Association of Increased Programmed Death Ligand 1 Expression and Regulatory T Cells Infiltration with Higher Hepatocellular Carcinoma Recurrence in Patients with Hepatitis B Virus Pre-S2 Mutant after Curative Surgical Resection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Patient Specimens
2.2. Detection of Deletion Mutations Spanning the Pre-S2 Gene Segment in Plasma
2.3. Detection of Intratumoral PD-L1 and Tumor-Infiltrating Tregs in Liver Tissues
2.4. Statistical Analysis
3. Results
3.1. Association of HBV Pre-S2 Mutant-Positive HCC Patients with Higher Levels of PD-L1 Expression and Tregs Infiltration in Tumor Tissues
3.2. Association of Higher Levels of PD-L1 Expression and Tregs Infiltration in Tumor Tissues of HBV Pre-S2 Mutant-Positive HCC Patients with a Higher Risk of HCC Recurrence and Poorer RFS after Curative Surgical Resection
3.3. Superior Performance of HBV Pre-S2 Mutant in Combination with Higher Levels of PD-L1 Expression and Tregs Infiltration in Tumor Tissues in Identifying Patients at Higher Risk of HCC Recurrence after Curative Surgical Resection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Forner, A.; Llovet, J.M.; Bruix, J. Hepatocellular carcinoma. Lancet 2012, 379, 1245–1255. [Google Scholar] [CrossRef]
- Venook, A.P.; Papandreou, C.; Furuse, J.; de Guevara, L.L. The incidence and epidemiology of hepatocellular carcinoma: A global and regional perspective. Oncologist 2010, 15 (Suppl. 4), 5–13. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.-C.; Lin, W.-Y.; Liu, C.-S.; Lin, C.-C.; Lai, H.-C.; Lai, S.-W. Association of different types of liver disease with demographic and clinical factors. BioMedicine 2016, 6, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Mortality, G.B.D.; Causes of Death, C. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015, 385, 117–171. [Google Scholar]
- Llovet, J.M.; Bruix, J. Novel advancements in the management of hepatocellular carcinoma in 2008. J. Hepatol. 2008, 48 (Suppl. 1), S20–S37. [Google Scholar] [CrossRef] [PubMed]
- Wall, W.J.; Marotta, P.J. Surgery and transplantation for hepatocellular cancer. Liver Transpl. 2000, 6 (Suppl. 2), S16–S22. [Google Scholar] [CrossRef] [PubMed]
- Alsowmely, A.M.; Hodgson, H.J. Non-surgical treatment of hepatocellular carcinoma. Aliment Pharmacol. Ther. 2002, 16, 1–15. [Google Scholar] [CrossRef]
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.-L.; Forner, A.; et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marín-Hargreaves, G.; Azoulay, D.; Bismuth, H. Hepatocellular carcinoma: Surgical indications and results. Crit. Rev. Oncol. Hematol. 2003, 47, 13–27. [Google Scholar] [CrossRef]
- Tung-Ping Poon, R.; Fan, S.T.; Wong, J. Risk factors, prevention, and management of postoperative recurrence after resection of hepatocellular carcinoma. Ann. Surg. 2000, 232, 10–24. [Google Scholar] [CrossRef] [PubMed]
- Poon, R.T.; Fan, S.T.; Lo, C.M.; Liu, C.L.; Wong, J. Intrahepatic recurrence after curative resection of hepatocellular carcinoma: Long-term results of treatment and prognostic factors. Ann. Surg. 1999, 229, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Beasley, R.P.; Hwang, L.Y. Hepatocellular carcinoma and hepatitis B virus. Semin. Liver Dis. 1984, 4, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Bosetti, C.; Turati, F.; La Vecchia, C. Hepatocellular carcinoma epidemiology. Best Pract. Res. Clin. Gastroenterol. 2014, 28, 753–770. [Google Scholar] [CrossRef]
- Seeger, C.; Mason, W.S. Hepatitis B virus biology. Microbiol. Mol. Biol. Rev. 2000, 64, 51–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsukuda, S.; Watashi, K. Hepatitis B virus biology and life cycle. Antivir. Res. 2020, 182, 104925. [Google Scholar] [CrossRef]
- Sung, W.-K.; Zheng, H.; Li, S.; Chen, R.; Liu, X.; Li, Y.; Lee, N.P.; Lee, W.H.; Ariyaratne, P.N.; Tennakoon, C.; et al. Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat. Genet. 2012, 44, 765–769. [Google Scholar] [CrossRef] [PubMed]
- Feitelson, M.A.; Lee, J. Hepatitis B virus integration, fragile sites, and hepatocarcinogenesis. Cancer Lett. 2007, 252, 157–170. [Google Scholar] [CrossRef] [PubMed]
- Bonilla Guerrero, R.; Roberts, L.R. The role of hepatitis B virus integrations in the pathogenesis of human hepatocellular carcinoma. J. Hepatol. 2005, 42, 760–777. [Google Scholar] [CrossRef]
- Wang, H.-C.; Wu, H.C.; Chen, C.-F.; Fausto, N.; Lei, H.-Y.; Su, I.-J. Different Types of Ground Glass Hepatocytes in Chronic Hepatitis B Virus Infection Contain Specific Pre-S Mutants that May Induce Endoplasmic Reticulum Stress. Am. J. Pathol. 2003, 163, 2441–2449. [Google Scholar] [CrossRef] [Green Version]
- Su, I.-J.; Wang, H.-C.; Wu, H.C.; Huang, W.-Y. Ground glass hepatocytes contain pre-S mutants and represent preneoplastic lesions in chronic hepatitis B virus infection. J. Gastroenterol. Hepatol. 2008, 23 Pt 1, 1169–1174. [Google Scholar] [CrossRef] [PubMed]
- Teng, C.-F.; Li, T.-C.; Huang, H.-Y.; Chan, W.-L.; Wu, H.-C.; Shyu, W.-C.; Su, I.-J.; Jeng, L.-B. Hepatitis B virus pre-S2 deletion (nucleotide 1 to 54) in plasma predicts recurrence of hepatocellular carcinoma after curative surgical resection. PLoS ONE 2020, 15, e0242748. [Google Scholar] [CrossRef] [PubMed]
- Le Seyec, J.; Chouteau, P.; Cannie, I.; Guguen-Guillouzo, C.; Gripon, P. Role of the pre-S2 domain of the large envelope protein in hepatitis B virus assembly and infectivity. J. Virol. 1998, 72, 5573–5578. [Google Scholar] [CrossRef] [Green Version]
- Ni, Y.; Sonnabend, J.; Seitz, S.; Urban, S. The Pre-S2 Domain of the Hepatitis B Virus Is Dispensable for Infectivity but Serves a Spacer Function for L-Protein-Connected Virus Assembly. J. Virol. 2010, 84, 3879–3888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thedja, M.D.; Muljono, D.H.; Ie, S.I.; Sidarta, E.; Turyadi; Verhoef, J.; Marzuki, S. Genogeography and Immune Epitope Characteristics of Hepatitis B Virus Genotype C Reveals Two Distinct Types: Asian and Papua-Pacific. PLoS ONE 2015, 10, e0132533. [Google Scholar]
- Hatazawa, Y.; Yano, Y.; Okada, R.; Tanahashi, T.; Hayashi, H.; Hirano, H.; Minami, A.; Kawano, Y.; Tanaka, M.; Fukumoto, T.; et al. Quasispecies variant of pre-S/S gene in HBV-related hepatocellular carcinoma with HBs antigen positive and occult infection. Infect. Agents Cancer 2018, 13, 7. [Google Scholar] [CrossRef] [Green Version]
- Teng, C.-F.; Wu, H.C.; Shyu, W.-C.; Jeng, L.-B.; Su, I.-J. Pre-S2 Mutant-Induced Mammalian Target of Rapamycin Signal Pathways as Potential Therapeutic Targets for Hepatitis B Virus-Associated Hepatocellular Carcinoma. Cell Transplant. 2017, 26, 429–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teng, Y.-C.A.; Neo, J.C.; Wu, J.-C.; Chen, Y.-F.; Kao, C.-H.; Tsai, T.-F. Expression of a hepatitis B virus pre-S2 deletion mutant in the liver results in hepatomegaly and hepatocellular carcinoma in mice. J. Pathol. 2017, 241, 463–474. [Google Scholar] [CrossRef]
- Lin, Y.-T.; Jeng, L.-B.; Chan, W.-L.; Su, I.-J.; Teng, C.-F. Hepatitis B Virus Pre-S Gene Deletions and Pre-S Deleted Proteins: Clinical and Molecular Implications in Hepatocellular Carcinoma. Viruses 2021, 13, 862. [Google Scholar] [CrossRef] [PubMed]
- Hung, J.H.; Su, I.J.; Lei, H.Y.; Wang, H.C.; Lin, W.C.; Chang, W.T.; Huang, W.; Chang, W.; Chang, Y.; Chen, C. Endoplasmic reticulum stress stimulates the expression of cyclooxygenase-2 through activation of NF-kappaB and pp38 mitogen-activated protein kinase. J. Biol. Chem. 2004, 279, 46384–46392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.-C.; Teng, C.-F.; Wu, H.-C.; Tsai, H.-W.; Chuang, H.-C.; Tsai, T.-F.; Hsu, Y.-H.; Huang, W.; Wu, L.-W.; Su, I.-J. Enhanced expression of vascular endothelial growth factor-A in ground glass hepatocytes and its implication in hepatitis B virus hepatocarcinogenesis. Hepatology 2009, 49, 1962–1971. [Google Scholar] [CrossRef] [PubMed]
- Teng, C.-F.; Hsieh, W.-C.; Wu, H.C.; Lin, Y.-J.; Tsai, H.-W.; Huang, W.; Su, I.-J. Hepatitis B Virus Pre-S2 Mutant Induces Aerobic Glycolysis through Mammalian Target of Rapamycin Signal Cascade. PLoS ONE 2015, 10, e0122373. [Google Scholar] [CrossRef] [Green Version]
- Teng, C.-F.; Wu, H.-C.; Hsieh, W.-C.; Tsai, H.-W.; Su, I.-J. Activation of ATP Citrate Lyase by mTOR Signal Induces Disturbed Lipid Metabolism in Hepatitis B Virus Pre-S2 Mutant Tumorigenesis. J. Virol. 2015, 89, 605–614. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, Y.-H.; Su, I.-J.; Wang, H.-C.; Tsai, J.-H.; Huang, Y.-J.; Chang, W.-W.; Lai, M.-D.; Lei, H.-Y.; Huang, W. Hepatitis B Virus Pre-S2 Mutant Surface Antigen Induces Degradation of Cyclin-Dependent Kinase Inhibitor p27Kip1 through c-Jun Activation Domain-Binding Protein 1. Mol. Cancer Res. 2007, 5, 1063–1072. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.-C.; Chang, W.-T.; Wu, H.-C.; Huang, W.; Lei, H.-Y.; Lai, M.-D.; Fausto, N.; Su, I.-J. Hepatitis B virus pre-S2 mutant upregulates cyclin A expression and induces nodular proliferation of hepatocytes. Hepatology 2005, 41, 761–770. [Google Scholar] [CrossRef]
- Hung, J.-H.; Teng, Y.-N.; Wang, L.H.-C.; Su, I.-J.; Wang, C.C.C.; Huang, W.; Lee, K.-H.; Lu, K.-Y.; Wang, L.-H. Induction of Bcl-2 Expression by Hepatitis B Virus Pre-S2 Mutant Large Surface Protein Resistance to 5-Fluorouracil Treatment in Huh-7 Cells. PLoS ONE 2011, 6, e28977. [Google Scholar] [CrossRef]
- Wang, L.H.-C.; Huang, W.; Lai, M.-D.; Su, I.-J. Aberrant cyclin A expression and centrosome overduplication induced by hepatitis B virus Pre-S2 mutants and its implication in hepatocarcinogenesis. Carcinogenesis 2011, 33, 466–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yen, T.T.-C.; Yang, A.; Chiu, W.-T.; Li, T.-N.; Wang, L.-H.; Wu, Y.-H.; Wang, H.-C.; Chen, L.; Wang, W.-C.; Huang, W.; et al. Hepatitis B virus PreS2-mutant large surface antigen activates store-operated calcium entry and promotes chromosome instability. Oncotarget 2016, 7, 23346–23360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsieh, Y.-H.; Chang, Y.-Y.; Su, I.-J.; Yen, C.-J.; Liu, Y.-R.; Liu, R.-J.; Hsieh, W.-C.; Tsai, H.-W.; Wang, L.H.-C.; Huang, W. Hepatitis B virus pre-S2 mutant large surface protein inhibits DNA double-strand break repair and leads to genome instability in hepatocarcinogenesis. J. Pathol. 2015, 236, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, Y.-H.; Su, I.-J.; Yen, C.-J.; Tsai, T.-F.; Tsai, H.-W.; Tsai, H.-N.; Huang, Y.-J.; Chen, Y.-Y.; Ai, Y.-L.; Kao, L.-Y.; et al. Histone deacetylase inhibitor suberoylanilide hydroxamic acid suppresses the pro-oncogenic effects induced by hepatitis B virus pre-S 2 mutant oncoprotein and represents a potential chemopreventive agent in high-risk chronic HBV patients. Carcinogenesis 2012, 34, 475–485. [Google Scholar] [CrossRef]
- TTeng, C.-F.; Yu, C.-H.; Chang, H.-Y.; Hsieh, W.-C.; Wu, T.-H.; Lin, J.-H.; Wu, H.C.; Jeng, L.-B.; Su, I.-J. Chemopreventive Effect of Phytosomal Curcumin on Hepatitis B Virus-Related Hepatocellular Carcinoma in A Transgenic Mouse Model. Sci. Rep. 2019, 9, 10338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teng, C.-F.; Wu, H.-C.; Su, I.-J.; Jeng, L.-B. Hepatitis B Virus Pre-S Mutants as Biomarkers and Targets for the Development and Recurrence of Hepatocellular Carcinoma. Viruses 2020, 12, 945. [Google Scholar] [CrossRef]
- Chen, C.H.; Hung, C.H.; Lee, C.M.; Hu, T.H.; Wang, J.H.; Wang, J.C.; Lu, S.; Changchien, C. Pre-S deletion and complex mutations of hepatitis B virus related to advanced liver disease in HBeAg-negative patients. Gastroenterology 2007, 133, 1466–1474. [Google Scholar] [CrossRef] [PubMed]
- Sinn, D.H.; Choi, M.S.; Gwak, G.-Y.; Paik, Y.-H.; Lee, J.H.; Koh, K.C.; Paik, S.W.; Yoo, B.C. Pre-S Mutation Is a Significant Risk Factor for Hepatocellular Carcinoma Development: A Long-Term Retrospective Cohort Study. Am. J. Dig. Dis. 2012, 58, 751–758. [Google Scholar] [CrossRef] [PubMed]
- Shen, F.-C.; Su, I.-J.; Wu, H.-C.; Hsieh, Y.-H.; Yao, W.-J.; Young, K.-C.; Chang, T.-C.; Hsieh, H.-C.; Tsai, H.-N.; Huang, W. A pre-S gene chip to detect pre-S deletions in hepatitis B virus large surface antigen as a predictive marker for hepatoma risk in chronic hepatitis B virus carriers. J. Biomed. Sci. 2009, 16, 84. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Lu, C.; Chen, W.; Yao, W.; Wang, H.; Chang, T.; Lei, H.; Shiau, A.; Su, I. Prevalence and significance of hepatitis B virus (HBV) pre-S mutants in serum and liver at different replicative stages of chronic HBV infection. Hepatology 2001, 33, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H.-W.; Lin, Y.-J.; Lin, P.-W.; Wu, H.-C.; Hsu, K.-H.; Yen, C.-J.; Chan, S.-H.; Huang, W.; Su, I.-J. A clustered ground-glass hepatocyte pattern represents a new prognostic marker for the recurrence of hepatocellular carcinoma after surgery. Cancer 2011, 117, 2951–2960. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H.-W.; Lin, Y.-J.; Wu, H.C.; Chang, T.-T.; Wu, I.-C.; Cheng, P.-N.; Yen, C.-J.; Chan, S.-H.; Huang, W.; Su, I.-J. Resistance of ground glass hepatocytes to oral antivirals in chronic hepatitis B patients and implication for the development of hepatocellular carcinoma. Oncotarget 2016, 7, 27724–27734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yen, C.J.; Ai, Y.L.; Tsai, H.W.; Chan, S.H.; Yen, C.S.; Cheng, K.H.; Lee, Y.; Kao, C.; Wang, Y.; Chen, Y.; et al. Hepatitis B virus surface gene pre-S2 mutant as a high-risk serum marker for hepatoma recurrence after curative hepatic resection. Hepatology 2018, 68, 815–826. [Google Scholar] [CrossRef] [Green Version]
- Teng, C.-F.; Li, T.-C.; Huang, H.-Y.; Lin, J.-H.; Chen, W.-S.; Shyu, W.-C.; Wu, H.-C.; Peng, C.-Y.; Su, I.-J.; Jeng, L.-B. Next-Generation Sequencing-Based Quantitative Detection of Hepatitis B Virus Pre-S Mutants in Plasma Predicts Hepatocellular Carcinoma Recurrence. Viruses 2020, 12, 796. [Google Scholar] [CrossRef]
- Kuol, N.; Stojanovska, L.; Nurgali, K.; Apostolopoulos, V. The mechanisms tumor cells utilize to evade the host’s immune system. Maturitas 2017, 105, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Ning, Q.; Yang, L.; Mo, Z.; Tang, S. Mechanisms of immune escape in the cancer immune cycle. Int. Immunopharmacol. 2020, 86, 106700. [Google Scholar] [CrossRef] [PubMed]
- Iwai, Y.; Ishida, M.; Tanaka, Y.; Okazaki, T.; Honjo, T.; Minato, N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc. Natl. Acad. Sci. USA 2002, 99, 12293–12297. [Google Scholar] [CrossRef] [Green Version]
- Freeman, G.J.; Long, A.J.; Iwai, Y.; Bourque, K.; Chernova, T.; Nishimura, H.; Fitz, L.J.; Malenkovich, N.; Okazaki, T.; Byrne, M.C.; et al. Engagement of the Pd-1 Immunoinhibitory Receptor by a Novel B7 Family Member Leads to Negative Regulation of Lymphocyte Activation. J. Exp. Med. 2000, 192, 1027–1034. [Google Scholar] [CrossRef] [Green Version]
- Shevach, E.M.; McHugh, R.S.; Piccirillo, C.A.; Thornton, A.M. Control of T-cell activation by CD4+ CD25+ suppressor T cells. Immunol. Rev. 2001, 182, 58–67. [Google Scholar] [CrossRef]
- Tanaka, A.; Sakaguchi, S. Regulatory T cells in cancer immunotherapy. Cell Res. 2017, 27, 109–118. [Google Scholar] [CrossRef] [Green Version]
- Gao, Q.; Wang, X.-Y.; Qiu, S.-J.; Yamato, I.; Sho, M.; Nakajima, Y.; Zhou, J.; Li, B.-Z.; Shi, Y.-H.; Xiao, Y.-S.; et al. Overexpression of PD-L1 Significantly Associates with Tumor Aggressiveness and Postoperative Recurrence in Human Hepatocellular Carcinoma. Clin. Cancer Res. 2009, 15, 971–979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, X.-S.; Gu, X.; Xiong, W.; Guo, W.; Han, L.; Bai, Y.; Peng, C.; Cui, M.; Xie, M. Increased programmed death ligand-1 expression predicts poor prognosis in hepatocellular carcinoma patients. OncoTargets Ther. 2016, 9, 4805–4813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, H.I.; Jeong, D.; Ji, S.; Ahn, T.; Bae, S.H.; Chin, S.; Chung, J.C.; Kim, H.C.; Lee, M.S.; Baek, M.-J. Overexpression of PD-L1 and PD-L2 Is Associated with Poor Prognosis in Patients with Hepatocellular Carcinoma. Cancer Res. Treat. 2017, 49, 246–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Q.; Qiu, S.J.; Fan, J.; Zhou, J.; Wang, X.Y.; Xiao, Y.S.; Xu, Y.; Li, Y.; Tang, Z. Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J. Clin. Oncol. 2007, 25, 2586–2593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasaki, A.; Tanaka, F.; Mimori, K.; Inoue, H.; Kai, S.; Shibata, K.; Ohta, M.; Kitano, S.; Mori, M. Prognostic value of tumor-infiltrating FOXP3+ regulatory T cells in patients with hepatocellular carcinoma. Eur. J. Surg. Oncol. (EJSO) 2008, 34, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.-Z.; Chen, K.-J.; Xu, Z.-Y.; Chen, H.; Zhou, L.; Xie, H.-Y.; Zheng, S.-S. Prediction of Recurrence and Survival in Hepatocellular Carcinoma Based on Two Cox Models Mainly Determined by FoxP3+ Regulatory T Cells. Cancer Prev. Res. 2013, 6, 594–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, K.; Kryczek, I.; Chen, L.; Zou, W.; Welling, T.H. Kupffer cell suppression of CD8+ T cells in human hepatocellular carcinoma is mediated by B7-H1/programmed death-1 interactions. Cancer Res. 2009, 69, 8067–8075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semaan, A.; Dietrich, D.; Bergheim, D.; Dietrich, J.; Kalff, J.C.; Branchi, V.; Matthaei, H.; Kristiansen, G.; Fischer, H.-P.; Goltz, D. CXCL12 expression and PD-L1 expression serve as prognostic biomarkers in HCC and are induced by hypoxia. Virchows Arch. 2016, 470, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Xu, D.; Liu, Z.; Shi, M.; Zhao, P.; Fu, B.; Zhang, Z.; Yang, H.; Zhang, H.; Zhou, C.; et al. Increased Regulatory T Cells Correlate with CD8 T-Cell Impairment and Poor Survival in Hepatocellular Carcinoma Patients. Gastroenterology 2007, 132, 2328–2339. [Google Scholar] [CrossRef]
- Sun, L.; Xu, G.; Liao, W.; Yang, H.; Xu, H.; Du, S.; Zhao, H.; Lu, X.; Sang, X.; Mao, Y. Clinicopathologic and prognostic significance of regulatory T cells in patients with hepatocellular carcinoma: A meta-analysis. Oncotarget 2017, 8, 39658–39672. [Google Scholar] [CrossRef] [Green Version]
- Teng, C.-F.; Li, T.-C.; Wang, T.; Wu, T.-H.; Wang, J.; Wu, H.-C.; Shyu, W.-C.; Su, I.-J.; Jeng, L.-B. Increased Expression of Programmed Death Ligand 1 in Hepatocellular Carcinoma of Patients with Hepatitis B Virus Pre-S2 Mutant. J. Hepatocell. Carcinoma 2020, 7, 385–401. [Google Scholar] [CrossRef]
- Teng, C.-F.; Li, T.-C.; Wang, T.; Liao, D.-C.; Wen, Y.-H.; Wu, T.-H.; Wang, J.; Wu, H.-C.; Shyu, W.-C.; Su, I.-J.; et al. Increased infiltration of regulatory T cells in hepatocellular carcinoma of patients with hepatitis B virus pre-S2 mutant. Sci. Rep. 2021, 11, 1136. [Google Scholar] [CrossRef]
- Teng, C.-F.; Huang, H.-Y.; Li, T.-C.; Shyu, W.-C.; Wu, H.C.; Lin, C.-Y.; Su, I.-J.; Jeng, L.-B. A Next-Generation Sequencing-Based Platform for Quantitative Detection of Hepatitis B Virus Pre-S Mutants in Plasma of Hepatocellular Carcinoma Patients. Sci. Rep. 2018, 8, 14816. [Google Scholar] [CrossRef]
- Lin, Y.-T.; Jeng, L.-B.; Su, I.-J.; Teng, C.-F. Approaches for Detection of Hepatitis B Virus Pre-S Gene Deletions and Pre-S Deleted Proteins and Their Application in Prediction of Higher Risk of Hepatocellular Carcinoma Development and Recurrence. Viruses 2022, 14, 428. [Google Scholar] [CrossRef]
- Teng, C.-F.; Tsai, H.-W.; Li, T.-C.; Wang, T.; Wang, J.; Shyu, W.-C.; Wu, H.C.; Su, I.-J.; Jeng, L.-B. Detection of hepatitis B virus pre-S mutants in plasma by a next-generation sequencing-based platform determines their patterns in liver tissues. PLoS ONE 2020, 15, e0234773. [Google Scholar] [CrossRef]
- Jeng, L.-B.; Li, T.-C.; Hsu, S.-C.; Chan, W.-L.; Teng, C.-F. Association of Low Serum Albumin Level with Higher Hepatocellular Carcinoma Recurrence in Patients with Hepatitis B Virus Pre-S2 Mutant after Curative Surgical Resection. J. Clin. Med. 2021, 10, 4187. [Google Scholar] [CrossRef] [PubMed]
- Francisco, L.M.; Salinas, V.H.; Brown, K.E.; Vanguri, V.K.; Freeman, G.J.; Kuchroo, V.K.; Sharpe, A.H. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J. Exp. Med. 2009, 206, 3015–3029. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Han, Y.; Huang, Y.; Jiang, S.; Huang, Z.; Chen, R.; Yu, Z.; Yu, K.; Zhang, S. PD-L1 Is Expressed and Promotes the Expansion of Regulatory T Cells in Acute Myeloid Leukemia. Front. Immunol. 2020, 11, 1710. [Google Scholar] [CrossRef] [PubMed]
- Amarnath, S.; Mangus, C.W.; Wang, J.C.; Wei, F.; He, A.; Kapoor, V.; Foley, J.E.; Massey, P.R.; Felizardo, T.C.; Riley, J.L.; et al. The PDL1-PD1 axis converts human TH1 cells into regulatory T cells. Sci. Transl. Med. 2011, 3, 111ra20. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.-T.; Jiang, M.-J.; Deng, Z.-J.; Li, L.; Huang, J.-L.; Liu, Z.-X.; Zhong, J.-H. Immune Checkpoint Inhibitors in Hepatocellular Carcinoma: Current Progresses and Challenges. Front. Oncol. 2021, 11, 737497. [Google Scholar] [CrossRef]
- Yin, X.; Wu, T.; Lan, Y.; Yang, W. Current progress of immune checkpoint inhibitors in the treatment of advanced hepatocellular carcinoma. Biosci. Rep. 2022, 42, BSR20212304. [Google Scholar] [CrossRef]
- Fu, Y.; Liu, S.; Zeng, S.; Shen, H. From bench to bed: The tumor immune microenvironment and current immunotherapeutic strategies for hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 2019, 38, 396. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, A.; Sakaguchi, S. Targeting Treg cells in cancer immunotherapy. Eur. J. Immunol. 2019, 49, 1140–1146. [Google Scholar] [CrossRef] [Green Version]
- Arce Vargas, F.; Furness, A.J.S.; Solomon, I.; Joshi, K.; Mekkaoui, L.; Lesko, M.H.; Rota, E.M. Fc-Optimized Anti-CD25 Depletes Tumor-Infiltrating Regulatory T Cells and Synergizes with PD-1 Blockade to Eradicate Established Tumors. Immunity 2017, 46, 577–586. [Google Scholar] [CrossRef] [Green Version]
- Zhulai, G.; Oleinik, E. Targeting regulatory T cells in anti-PD-1/PD-L1 cancer immunotherapy. Scand. J. Immunol. 2022, 95, e13129. [Google Scholar] [CrossRef]
- Liu, P.-H.; Hsu, C.-Y.; Hsia, C.-Y.; Lee, Y.-H.; Su, C.-W.; Huang, Y.-H.; Lee, F.-Y.; Lin, H.-C.; Huo, T.-I. Prognosis of hepatocellular carcinoma: Assessment of eleven staging systems. J. Hepatol. 2016, 64, 601–608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, Q.; Jia, J. Hepatitis B virus genotypes: Epidemiological and clinical relevance in Asia. Hepatol. Int. 2016, 10, 854–860. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.; Liang, X.; Chen, S.; Wang, H.; Li, H.; Fang, M.; Bai, X.; Wang, Z.; Wang, M.; Zhu, S.; et al. Next-generation sequencing revealed divergence in deletions of the preS region in the HBV genome between different HBV-related liver diseases. J. Gen. Virol. 2017, 98, 2748–2758. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.F.; Clay, T.M.; Hobeika, A.C.; Lyerly, H.; Morse, M.A. Vascular endothelial growth factor and immunosuppression in cancer: Current knowledge and potential for new therapy. Expert Opin. Biol. Ther. 2007, 7, 449–460. [Google Scholar] [CrossRef]
- Tian, M.; Neil, J.R.; Schiemann, W.P. Transforming growth factor-beta and the hallmarks of cancer. Cell Signal 2011, 23, 951–962. [Google Scholar] [CrossRef] [Green Version]
- Lastwika, K.J.; Wilson, W., 3rd; Li, Q.K.; Norris, J.; Xu, H.; Ghazarian, S.R.; Kitagawa, H.; Kawabata, S.; Taube, J.M.; Yao, S.; et al. Control of PD-L1 Expression by Oncogenic Activation of the AKT-mTOR Pathway in Non-Small Cell Lung Cancer. Cancer Res. 2016, 76, 227–238. [Google Scholar] [CrossRef] [Green Version]
- Casey, S.C.; Tong, L.; Li, Y.; Do, R.; Walz, S.; Fitzgerald, K.N.; Gouw, A.M.; Baylot, V.; Gütgemann, I.; Eilers, M.; et al. MYC regulates the antitumor immune response through CD47 and PD-L1. Science 2016, 352, 227–231. [Google Scholar] [CrossRef] [Green Version]
Clinicopathological Characteristics a | Total Patients (No. of Patients (Median, Range)) | Pre-S2 Mutant-Negative Patients (No. of Patients (Median, Range)) | Pre-S2 Mutant-Positive Patients (No. of Patients (Median, Range)) | p Value b |
---|---|---|---|---|
Age (years) | 40 (54.0, 28–78) | 19 (57.0, 38–75) | 21 (52.0, 28–78) | |
>50 | 29 (58.0, 51–78) | 16 (57.5, 51–75) | 13 (58.0, 52–78) | 0.0853 |
≤50 | 11 (47.0, 28–49) | 3 (39.0, 38–49) | 8 (47.5, 28–49) | |
Gender | 40 | 19 | 21 | |
men | 34 | 16 | 18 | 0.3358 |
women | 6 | 3 | 3 | |
Smoking | 40 | 19 | 21 | |
yes | 14 | 7 | 7 | 0.2525 |
no | 26 | 12 | 14 | |
Alcohol | 40 | 19 | 21 | |
yes | 9 | 2 | 7 | 0.0727 |
no | 31 | 17 | 14 | |
HBeAg | 40 | 19 | 21 | |
positive | 6 | 2 | 4 | 0.2666 |
negative | 34 | 17 | 17 | |
HBV genotype | 40 | 19 | 21 | |
B | 31 | 15 | 16 | 0.2884 |
C | 9 | 4 | 5 | |
HBV DNA (log10 copies/mL) | 36 (5.0, 1.5–8.2) | 18 (5.1, 2.0–8.2) | 18 (4.7, 1.5–7.7) | |
>4 | 24 (5.7, 4.1–8.2) | 12 (6.0, 4.4–8.2) | 12 (5.4, 4.1–7.7) | 0.2753 |
≤4 | 12 (2.6, 1.5–3.8) | 6 (2.6, 2.0–3.7) | 6 (2.9, 1.5–3.8) | |
Albumin (g/dL) | 40 (3.8, 2.0–4.9) | 19 (3.9, 2.0–4.5) | 21 (3.7, 2.4–4.9) | 0.0775 |
>3.8 | 18 (4.2, 3.9–4.9) | 11 (4.2, 3.9–4.5) | 7 (4.0, 3.9–4.9) | |
≤3.8 | 22 (3.4, 2.0–3.8) | 8 (3.1, 2.0–3.8) | 14 (3.4, 2.4–3.7) | |
AST (U/L) | 40 (52.5, 14–290) | 19 (50.0, 20–238) | 21 (59.0, 14–290) | |
>34 | 32 (64.5, 35–290) | 17 (52.0, 35–238) | 15 (98.0, 42–290) | 0.1207 |
≤34 | 8 (25.0, 14–34) | 2 (22.0, 20–24) | 6 (27.5, 14–34) | |
ALT (U/L) | 40 (55.5, 13–292) | 19 (57.0, 30–139) | 21 (50.0, 13–292) | |
>40 | 26 (80.0, 42–292) | 13 (96.0, 42–139) | 13 (65.0, 43–292) | 0.2379 |
≤40 | 14 (33.0, 13–40) | 6 (35.5, 30–40) | 8 (29.0, 13–38) | |
AFP (ng/mL) | 40 (37.7, 1.4–4550.0) | 19 (26.7, 1.4–3266.0) | 21 (108.4, 2.7–4550.0) | |
>400 | 15 (823.6, 412.3–4550.0) | 5 (670.5, 412.3–3266.0) | 10 (838.4, 461.7–4550.0) | 0.102 |
≤400 | 25 (20.2, 1.4–280.7) | 14 (10.7, 1.4–280.7) | 11 (23.6, 2.7–207.0) | |
Tumor size (cm) | 40 (4.0, 1.5–35.0) | 19 (4.5, 1.5–35.0) | 21 (3.5, 1.5–15.0) | |
>5 | 14 (10.0, 5.5–35.0) | 7 (8.1, 5.5–35.0) | 7 (10.0, 6.5–15.0) | 0.2525 |
≤5 | 26 (3.0, 1.5–11.0) | 12 (2.7, 1.5–5.0) | 14 (3.0, 1.5–11.0) | |
Tumor encapsulation | 39 | 19 | 20 | |
yes | 30 | 16 | 14 | 0.1772 |
no | 9 | 3 | 6 | |
Satellite nodule | 40 | 19 | 21 | |
yes | 7 | 2 | 5 | 0.1866 |
no | 33 | 17 | 16 | |
Lymph node involvement | 40 | 19 | 21 | |
yes | 6 | 4 | 2 | 0.2121 |
no | 34 | 15 | 19 | |
Portal vein thrombosis | 40 | 19 | 21 | |
yes | 1 | 1 | 0 | 0.475 |
no | 39 | 18 | 21 | |
Vascular invasion | 40 | 19 | 21 | |
yes | 18 | 8 | 10 | 0.2351 |
no | 22 | 11 | 11 | |
Distant metastasis | 40 | 19 | 21 | |
yes | 4 | 1 | 3 | 0.2765 |
no | 36 | 18 | 18 | |
Steatosis grade | 33 | 19 | 14 | |
2/3 | 1 | 1 | 0 | 0.5758 |
0/1 | 32 | 18 | 14 | |
Metavir inflammation score | 35 | 18 | 17 | |
2/3 | 1 | 0 | 1 | 0.4857 |
0/1 | 34 | 18 | 16 | |
Ishak fibrosis score | 39 | 19 | 20 | |
4/5/6 | 15 | 7 | 8 | 0.2525 |
0/1/2/3 | 24 | 12 | 12 | |
Child-Pugh cirrhosis score | 40 | 19 | 21 | |
B/C | 10 | 4 | 6 | 0.2481 |
A | 30 | 15 | 15 | |
CLIP score | 40 | 19 | 21 | |
4/5/6 | 2 | 2 | 0 | 0.2192 |
0/1/2/3 | 38 | 17 | 21 | |
BCLC stage | 40 | 19 | 21 | |
C/D | 8 | 3 | 5 | 0.2666 |
A/B | 32 | 16 | 16 | |
AJCC TNM stage | 40 | 19 | 21 | |
IIIA/IIIB/IIIC/IVA/IVB | 9 | 4 | 5 | 0.2884 |
I/II | 31 | 15 | 16 |
Clinicopathological Characteristics a | Total Patients (No. of Patients (Median, Range)) | Pre-S2 Mutant-Negative Patients (No. of Patients (Median, Range)) | Pre-S2 Mutant-Positive Patients (No. of Patients (Median, Range)) | p Value b |
---|---|---|---|---|
Density of PD-L1-expressing cells c | 40 (14.37, 3.45–32.38) | 19 (7.09, 3.45–18.07) | 21 (18.20, 6.96–32.38) | |
high | 20 (19.80, 14.81–32.38) | 2 (16.83, 15.58–18.07) | 18 (21.49, 14.81–32.38) | <0.0001 *** |
low | 20 (7.02, 3.45–13.92) | 17 (6.83, 3.45–12.39) | 3 (10.34, 6.96–13.92) | |
Density of Tregs d | 40 (8.27, 0.89–19.60) | 19 (2.17, 0.89–6.96) | 21 (12.84, 8.05–19.60) | |
high | 20 (12.90, 8.49–19.60) | 0 | 20 (12.90, 8.49–19.60) | <0.0001 *** |
low | 20 (2.20, 0.89–8.05) | 19 (2.17, 0.89–6.96) | 1 (8.05, 8.05–8.05) |
Clinicopathological Characteristics a (Comparison, No. of Patients) | Univariate Analysis | Multivariate Analysis | ||||
---|---|---|---|---|---|---|
HR | 95% CI | p Value b | HR | 95% CI | p Value b | |
Deletion mutations spanning the pre-S2 gene segment (presence, 21 vs. absence, 19) | 2.378 | 1.015–5.573 | 0.0461 * | 2.095 | 0.833–5.271 | 0.1163 c |
Density of PD-L1-expressing cells (high, 20 vs. low, 20) | 3.379 | 1.446–7.900 | 0.0049 ** | 2.663 | 1.069–6.632 | 0.0354 *,d |
Density of Tregs (high, 20 vs. low, 20) | 2.769 | 1.180–6.498 | 0.0193 * | 2.270 | 0.884–5.827 | 0.0884 e |
Deletion mutations spanning the pre-S2 gene segment & Density of PD-L1-expressing cells (presence & high, 18 vs. others, 22) | 3.315 | 1.452–7.570 | 0.0044 ** | 2.318 | 0.953–5.636 | 0.0636 f |
Deletion mutations spanning the pre-S2 gene segment & Density of Tregs (presence & high, 20 vs. others, 20) | 2.769 | 1.180–6.498 | 0.0193 * | 2.270 | 0.884–5.827 | 0.0884 g |
Density of PD-L1-expressing cells & Density of Tregs (high & high, 17 vs. others, 23) | 3.928 | 1.716–8.995 | 0.0012 ** | 2.580 | 1.022–6.516 | 0.0449 *,h |
Deletion mutations spanning the pre-S2 gene segment & Density of PD-L1-expressing cells & Density of Tregs (presence & high, 17 & high vs. others, 23) | 4.109 | 1.763–9.572 | 0.0011 ** | 3.163 | 1.309–7.644 | 0.0105 *,i |
Deletion mutations spanning the pre-S2 gene segment & Density of PD-L1-expressing cells & Density of Tregs Group 2 (absence & high & low, 2) vs. Group 1 (absence & low & low, 17) Group 3 (presence & high & low, 1) vs. Group 1 (absence & low & low, 17) Group 4 (presence & low & high, 3) vs. Group 1 (absence & low & low, 17) Group 5 (presence & high & high, 17) vs. Group 1 (absence & low & low, 17) | ||||||
1.866 | 0.228–15.311 | 0.5611 | 4.746 | 0.490–46.006 | 0.1791 j | |
0.716 | 0.212–2.970 | 0.9919 | 0.899 | 0.303–7.431 | 0.9928 j | |
0.561 | 0.068–4.650 | 0.5922 | 0.996 | 0.112–8.885 | 0.9970 j | |
3.593 | 1.456–8.862 | 0.0055 ** | 2.837 | 1.048–7.679 | 0.0401 *,j | |
Age (years) (>50, 29 vs. ≤50, 11) | 0.556 | 0.243–1.271 | 0.1640 | |||
Gender (men, 34 vs. women, 6) | 0.500 | 0.185–1.352 | 0.1723 | |||
Smoking (yes, 14 vs. no, 26) | 0.374 | 0.139–1.005 | 0.0512 | |||
Alcohol (yes, 9 vs. no, 31) | 1.256 | 0.495–3.192 | 0.6313 | |||
HBeAg (positive, 6 vs. negative, 34) | 2.670 | 0.978–7.288 | 0.0552 | |||
HBV genotype (B, 31 vs. C, 9) | 0.683 | 0.404–1.127 | 0.1640 | |||
HBV DNA (log10 IU/mL) (>4, 24 vs. ≤4, 12) | 2.029 | 0.733–5.618 | 0.1731 | |||
Albumin (g/dL) (>3.8, 18 vs. ≤3.8, 22) | 0.361 | 0.152–0.858 | 0.0211 * | 0.309 | 0.113–0.845 | 0.0211 *,c |
0.323 | 0.113–0.921 | 0.0345 *,d | ||||
0.322 | 0.117–0.887 | 0.0284 *,e | ||||
0.321 | 0.113–0.914 | 0.0333 *,f | ||||
0.322 | 0.117–0.887 | 0.0284 *,g | ||||
0.345 | 0.119–1.000 | 0.0501 h | ||||
0.293 | 0.103–0.835 | 0.0216 *,i | ||||
0.345 | 0.118–1.011 | 0.0524 j | ||||
AST (U/L) (>34, 32 vs. ≤34, 8) | 1.619 | 0.546–4.802 | 0.3851 | |||
ALT (U/L) (>40, 26 vs. ≤40, 14) | 2.910 | 1.083–7.824 | 0.0342 * | 2.163 | 0.746–6.269 | 0.1555 c |
2.060 | 0.703–6.035 | 0.1874 d | ||||
2.084 | 0.721–6.018 | 0.1749 e | ||||
1.961 | 0.680–5.654 | 0.2127 f | ||||
2.084 | 0.721–6.018 | 0.1749 g | ||||
1.858 | 0.645–5.256 | 0.2512 h | ||||
1.897 | 0.658–5.468 | 0.2357 i | ||||
1.929 | 0.625–5.955 | 0.2535 j | ||||
AFP (ng/mL) (>400, 15 vs. ≤400, 25) | 2.805 | 1.261–6.240 | 0.0114 * | 2.750 | 1.057–7.153 | 0.0381 *,c |
2.596 | 0.964–6.989 | 0.0590 d | ||||
2.570 | 0.970–6.813 | 0.0577 e | ||||
2.664 | 0.987–7.185 | 0.0530 f | ||||
2.570 | 0.970–6.813 | 0.0577 g | ||||
2.411 | 0.862–6.750 | 0.0937 h | ||||
2.857 | 1.042–7.832 | 0.0414 *,i | ||||
2.306 | 0.809–6.572 | 0.1181 j | ||||
Tumor size (cm) (>5, 14 vs. ≤5, 26) | 0.900 | 0.387–2.093 | 0.8070 | |||
Tumor encapsulation (yes, 30 vs. no, 9) | 0.775 | 0.305–1.969 | 0.5924 | |||
Satellite nodule (yes, 7 vs. no, 33) | 1.539 | 0.566–4.189 | 0.3984 | |||
Lymph node involvement (yes, 6 vs. no, 34) | 0.550 | 0.129–2.348 | 0.4193 | |||
Portal vein thrombosis (yes, 1 vs. no, 39) | 3.497 | 0.908–22.503 | 0.0928 | |||
Vascular invasion (yes, 18 vs. no, 22) | 1.807 | 0.807–4.044 | 0.1504 | |||
Distant metastasis (yes, 4 vs. no, 36) | 1.586 | 0.467–5.392 | 0.4597 | |||
Steatosis grade (2/3, 7 vs. 0/1, 33) | 3.422 | 0.427–27.393 | 0.2464 | |||
Metavir inflammation score (2/3, 1 vs. 0/1, 34) | 0.921 | 0.122–6.943 | 0.9360 | |||
Ishak fibrosis score (4/5/6, 15 vs. 0/1/2/3, 24) | 1.879 | 0.824–4.287 | 0.1337 | |||
Child-Pugh cirrhosis score (B/C, 10 vs. A, 30) | 2.715 | 1.151–6.406 | 0.0226 * | 1.442 | 0.549–3.788 | 0.4573 c |
1.315 | 0.499–3.471 | 0.5796 d | ||||
1.383 | 0.522–3.667 | 0.5146 e | ||||
1.360 | 0.519–3.561 | 0.5311 f | ||||
1.383 | 0.522–3.667 | 0.5146 g | ||||
1.280 | 0.482–3.397 | 0.6199 h | ||||
1.213 | 0.462–3.184 | 0.6946 i | ||||
1.201 | 0.446–3.234 | 0.7170 j | ||||
CLIP score (4/5/6, 2 vs. 0/1/2/3, 38) | 1.088 | 0.146–8.124 | 0.9342 | |||
BCLC stage (C/D, 8 vs. A/B, 32) | 2.243 | 0.870–5.783 | 0.0944 | |||
AJCC TNM stage (IIIA/IIIB/IIIC/IVA/IVB, 9 vs. I/II, 31) | 2.486 | 1.003–6.162 | 0.0492 * | 1.607 | 0.521–4.958 | 0.4096 c |
1.613 | 0.544–4.784 | 0.3888 d | ||||
1.772 | 0.547–5.732 | 0.3399 e | ||||
1.594 | 0.534–4.757 | 0.4037 f | ||||
1.772 | 0.547–5.732 | 0.3399 g | ||||
1.807 | 0.574–5.691 | 0.3123 h | ||||
1.677 | 0.533–5.276 | 0.3769 i | ||||
1.953 | 0.580–6.576 | 0.2800 j |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeng, L.-B.; Li, T.-C.; Hsu, S.-C.; Teng, C.-F. Association of Increased Programmed Death Ligand 1 Expression and Regulatory T Cells Infiltration with Higher Hepatocellular Carcinoma Recurrence in Patients with Hepatitis B Virus Pre-S2 Mutant after Curative Surgical Resection. Viruses 2022, 14, 1346. https://doi.org/10.3390/v14061346
Jeng L-B, Li T-C, Hsu S-C, Teng C-F. Association of Increased Programmed Death Ligand 1 Expression and Regulatory T Cells Infiltration with Higher Hepatocellular Carcinoma Recurrence in Patients with Hepatitis B Virus Pre-S2 Mutant after Curative Surgical Resection. Viruses. 2022; 14(6):1346. https://doi.org/10.3390/v14061346
Chicago/Turabian StyleJeng, Long-Bin, Tsai-Chung Li, Shih-Chao Hsu, and Chiao-Fang Teng. 2022. "Association of Increased Programmed Death Ligand 1 Expression and Regulatory T Cells Infiltration with Higher Hepatocellular Carcinoma Recurrence in Patients with Hepatitis B Virus Pre-S2 Mutant after Curative Surgical Resection" Viruses 14, no. 6: 1346. https://doi.org/10.3390/v14061346
APA StyleJeng, L.-B., Li, T.-C., Hsu, S.-C., & Teng, C.-F. (2022). Association of Increased Programmed Death Ligand 1 Expression and Regulatory T Cells Infiltration with Higher Hepatocellular Carcinoma Recurrence in Patients with Hepatitis B Virus Pre-S2 Mutant after Curative Surgical Resection. Viruses, 14(6), 1346. https://doi.org/10.3390/v14061346