Nucleic Acid Preservation Card Surveillance Is Effective for Monitoring Arbovirus Transmission on Crocodile Farms and Provides a One Health Benefit to Northern Australia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Locations of Crocodile Farms
2.2. Flavivirus Surveillance Using Nucleic Acid Preservation Cards
2.3. Processing of FTATM Cards and Detection of Viral RNA
2.4. Sentinel Chickens in Darwin
2.5. Mosquito Collections
2.6. Virus Isolation
2.7. Phylogeny
3. Results
3.1. WNVKUN and MVEV Surveillance on Crocodile Farms
3.2. Virus Isolation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Isberg, S.R.; Moran, J.L.; De Araujo, R.; Elliott, N.; Davis, S.S.; Melville, L. First evidence of Kunjin strain of West Nile virus associated with saltwater crocodile (Crocodylus porosus) skin lesions. Aust. Vet. J. 2019, 97, 390–393. [Google Scholar] [CrossRef] [PubMed]
- Habarugira, G.; Moran, J.; Colmant, A.M.; Davis, S.S.; O’Brien, C.A.; Hall-Mendelin, S.; McMahon, J.; Hewitson, G.; Nair, N.; Barcelon, J.; et al. Mosquito-Independent Transmission of West Nile virus in Farmed Saltwater Crocodiles (Crocodylus porosus). Viruses 2020, 12, 198. [Google Scholar] [CrossRef] [PubMed]
- Frost, M.J.; Zhang, J.; Edmonds, J.H.; Prow, N.A.; Gu, X.; Davis, R.; Hornitzky, C.; Arzey, K.E.; Finlaison, D.; Hick, P.; et al. Characterization of virulent West Nile virus Kunjin strain, Australia. Emerg. Infect. Dis. 2012, 18, 792–800. [Google Scholar] [CrossRef] [PubMed]
- Prow, N.; Edmonds, J.; Williams, D.; Setoh, Y.; Bielefeldt-Ohmann, H.; Suen, W.; Hobson-Peters, J.; van den Hurk, A.; Pyke, A.; Hall-Mendelin, S.; et al. Virulence and evolution of West Nile Virus, Australia, 1960–2012. Emerg. Infect. Dis. 2016, 22, 1353–1362. [Google Scholar] [CrossRef]
- Prow, N. The changing epidemiology of Kunjin virus in Australia. Int. J. Environ. Res. Public Health 2013, 10, 6255–6272. [Google Scholar] [CrossRef]
- Mackenzie, J.S.; Lindsay, M.D.; Coelen, R.J.; Broom, A.K.; Hall, R.A.; Smith, D.W. Arboviruses causing human disease in the Australasian zoogeographic region. Arch. Virol. 1994, 136, 447–467. [Google Scholar] [CrossRef]
- Russell, R. Vectors vs humans in Australia- who is on top down under? An update on vector-borne disease and research on vectors in Australia. J. Vect. Ecol. 1998, 23, 1–46. [Google Scholar]
- Russell, R.; Dwyer, D. Arboviruses associated with human disease in Australia. Microbes Infect. 2000, 2, 1693–1704. [Google Scholar] [CrossRef]
- Hall, R.A.; Broom, A.K.; Smith, D.W.; Mackenzie, J.S. The ecology and epidemiology of Kunjin virus. Curr. Top. Microbiol. Immunol. 2002, 267, 253–269. [Google Scholar]
- Standfast, H.; Barrow, G. Studies of the epidemiology of arthropod-borne virus infections at Mitchel River Mission, Cape York Peninsula, North Queensland. I. Mosquito collections, 1963–1966. Trans. R. Soc. Trop Med. Hyg. 1968, 62, 418–429. [Google Scholar] [CrossRef]
- Doherty, R.; Carley, J.; Mackerras, M.; Marks, E. Studies of arthropod-borne virus infections in Queensland III. Isolation and characterisation of virus strains from wild-caught mosquitoes in North Queensland. Austral. J. Exp. Biol. 1963, 41, 17–40. [Google Scholar] [CrossRef] [PubMed]
- Russell, R. Arboviruses and their vectors in Australia: An update on the ecology and epidemiology of some mosquito-borne arboviruses. Rev. Med. Vet. Entomol. 1995, 83, 141–158. [Google Scholar]
- Smith, D.; Speers, D.; Mackenzie, J. The viruses of Australia and the risk to tourists. Travel Med. Infect. Dis. 2011, 9, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Hall, R.; Aaskov, J. Murray Valley encephalitis virus. In Feigin and Cherry’s Textbook of Pediatric Infectious Diseases, 8th ed.; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Boughton, C.; Hawkes, R.; Naim, H. Illness caused by Kokobera-like virus in aouth-eastern Australia. Med. J. Aust. 1986, 145, 90–92. [Google Scholar] [CrossRef] [PubMed]
- Kurucz, N.; (Medical Entomology, Centre for Disease Control, Public Health Unit, NT Health, Darwin, NT 0811, Australia). Mosquito Investigation and Management Recommendations. Lagoon Crocodile Farm, March 2019. Personal Communication, 2019. [Google Scholar]
- Kurucz, N.; (Medical Entomology, Centre for Disease Control, Public Health Unit, NT Health, Darwin, NT 0811, Australia). Mosquito Investigation and Management Recommendations. Janamba Crocodile Farm, March and April. Personal Communication, 2019. [Google Scholar]
- Kurucz, N.; (Medical Entomology, Centre for Disease Control, Public Health Unit, NT Health, Darwin, NT 0811, Australia). Mosquito Investigation. Darwin Crocodile Farm, April and May. Personal Communication, 2019. [Google Scholar]
- Johansen, C.; Power, S.; Broom, A. Determination of mosquito (Diptera: Culicidae) bloodmeal sources in Western Australia: Implications for arbovirus transmission. J. Med. Ecol. 2009, 46, 1167–1175. [Google Scholar] [CrossRef]
- Kay, B.; Fanning, I.; Carley, J. Vector competence of Culex pipiens quinquefasciatus for Murray Valley encephalitis, Kunjin and Ross River viruses from Australia. Am. J. Trop. Med. Hyg. 1982, 31, 844–848. [Google Scholar] [CrossRef]
- Webb, C.; Doggett, S.; Russell, R. A Guide to Mosquitoes of Australia; CSIRO: Clayton South, VC, Canada, 2016. [Google Scholar]
- Andrealis, T. The contribution of Culex pipiens complex mosquitoes to transmission and persistance of West Nile virus in North America. J. Am. Mosqu. Control Assoc. 2012, 28, 137–151. [Google Scholar] [CrossRef]
- Unlu, I.; Kramer, W.; Roy, A.; Foil, L. Detection of West nile virus RNA in mosquitoes and identification of mosquito blood meals collected at Alligator Farms in Louisiana. J. Med. Entomol. 2010, 47, 625–633. [Google Scholar] [CrossRef]
- Johansen, C.; Broom, A.; Lindsay, M.; Avery, V.; Power, S.; Dixon, G.; Sturrock, K.; Maley, F.; Mcfall, S.; Geerlings, K.; et al. Arbovirus and vector surveillance in Western Australia, 2004/05 to 2007/08. Arbovirus Res. Aust. 2009, 10, 76–81. [Google Scholar]
- Johnson, P.; Hall-Mendelin, S.; Whelan, P.; Frances, S.; Jansen, C.; Mackenzie, D.; Northill, J.; van den Hurk, A. Vector competence of Australian Culex gelidus Theobald (Diptera: Culicidae) for endemic and exotic arboviruses. Aust. J. Entomol. 2009, 48, 234–240. [Google Scholar] [CrossRef]
- Sudeep, A.; Ghodke, Y.; Gokhale, M.; George, R.; Dhaigude, S.; Bondre, V. Replication potential and different modes of transmission of West nile virus in an Indian strain of Culex gelidus Theobald (Diptera: Culicidae) mosquitoes. J. Vector Borne Dis. 2014, 51, 333–338. [Google Scholar] [PubMed]
- Hall-Mendelin, S.; Ritchie, S.; Johansen, C.; Zborowski, P.; Cortis, G.; Danbridge, S.; Hall, R.; van den Hurk, A. Exploiting mosquito sugar feeding to detect mosquito-borne pathogens. Proc. Natl. Acad. Sci. USA 2010, 107, 11255–11259. [Google Scholar] [CrossRef] [PubMed]
- Floridis, J.; McGuinness, S.; Kurucz, N.; Burrow, J.; Baird, R.; Francis, J. Murray Valley encephalitis virus: An ongoing cause of enceohalitis in Australia’s north. Trop. Med. Infect. Dis. 2018, 3, 49. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.; Kerlin, T.; Hall-Mendelin, S.; van den Hurk, A.; Cortis, G.; Doggett, S.; Toi, C.; Fall, K.; McMahon, J.; Townsend, M.; et al. Development and field evaluation of the sentiel mosquito arbovirus capture kit (SMACK). Parasites Vectors 2015, 8, 509. [Google Scholar] [CrossRef] [PubMed]
- Kurucz, N.; Wenham, J.; Hunt, N.; Melville, L. Murray Valley encephalitis virus detection using honeybait cards in the Northern Territory in 2013. Mosq. Bites 2014, 1, 14–16. [Google Scholar]
- Ritchie, S.; Cortis, G.; Paton, C.; Townsend, M.; Shroyer, D.; Zborowski, P.; Hall-Mendelin, S.; van den Hurk, A. A simple non-powered passive trap for the collection of mosquitoes for arbovirus surveillance. J. Med. Entomol. 2013, 50, 185–194. [Google Scholar] [CrossRef]
- van den Hurk, A.; Hall-Mendelin, S.; Townsend, M.; Kurucz, N.; Edwards, J.; Ehlers, G.; Rodwell, C.; Moore, F.; McMahon, J.; Northill, J.; et al. Applications of a sugar-based surveillance system to track arboviruses in wild mosquito populations. Vector-Borne Zoonotic Dis. 2014, 14, 66–73. [Google Scholar] [CrossRef]
- Government, N.T. Medical Entomology Annual Report 2013/14; Department of Health: Washington, DC, USA, 2015. [Google Scholar]
- Pyke, A.; Smith, I.; van den Hurk, A.; Northill, J.; Chuan, T.; Westacott, A.; Smith, G. Detection of Australasian Flavivirus encephalitic viruses using rapid fluorogenic TaqMan RT-PCR assays. J. Virol. Methods 2004, 117, 161–167. [Google Scholar] [CrossRef]
- Smith, G.; Smith, I.; Harrower, B.; Warrilow, D.; Bletchly, C. A simple method for preparing synthetic controls for conventional and real-time PCR for the identification of endemic and exotic disease agents. J. Virol. Methods 2006, 135, 229–234. [Google Scholar] [CrossRef]
- Knope, K.; Doggett, S.L.; Jansen, C.C.; Johansen, C.A.; Kurucz, N.; Feldman, R.; Lynch, S.E.; Hobby, M.P.; Sly, A.; Jardine, A.; et al. Arboviral Diseases and Malaria in Australia, 2014–2015: Annual Report of the National Arbovirus and Malaria Advisory Committee. Commun. Dis. Intell. 2019, 43, 1–69. [Google Scholar] [CrossRef]
- Resources, Northern Territory Department of Primary Industry. Berrimah Virology Laboratory Virology Test. Methods Manual: Virus Neutralisation Tests, Issue 10; 2017; pp. 43–50. [Google Scholar]
- Lee, D.; Hicks, M.; Griffiths, M.; Debenham, M. The Culicidae of the Australasian Region; University of Queensland and University of Sydney in collaboration with Commonwealth Department of Community Services and Health: Canberra, Australia, 1989; Volume 11. [Google Scholar]
- Lee, D.; Hicks, M.; Griffiths, M.; Debenham, M.; Bryan, J.; Marks, E. The Culicidae of the Australasian Region; Commonwealth Department of Health and School of Public Health and Tropical Medicine: Canberra, Australia, 1988; Volume 9. [Google Scholar]
- Lee, D.; Hicks, M.; Griffiths, M.; Debenham, M.; Bryan, J.; Russell, R.; Geary, M.; Marks, E. The Culicidae of the Australasian Region; Commonwealth Department of Health and School of Public Health and Tropical Medicine: Canberra, Australia, 1987; Volume 4. [Google Scholar]
- Lee, D.; Hicks, M.; Griffiths, M.; Debenham, M.; Bryan, J.; Russell, R.; Geary, M.; Marks, E. The Culicidae of the Australasian Region; Commonwealth Department of Health and School of Public Health and Tropical Medicine: Canberra, Australia, 1988; Volume 8. [Google Scholar]
- Lee, D.; Hicks, M.; Griffiths, M.; Russell, R.; Marks, E. The Culicidae of the Australasian Region; Commonwealth Department of Health and Commonwealth Institute of Health, Incorporating School of Public Health and Tropical Medicine: Canberra, Australia, 1982; Volume 2. [Google Scholar]
- Lee, D.; Hicks, M.; Griffiths, M.; Russell, R.; Marks, E. The Culicidae of the Australasian Region; Commonwealth Department of Health and Commonwealth Institute of Health, Incorporating School of Public Health and Tropical Medicine: Canberra, Australia, 1984; Volume 3. [Google Scholar]
- Broom, A.K.; Hall, R.A.; Johansen, C.A.; Oliveira, N.; Howard, M.A.; Lindsay, M.D.; Kay, B.H.; Mackenzie, J.S. Identification of Australian arboviruses in inoculated cell cultures using monoclonal antibodies in ELISA. Pathology 1998, 30, 286–288. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Misawa, K.; Kuma, K.; Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2012, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Kurucz, N.; Jacups, S.; Carter, J. Determining Culex annulirostris larval densities and control efforts across a coastal wetland, Northern Territory, Australia. J. Vect. Ecol. 2016, 41, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Kuno, G.; Chang, G.J. Biological transmission of arboviruses: Reexamination of and new insights into components, mechanisms, and unique traits as well as their evolutionary trends. Clin. Microbiol. Rev. 2005, 18, 608–637. [Google Scholar] [CrossRef]
- Wipf, N.; Guidi, V.; Tonolla, M.; Ruinelli, M.; Müller, P.; Engler, O. Evaluation of honey-baited FTA cards in combination with different mosquito traps in an area of low arbovirus prevalence. Parasites Vectors 2019, 12, 554. [Google Scholar] [CrossRef]
- Birnberg, L.; Temmam, S.; Aranda, C.; Correa-Fiz, F.; Talavera, S.; Bigot, T.; Eloit, M.; Busquets, N. Viromics on Honey-Baited FTA cards as a New Tool for the Detection of circulating Viruses in Mosquitoes. Viruses 2020, 12, 274. [Google Scholar] [CrossRef]
- Kurucz, N.; Minney-Smith, C.; Johansen, C. Arbovirus surveillance using FTA cards in modified CO2-baited encephalitis virus traps in the Northern Territory, Australia. J. Vec. Ecol. 2019, 44, 187–194. [Google Scholar] [CrossRef]
- Fynmore, N.; Luhken, R.; Maisch, H.; Risch, T.; Merz, S.; Kliemke, K.; Ziegler, U.; Schmidt-Chanasit, J.; Becker, N. Rapid assessment of West Nile virus circulation in a German zoo based on honey-baited FTA cards in combination with box gravid traps. Parasites Vectors 2021, 14, 449. [Google Scholar] [CrossRef]
Croc Farm | Collection Period | Trap ID | Virus Detected (Positive Cards/Cards Set) | Chicken Seroconversions Date; Chicken Farm; Virus |
---|---|---|---|---|
D1 | March–December 2018 | All Negative | April 2018; LF; MVEV | |
January–February 2019 | 1 | WNVKUN (1/2) | ||
February 2019 | 1 | WNVKUN (1/2) | ||
February–March 2019 | 1 | WNVKUN (2/2) | ||
2 | WNVKUN (2/2) | |||
May 2019 | 1 | WNVKUN (1/2) | ||
April 2020 | 1 | WNVKUN (1/2) | January 2020; LF; WNVKUN | |
2 | WNVKUN (2/2) | |||
D2 | March 2018 | 2 | WNVKUN (1/2) | |
March–April 2018 | 1 | WNVKUN (1/2) | May 2018; HSF; MVEV | |
June–July 2018 | 2 | MVEV (1/2) | ||
February–March 2019 | 1 | WNVKUN (2/2) | ||
2 | WNVKUN (2/2) | March 2019; HSF; WNVKUN | ||
July 2019 | 1 | WNVKUN (1/2), MVEV (1/2) | ||
September–October 2019 | 1 | WNVKUN (2/2), MVEV (1/2) | ||
April 2020 | 1 | WNVKUN (2/2), MVEV (1/2) | ||
2 | WNVKUN (1/2) | |||
April–May 2020 | 1 | WNVKUN (1/2) | ||
2 | WNVKUN (1/2) | |||
D3 | February –March 2018 | 1 | WNVKUN (1/2) | March 2018; BHF; WNVKUN |
March–April 2018 | 2 | MVEV (2/2) | March 2018; BHF; MVEV | |
April–May 2018 | 2 | MVEV (2/2) | May 2018; BHF; MVEV | |
October–November 2018 | 1 | MVEV (1/2) | ||
February–March 2019 | 1 | WNVKUN (2/2) | March 2019; BHF; WNVKUN | |
2 | WNVKUN (2/2) | |||
January 2020 A | 2 | WNVKUN (1/2) | ||
January 2020 B | 2 | WNVKUN (2/2) | ||
April 2020 | 1 | WNVKUN (1/2) | ||
May 2020 | 2 | MVEV (1/2) | ||
June–July 2020 | 2 | WNVKUN (1/2) |
2018 | 2019 | 2020 | |||||||
---|---|---|---|---|---|---|---|---|---|
Farm Location | # of Traps | WNVKUN Pos | MVEV Pos | # of Traps | WNVKUN Pos | MVEV Pos | # of Traps | WNVKUN Pos | MVEV Pos |
D1 | 26 | 0 | 0 | 26 | 5 | 0 | 26 | 2 | 0 |
D2 | 33 | 2 | 1 | 35 | 4 | 2 | 24 | 4 | 1 |
D3 | 34 | 1 | 3 | 26 | 2 | 0 | 26 | 4 | 1 |
93 | 3 | 4 | 87 | 11 | 2 | 76 | 10 | 2 | |
C1 | 16 | 0 | 0 | 16 | 0 | 0 | 12 | 0 | 0 |
Mosquito Species | Number | Sub-Totals | |
---|---|---|---|
Known/potential WNVKUN vectors | Culex annulirostris | 2620 | |
Cx. pullus | 79 | ||
Cx. quinquefasciatus | 42 | ||
Cx. gelidus | 35 | 2776 | |
Other species | Mansonia uniformis | 1707 | |
Cx. species | 620 | ||
Anopheles bancroftii | 597 | ||
Coquillettidia xanthogaster | 413 | ||
Cx. squamosus | 67 | ||
Cx. bitaeniorhynchus | 9 | ||
Cx. hilli | 6 | ||
Cx. vishnui group | 3 | ||
Aedes kochi | 2 | ||
Ae. vigilax | 1 | ||
An. powelli | 1 | ||
Cx. vishnui | 1 | ||
Uranotaenia albescens | 1 | ||
Ur. lateralis | 1 | ||
Ur. nivipes | 1 | 3430 | |
Total | 6206 |
Location | Date Traps Set | No. Cx. annulirostris Processed Mosquitoes/Pools | Virus Isolation Positive Pool ID; Virus |
---|---|---|---|
D1 | 5 March 2019 | 698/16 | None |
20 March 2019 | 93/5 | None | |
D3 | 28 March 2019 | 951/21 | A2019-0110; KOKV |
12 April 2019 | 878/19 | None | |
Total | 2620/61 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurucz, N.; McMahon, J.L.; Warchot, A.; Hewitson, G.; Barcelon, J.; Moore, F.; Moran, J.; Harrison, J.J.; Colmant, A.M.G.; Staunton, K.M.; et al. Nucleic Acid Preservation Card Surveillance Is Effective for Monitoring Arbovirus Transmission on Crocodile Farms and Provides a One Health Benefit to Northern Australia. Viruses 2022, 14, 1342. https://doi.org/10.3390/v14061342
Kurucz N, McMahon JL, Warchot A, Hewitson G, Barcelon J, Moore F, Moran J, Harrison JJ, Colmant AMG, Staunton KM, et al. Nucleic Acid Preservation Card Surveillance Is Effective for Monitoring Arbovirus Transmission on Crocodile Farms and Provides a One Health Benefit to Northern Australia. Viruses. 2022; 14(6):1342. https://doi.org/10.3390/v14061342
Chicago/Turabian StyleKurucz, Nina, Jamie Lee McMahon, Allan Warchot, Glen Hewitson, Jean Barcelon, Frederick Moore, Jasmin Moran, Jessica J. Harrison, Agathe M. G. Colmant, Kyran M. Staunton, and et al. 2022. "Nucleic Acid Preservation Card Surveillance Is Effective for Monitoring Arbovirus Transmission on Crocodile Farms and Provides a One Health Benefit to Northern Australia" Viruses 14, no. 6: 1342. https://doi.org/10.3390/v14061342
APA StyleKurucz, N., McMahon, J. L., Warchot, A., Hewitson, G., Barcelon, J., Moore, F., Moran, J., Harrison, J. J., Colmant, A. M. G., Staunton, K. M., Ritchie, S. A., Townsend, M., Steiger, D. M., Hall, R. A., Isberg, S. R., & Hall-Mendelin, S. (2022). Nucleic Acid Preservation Card Surveillance Is Effective for Monitoring Arbovirus Transmission on Crocodile Farms and Provides a One Health Benefit to Northern Australia. Viruses, 14(6), 1342. https://doi.org/10.3390/v14061342