 940–949. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Pertea, G.; Trapnell, C.; Pimentel, H.; Kelley, R.; Salzberg, S.L. TopHat2: Accurate Alignment of Transcriptomes in the Presence of Insertions, Deletions and Gene Fusions. Genome Biol. 2013, 14, R36. [Google Scholar] [CrossRef] [Green Version]
- Anders, S.; McCarthy, D.J.; Chen, Y.; Okoniewski, M.; Smyth, G.K.; Huber, W.; Robinson, M.D. Count-Based Differential Expression Analysis of RNA Sequencing Data Using R and Bioconductor. Nat. Protoc. 2013, 8, 1765–1786. [Google Scholar] [CrossRef]
- Sokal, R.R.; Rohlf, F.J. Biometry, 3rd ed.; W.H. Freeman and Company: New York, NY, USA, 1995. [Google Scholar]
- Farmer, E.E.; Johnson, R.R.; Ryan, C.A. Regulation of Expression of Proteinase Inhibitor Genes by Methyl Jasmonate and Jasmonic Acid. Plant Physiol. 1992, 98, 995–1002. [Google Scholar] [CrossRef] [Green Version]
- Zhu-Salzman, K.; Zeng, R. Insect Response to Plant Defensive Protease Inhibitors. Annu. Rev. Entomol. 2015, 60, 233–252. [Google Scholar] [CrossRef]
- Ryan, C.A. Protease Inhibitors in Plants: Genes for Improving Defenses against Insects and Pathogens. Annu. Rev. Phytopathol. 1990, 28, 425–449. [Google Scholar] [CrossRef]
- Goulet, M.C.; Dallaire, C.; Vaillancourt, L.P.; Khalf, M.; Badri, A.M.; Preradov, A.; Duceppe, M.O.; Goulet, C.; Cloutier, C.; Michaud, D. Tailoring the Specificity of a Plant Cystatin toward Herbivorous Insect Digestive Cysteine Proteases by Single Mutations at Positively Selected Amino Acid Sites. Plant Physiol. 2008, 146, 1010–1019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habib, H.; Fazili, K.M. Plant Protease Inhibitors: A Defense Strategy in Plants. Biotechnol. Mol. Biol. Rev. 2007, 2, 68–85. [Google Scholar]
- Bak, A.; Patton, M.K.F.; Perilla-Henao, L.M.; Aegerter, B.J.; Casteel, C.L. Ethylene Signaling Mediates Potyvirus Spread by Aphid Vectors. Oecologia 2019, 190, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.B.; Masuta, C.; Smith, N.A.; Shimura, H. RNA Silencing and Plant Viral Diseases. Mol. Plant-Microbe Interact. 2012, 25, 1275–1285. [Google Scholar] [CrossRef] [Green Version]
- Calil, I.P.; Fontes, E.P.B. Plant Immunity against Viruses: Antiviral Immune Receptors in Focus. Ann. Bot. 2017, 119, 711–723. [Google Scholar] [CrossRef] [Green Version]
- Nigam, D.; LaTourrette, K.; Garcia-Ruiz, H. Mutations in Virus-Derived Small RNAs. Sci. Rep. 2020, 10, 9540. [Google Scholar] [CrossRef]
- Eskelin, K.; Hafren, A.; Rantalainen, K.I.; Makinen, K. Potyviral VPg Enhances Viral RNA Translation and Inhibits Reporter MRNA Translation In Planta. J. Virol. 2011, 85, 9210–9221. [Google Scholar] [CrossRef] [Green Version]
- Gallo, A.; Valli, A.; Calvo, M.; Garcíaa, J.A. A Functional Link between RNA Replication and Virion Assembly in the Potyvirus Plum Pox Virus. J. Virol. 2018, 92, e02179-17. [Google Scholar] [CrossRef] [Green Version]
- Ala-Poikela, M.; Rajamäki, M.L.; Valkonen, J.P.T. A Novel Interaction Network Used by Potyviruses in Virus-Host Interactions at the Protein Level. Viruses 2019, 11, 1158. [Google Scholar] [CrossRef] [Green Version]
- Ala-Poikela, M.; Goytia, E.; Haikonen, T.; Rajamaki, M.-L.; Valkonen, J.P.T. Helper Component Proteinase of the Genus Potyvirus Is an Interaction Partner of Translation Initiation Factors EIF(Iso)4E and EIF4E and Contains a 4E Binding Motif. J. Virol. 2011, 85, 6784–6794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollari, M.; De, S.; Wang, A.; Mäkinen, K. The Potyviral Silencing Suppressor HCPro Recruits and Employs Host ARGONAUTE1 in Pro-Viral Functions. PLoS Pathog. 2020, 16, e1008965. [Google Scholar] [CrossRef] [PubMed]
- De, S.; Pollari, M.; Varjosalo, M.; Mäkinen, K. Association of Host Protein VARICOSE with HCPro within a Multiprotein Complex is Crucial for RNA Silencing Suppression, Translation, Encapsidation and Systemic Spread of Potato Virus A Infection. PLoS Pathog. 2020, 16, e1008956. [Google Scholar] [CrossRef]
- Bar-Ziv, A.; Levy, Y.; Citovsky, V.; Gafni, Y. The Tomato Yellow Leaf Curl Virus (TYLCV) V2 Protein Inhibits Enzymatic Activity of the Host Papain-like Cysteine Protease CYP1. Biochem. Biophys. Res. Commun. 2015, 460, 525–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bar-Ziv, A.; Levy, Y.; Hak, H.; Mett, A.; Belausov, E.; Citovsky, V.; Gafni, Y. The Tomato Yellow Leaf Curl Virus (TYLCV) V2 Protein Interacts with the Host Papain-like Cysteine Protease CYP1. Plant Signal. Behav. 2012, 460, 525–529. [Google Scholar]
- Misas-Villamil, J.C.; van der Hoorn, R.A.L.; Doehlemann, G. Papain-like Cysteine Proteases as Hubs in Plant Immunity. New Phytol. 2016, 212, 902–907. [Google Scholar] [CrossRef] [Green Version]
- Nakahara, K.S.; Masuta, C.; Yamada, S.; Shimura, H.; Kashihara, Y.; Wada, T.S.; Meguro, A.; Goto, K.; Tadamura, K.; Sueda, K.; et al. Tobacco Calmodulin-like Protein Provides Secondary Defense by Binding to and Directing Degradation of Virus RNA Silencing Suppressors. Proc. Natl. Acad. Sci. USA 2012, 109, 10113–10118. [Google Scholar] [CrossRef] [Green Version]
- Bárány, I.; Berenguer, E.; Solís, M.T.; Pérez-Pérez, Y.; Santamaría, M.E.; Crespo, J.L.; Risueño, M.C.; Díaz, I.; Testillano, P.S. Autophagy Is Activated and Involved in Cell Death with Participation of Cathepsins during Stress-Induced Microspore Embryogenesis in Barley. J. Exp. Bot. 2018, 69, 1387–1402. [Google Scholar] [CrossRef] [Green Version]
- García, J.A.; Cervera, M.T.; Riechmann, J.L.; López-Otín, C. Inhibitory Effects of Human Cystatin C on Plum Pox Potyvirus Proteases. Plant Mol. Biol. 1993, 22, 697–701. [Google Scholar] [CrossRef]
- Gutierrez-Campos, R.; Torres-Acosta, J.A.; Saucedo-Arias, L.J.; Gomez-Lim, M.A. The Use of Cysteine Proteinase Inhibitors to Engineer Resistance against Potyviruses in Transgenic Tobacco Plants. Nat. Biotechnol. 1999, 17, 1223–1226. [Google Scholar] [CrossRef]
- Lõhmus, A.; Varjosalo, M.; Mäkinen, K. Protein Composition of 6K2-Induced Membrane Structures Formed during Potato Virus A Infection. Mol. Plant Pathol. 2016, 17, 943–958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, B.W.; Basu, S.; Bera, S.; Casteel, C.L.; Crowder, D.W. Responses to Predation Risk Cues and Alarm Pheromones Affect Plant Virus Transmission by an Aphid Vector. Oecologia 2021, 196, 1005–1015. [Google Scholar] [CrossRef] [PubMed]
- Bera, S.; Blundell, R.; Liang, D.; Crowder, D.W.; Casteel, C.L. The Oxylipin Signaling Pathway Is Required for Increased Aphid Attraction and Retention on Virus-Infected Plants. J. Chem. Ecol. 2020, 46, 771–781. [Google Scholar] [CrossRef] [PubMed]
- Abe, H.; Tomitaka, Y.; Shimoda, T.; Seo, S.; Sakurai, T.; Kugimiya, S.; Tsuda, S.; Kobayashi, M. Antagonistic Plant Defense System Regulated by Phytohormones Assists Interactions among Vector Insect, Thrips and a Tospovirus. Plant Cell Physiol. 2012, 53, 204–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewsey, M.G.; Murphy, A.M.; MacLean, D.; Dalchau, N.; Westwood, J.H.; Macaulay, K.; Bennett, M.H.; Moulin, M.; Hanke, D.E.; Powell, G.; et al. Disruption of Two Defensive Signaling Pathways by a Viral RNA Silencing Suppressor. Mol. Plant-Microbe Interact. 2010, 23, 835–845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, M.; Sasvari, Z.; Gonzalez, P.A.; Friso, G.; Rowland, E.; Liu, X.M.; van Wijk, K.J.; Nagy, P.D.; Klessig, D.F. Salicylic Acid Inhibits the Replication of Tomato Bushy Stunt Virus by Directly Targeting a Host Component in the Replication Complex. Mol. Plant-Microbe Interact. 2015, 28, 379–386. [Google Scholar] [CrossRef] [Green Version]
- Basu, S.; Clark, R.E.; Bera, S.; Casteel, C.L.; Crowder, D.W. Responses of Pea Plants to Multiple Antagonists Are Mediated by Order of Attack and Phytohormone Crosstalk. Mol. Ecol. 2021, 30, 4939–4948. [Google Scholar] [CrossRef]
- Avila, C.A.; Arévalo-Soliz, L.M.; Jia, L.; Navarre, D.A.; Chen, Z.; Howe, G.A.; Meng, Q.W.; Smith, J.E.; Goggin, F.L. Loss of Function of Fatty Acid Desaturase7 in Tomato Enhances Basal Aphid Resistance in a Salicylate-Dependent Manner. Plant Physiol. 2012, 158, 2028–2041. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Carino, E.; Bera, S.; Gao, F.; May, J.P.; Simon, A.E. Structural Analysis and Whole Genome Mapping of a New Type of Plant Virus Subviral RNA: Umbravirus-Like Associated RNAs. Viruses 2021, 13, 646. [Google Scholar] [CrossRef]
- Ilyas, M.; Du, Z.; Simon, A.E. Opium Poppy Mosaic Virus Has an Xrn-Resistant, Translated Subgenomic RNA and a BTE 3′ CITE. J. Virol. 2021, 95, e02109-20. [Google Scholar] [CrossRef]
- Gibbs, A.J.; Hajizadeh, M.; Ohshima, K.; Jones, R.A.C. The Potyviruses: An Evolutionary Synthesis Is Emerging. Viruses 2020, 12, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parizad, S.; Dizadji, A.; Koohi Habibi, M.; Winter, S.; Kalantari, S.; Movi, S.; García-Arenal, F.; Ayllón, M.A. Description and Genetic Variation of a Distinct Species of Potyvirus Infecting Saffron (Crocus Sativus L.) Plants in Major Production Regions in Iran. Ann. Appl. Biol. 2018, 173, 233–242. [Google Scholar] [CrossRef]
- Moratalla-lópez, N.; Parizad, S.; Koohi, M.; Winter, S.; Kalantari, S.; Bera, S.; Lorenzo, C.; García-rodríguez, M.V.; Dizadji, A.; Alonso, G.L. Impact of Two Different Dehydration Methods on Saffron Quality, Concerning the Prevalence of Saffron Latent Virus (SaLV) in Iran. Food Chem. 2021, 337, 127786. [Google Scholar] [CrossRef]
- Karasev, A.V.; Gray, S.M. Continuous and Emerging Challenges of Potato Virus Y in Potato. Annu. Rev. Phytopathol. 2013, 51, 571–586. [Google Scholar] [CrossRef] [PubMed]
- Parizad, S.; Dizadji, A.; Habibi, M.K.; Winter, S.; Kalantari, S.; Movi, S.; Lorenzo Tendero, C.; Alonso, G.L.; Moratalla-Lopez, N. The Effects of Geographical Origin and Virus Infection on the Saffron (Crocus Sativus L.) Quality. Food Chem. 2019, 295, 387–394. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bera, S.; Arena, G.D.; Ray, S.; Flannigan, S.; Casteel, C.L. The Potyviral Protein 6K1 Reduces Plant Proteases Activity during Turnip mosaic virus Infection. Viruses 2022, 14, 1341. https://doi.org/10.3390/v14061341
Bera S, Arena GD, Ray S, Flannigan S, Casteel CL. The Potyviral Protein 6K1 Reduces Plant Proteases Activity during Turnip mosaic virus Infection. Viruses. 2022; 14(6):1341. https://doi.org/10.3390/v14061341
Chicago/Turabian StyleBera, Sayanta, Gabriella D. Arena, Swayamjit Ray, Sydney Flannigan, and Clare L. Casteel. 2022. "The Potyviral Protein 6K1 Reduces Plant Proteases Activity during Turnip mosaic virus Infection" Viruses 14, no. 6: 1341. https://doi.org/10.3390/v14061341
APA StyleBera, S., Arena, G. D., Ray, S., Flannigan, S., & Casteel, C. L. (2022). The Potyviral Protein 6K1 Reduces Plant Proteases Activity during Turnip mosaic virus Infection. Viruses, 14(6), 1341. https://doi.org/10.3390/v14061341