Host Cytoskeleton Gene Expression Is Correlated with the Formation of Ascovirus Reproductive Viral Vesicles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of TnAV Viral Vesicles and Virions for Infection
2.2. Infection of T. ni Larvae with Viral Vesicles
2.3. Light and Electron Microscopy
2.4. RNA Isolation and Sequencing
2.5. Analysis of Cytoskeleton and Mitochondrial Gene Expression in Hemolymph Viral Vesicles versus Somatic Tissues at Early and Late Time-Points Post-Infection
2.6. Data Availability
3. Results
3.1. Microscopic Examination of the TnAV Progressive Stages of Infection Development in Third and Fourth Instar Larvae of T. ni
3.2. Transcriptome of T. ni Cytoskeleton Genes in Somatic Tissues versus Hemolymph Viral Vesicles
3.3. Transcriptome of T. ni Mitochondrial Genes in Somatic Tissues versus Viral Vesicles at Early and Later Time-Points after TnAV Infection
3.4. Transcriptome of Spodoptera Frugiperda Mitochondrial Genes in Somatic Tissues versus Viral Vesicles in Late Time-Points
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Federici, B.A. A new type of insect pathogen in larvae of the clover cutworm, Scotogramma trifolii. J. Invertebr. Pathol. 1982, 40, 41–54. [Google Scholar] [CrossRef]
- Federici, B.A. Enveloped double-stranded DNA insect virus with novel structure and cytopathology. Proc. Natl. Acad. Sci. USA 1983, 80, 7664–7668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stasiak, K.; Renault, S.; Demattei, M.V.; Bigot, Y.; Federici, B.A. Evidence for the evolution of ascoviruses from iridoviruses. J. Gen. Virol. 2003, 84, 2999–3009. [Google Scholar] [CrossRef] [PubMed]
- Piégu, B.; Asgari, S.; Bideshi, D.; Federici, B.A.; Bigot, Y. Evolutionary relationships of iridoviruses and divergence of ascoviruses from invertebrate iridoviruses in the superfamily Megavirales. Mol. Phylogenet. Evol. 2015, 84, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Federici, B.A.; Govindarajan, R. Comparative histopathology of three ascovirus isolates in larval noctuids. J. Invertebr. Pathol. 1990, 56, 300–311. [Google Scholar] [CrossRef]
- Govindarajan, R.; Federici, B.A. Ascovirus infectivity and effects of infection on the growth and development of noctuid larvae. J. Invertebr. Pathol. 1990, 56, 291–299. [Google Scholar] [CrossRef]
- Hamm, J.J.; Nordlung, D.A.; Marti, O.G. Effects of a Nonoccluded Virus of Spodoptera frugiperda (Lepidoptera: Noctuidae) on the Development of a Parasitoid, Cotesia marginiventris (Hymenoptera: Braconidae). Environ. Entomol. 1985, 14, 258–261. [Google Scholar] [CrossRef]
- Glynn Tillman, P.; Styer, E.L.; Hamm, J.J. Transmission of ascovirus from Heliothis virescens (Lepidoptera: Noctuidae) by three parasitoids and effects of virus on survival of parasitoid Cardiochiles nigriceps (Hymenoptera: Braconidae). Environ. Entomol. 2004, 33, 633–643. [Google Scholar] [CrossRef] [Green Version]
- Li, S.J.; Hopkins, R.J.; Zhao, Y.P.; Zhang, Y.X.; Hu, J.; Chen, X.Y.; Xu, Z.; Huang, G.H. Imperfection works: Survival, transmission and persistence in the system of Heliothis virescens ascovirus 3h (HvAV-3h), Microplitis similis and Spodoptera exigua. Sci. Rep. 2016, 6, 21296. [Google Scholar] [CrossRef]
- Zaghloul, H.A.H.; Hice, R.; Arensburger, P.; Federici, B.A. Transcriptome Analysis of the Spodoptera frugiperda Ascovirus In Vivo Provides Insights into How Its Apoptosis Inhibitors and Caspase Promote Increased Synthesis of Viral Vesicles and Virion Progeny. J. Virol. 2017, 91, e00874–17. [Google Scholar] [CrossRef] [Green Version]
- Federici, B.A.; Bideshi, D.K.; Tan, Y.; Spears, T.; Bigot, Y. Ascoviruses: Superb manipulators of apoptosis for viral replication and transmission. Curr. Top. Microbiol. Immunol. 2009, 328, 171–196. [Google Scholar] [CrossRef] [PubMed]
- Bideshi, D.K.; Bigot, Y.; Federici, B.A.; Spears, T. Ascoviruses. In Insect Virology; Asgari, S., Johnson, K.N., Eds.; Caister Academic Press: Norfolk, UK, 2010; pp. 3–34. [Google Scholar]
- Bideshi, D.K.; Demattei, M.V.; Rouleux-Bonnin, F.; Stasiak, K.; Tan, Y.; Bigot, S.; Bigot, Y.; Federici, B.A. Genomic sequence of Spodoptera frugiperda Ascovirus 1a, an enveloped, double-stranded DNA insect virus that manipulates apoptosis for viral reproduction. J. Virol. 2006, 80, 11791–11805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, Y.; Spears, T.; Bideshi, D.K.; Johnson, J.J.; Hice, R.; Bigot, Y.; Federici, B.A. P64, a novel major virion DNA-binding protein potentially involved in condensing the Spodoptera frugiperda ascovirus 1a genome. J. Virol. 2009, 83, 2708–2714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bideshi, D.K.; Spears, T.; Zaghloul, H.A.H.; Tan, Y.; Bigot, Y.; Federici, B.A. Ascovirus P64 homologs: A novel family of large cationic proteins that condense viral genomic DNA for encapsidation. Biology 2018, 7, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bigot, Y.; Asgari, S.; Bideshi, D.K.; Cheng, X.; Federici, B.A.; Renault, S. Family Ascoviridae. In Viral Taxonomy, IX Report of the International Committee on the Taxonomy of Viruses, 3rd ed.; King, A.M.Q., Adams, M.J., Carstens, E.B., Lefkowitz, E.J., Eds.; Elsevier–Academic Press: London, UK, 2011; pp. 147–152. [Google Scholar] [CrossRef]
- Asgari, S. Replication of Heliothis virescens ascovirus in insect cell lines. Arch. Virol. 2006, 151, 1689–1699. [Google Scholar] [CrossRef]
- Huang, G.H.; Garretson, T.A.; Cheng, X.H.; Holztrager, M.S.; Li, S.J.; Wang, X.; Cheng, X.W. Phylogenetic position and replication kinetics of Heliothis virescens ascovirus 3h (HvAV-3h) isolated from Spodoptera exigua. PLoS ONE 2012, 7, e40225. [Google Scholar] [CrossRef] [Green Version]
- Asgari, S.; Bideshi, D.K.; Bigot, Y.; Federici, B.A.; Cheng, X.W.; ICTV Report Consortium. ICTV Virus Taxonomy Profile: Ascoviridae. J. Gen. Virol. 2017, 98, 4–5. [Google Scholar] [CrossRef]
- Yu, H.; Ou-Yang, Y.Y.; Yang, C.J.; Li, N.; Nakai, M.; Huang, G.H. 3H-31, A Non-structural Protein of Heliothis virescens ascovirus 3h, Inhibits the Host Larval Cathepsin and Chitinase Activities. Virol. Sin. 2021, 36, 1036–1051. [Google Scholar] [CrossRef]
- Khorramnejad, A.; Perdomo, H.D.; Palatini, U.; Bonizzoni, M.; Gasmi, L. Cross Talk between Viruses and Insect Cells Cytoskeleton. Viruses 2021, 13, 1658. [Google Scholar] [CrossRef]
- Zaghloul, H.A.; Hice, R.; Arensburger, P.; Federici, B.A. Early in vivo transcriptome of Trichoplusia ni ascovirus core genes. J. Gen. Virol. 2022, 103, 001737. [Google Scholar] [CrossRef]
- Zaghloul, H.A.; Hice, R.H.; Arensburger, P.; Bideshi, D.K.; Federici, B.A. Extended in vivo transcriptomes of two ascoviruses with different tissue tropisms reveal alternative mechanisms for enhancing virus reproduction in hemolymph. Sci. Rep. 2021, 11, 16402. [Google Scholar] [CrossRef] [PubMed]
- Mortazavi, A.; Williams, B.A.; McCue, K.; Schaeffer, L.; Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 2008, 5, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Zaghloul, H.A.H.; Hice, R.; Bideshi, D.K.; Arensburger, P.; Federici, B.A. Mitochondrial and innate immunity transcriptomes from Spodoptera frugiperda larvae infected with the Spodoptera frugiperda ascovirus. J. Virol. 2020, 94, e01985–19. [Google Scholar] [CrossRef] [PubMed]
- Pilling, A.D.; Horiuchi, D.; Lively, C.M.; Saxton, W.M. 2006. Kinesin-1 and dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. Mol. Biol. Cell 2006, 17, 2057–2068. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Kalyanasundaram, A.; Zhu, J. Structural and biomechanical basis of mitochondrial movement in eukaryotic cells. Int. J. Nanomed. 2013, 8, 4033–4042. [Google Scholar]
- Yu, H.; Li, Z.Q.; He, L.; Ou-Yang, Y.Y.; Li, N.; Huang, G.H. Response analysis of host Spodoptera exigua larvae to infection by Heliothis virescens ascovirus 3h (HvAV-3h) via transcriptome. Sci. Rep. 2018, 8, 5367. [Google Scholar] [CrossRef]
- Anand, S.K.; Tikoo, S.K. Viruses as modulators of mitochondrial functions. Adv. Virol. 2013, 2013, 738794. [Google Scholar] [CrossRef]
- Kelly, D.C. Frog virus 3 replication: Electron microscope observations on the sequence of infection in chick embryo fibroblasts. J. Gen. Virol. 1975, 26, 71–86. [Google Scholar] [CrossRef]
- Kim, S.; Kim, H.Y.; Lee, S.; Kim, S.W.; Sohn, S.; Kim, K.; Cho, H. Hepatitis B virus x protein induces perinuclear mitochondrial clustering in microtubule-and Dynein-dependent manners. J. Virol. 2007, 81, 1714–1726. [Google Scholar] [CrossRef] [Green Version]
- Nomura-Takigawa, Y.; Nagano-Fujii, M.; Deng, L.; Kitazawa, S.; Ishido, S.; Sada, K.; Hotta, H. Non-structural protein 4A of Hepatitis C virus accumulates on mitochondria and renders the cells prone to undergoing mitochondria-mediated apoptosis. J. Gen. Virol. 2006, 87, 1935–1945. [Google Scholar] [CrossRef]
- Radovanovic, J.; Todorovic, V.; Boricic, I.; Jankovic-Hladni, M.; Korac, A. Comparative ultrastructural studies on mitochondrial pathology in the liver of AIDS patients: Clusters of mitochondria, protuberances, ” minimitochondria”, vacuoles, and virus-like particles. Ultrastruct. Pathol. 1999, 23, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Rojo, G.; Chamorro, M.; Salas, M.L.; Viñuela, E.; Cuezva, J.; Salas, J. Migration of mitochondria to viral assembly sites in African swine fever virus-infected cells. J. Virol. 1998, 72, 7583–7588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karniely, S.; Weekes, M.P.; Antrobus, R.; Rorbach, J.; van Haute, L.; Umrania, Y.; Smith, D.L.; Stanton, R.J.; Minczuk, M.; Lehner, P.J.; et al. Human Cytomegalovirus Infection Upregulates the Mitochondrial Transcription and Translation Machineries. MBio 2016, 7, e00029. [Google Scholar] [CrossRef] [Green Version]
- Saffran, H.A.; Pare, J.M.; Corcoran, J.A.; Weller, S.K.; Smiley, J.R. Herpes simplex virus eliminates host mitochondrial DNA. EMBO Rep. 2007, 8, 188–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Mendoza, C.; Martin-Carbonero, L.; Barreiro, P.; de Baar, M.; Zahonero, N.; Rodriguez-Novoa, S.; Benito, J.M.; González-Lahoz, J.; Soriano, V. Mitochondrial DNA depletion in HIV-infected patients with chronic hepatitis C and effect of pegylated interferon plus ribavirin therapy. Aids 2007, 21, 583–588. [Google Scholar] [CrossRef]
- Gustafsson, C.M.; Falkenberg, M.; Larsson, N.G. Maintenance and expression of mammalian mitochondrial DNA. Annu. Rev. Biochem. 2016, 85, 133–160. [Google Scholar] [CrossRef]
- Galluzzi, L.; Brenner, C.; Morselli, E.; Touat, Z.; Kroemer, G. Viral control of mitochondrial apoptosis. PLoS Pathog. 2008, 4, e1000018. [Google Scholar] [CrossRef] [Green Version]
- Netherton, C.L.; Wileman, T. Virus factories, double membrane vesicles and viroplasm generated in animal cells. Curr. Opin. Virol. 2011, 1, 381–387. [Google Scholar] [CrossRef]
- Taylor, M.P.; Koyuncu, O.O.; Enquist, L.W. Subversion of the actin cytoskeleton during viral infection. Nat. Rev. Microbiol. 2011, 9, 427–439. [Google Scholar] [CrossRef] [Green Version]
- Walsh, D.; Mojgan, H.N. Exploitation of cytoskeleton networks curing early viral infection. Trends Microbiol. 2019, 1, 39–50. [Google Scholar] [CrossRef]
- Charman, M.; Weitzman, M.D. Replication compartments of DNA viruses in the nucleus: Location, location, location. Viruses 2020, 12, 151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Genes * | Putative Function | 7 dpi | 14 dpi | 21 dpi |
---|---|---|---|---|
Tni06G02960 | Axonemal dynein light chain | 2.1 ** | 8.9 | 9.2 |
Tni12G03140 | Cytoplasmic dynein 2 light intermediate chain 1 | 1.5 | 3.6 | 3.9 |
Tni17G03100 | Dynein intermediate chain 2, axonemal | 18.8 | 69.4 | 89.1 |
Tni20G03090 | Dynein light chain roadblock-type 1 | 1.9 | 5.5 | 6.3 |
Tni07G01520 | Dynein, light chain, Tctex-type 1 | 1.4 | 3.7 | 3.6 |
Tni01G03980 | Dynein heavy chain 6, axonemal | 1.6 | 1.3 | 2.9 |
Tni26G01370 | Dynein light chain roadblock-type | 1.5 | 3.0 | 3.4 |
Tni15G02110 | Dynein light chain 1, axonemal | 1.0 | 2.8 | 3.0 |
Tni27G00100 | Tubulin beta-2C chain | 1.1 | 3.2 | 3.5 |
Tni04G01530 | Tubulin monoglycylase TTLL3 | 1.2 | 3.6 | 3.7 |
Tni17G03250 | Tubulin-tyrosine ligase | 1.3 | 3.7 | 3.8 |
Tni17G03240 | Tubulin-tyrosine ligase | 2.2 | 7.6 | 9.5 |
Tni21G02320 | Tubulin polyglutamylase TTLL13 | 1.3 | 3.6 | 4.0 |
Tni04G01780 | Tubulin polyglutamylase complex subunit 2 | 1.5 | 1.2 | 4.4 |
Tni23G00310 | Tubulin alpha-1A chain | 1.9 | 2.7 | 2.5 |
Tni15G06480 | Tubulin beta chain | 1.1 | 3.0 | 3.1 |
Tni01G00970 | Tubulin alpha-1 chain | 1.0 | 2.9 | 3.0 |
Tni22G06020 | Tubulin alpha chain | 1.1 | 3.3 | 3.6 |
Tni08G04820 | Actin | −1.4 | −4.2 | −2.5 |
Tni20G03470 | Actin-related protein 8 | −1.9 | −1.9 | −2.0 |
Tni24G01580 | Cofilin/actin-depolymerizing factor-like protein | −1.7 | −3.3 | −1.6 |
Tni19G00860 | Dim gamma-tubulin 3 | −1.01 | −2.4 | −1.3 |
Tni23G04120 | Kinesin-like protein | −1.3 | −2.1 | −2.2 |
Tni25G01890 | Kinesin-like protein | −1.05 | −2.9 | −1.5 |
Tni07G03800 | Kinesin-like protein | −2.2 | −1.9 | −2.2 |
Tni13G00910 | Kinesin-like protein | −1.3 | −3.1 | −1.1 |
Tni05G05840 | Kinesin-like protein | −1.2 | −1.7 | −2.2 |
Tni11G03970 | Myosin-M heavy chain | −6.2 | −5.7 | −1.4 |
Tni02G02180 | Myosin-Va | −1.03 | −2.9 | −1.9 |
Tni10G03290 | Myosin heavy chain kinase D | −2.0 | −13.0 | −3.5 |
Tni00G00940 | Myosin-J heavy chain | −2.0 | −1.3 | −1.1 |
Tni17G04810 | Myosin-XV | −10.7 | −2.8 | −5.2 |
Tni06G04970 | Nuclear lamin L1 alpha | −1.5 | −3.3 | −1.3 |
Tni31G01770 | Tau-tubulin kinase 1 | −2.0 | −2.5 | −2.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaghloul, H.A.H.; Arensburger, P.; Federici, B.A. Host Cytoskeleton Gene Expression Is Correlated with the Formation of Ascovirus Reproductive Viral Vesicles. Viruses 2022, 14, 1444. https://doi.org/10.3390/v14071444
Zaghloul HAH, Arensburger P, Federici BA. Host Cytoskeleton Gene Expression Is Correlated with the Formation of Ascovirus Reproductive Viral Vesicles. Viruses. 2022; 14(7):1444. https://doi.org/10.3390/v14071444
Chicago/Turabian StyleZaghloul, Heba A. H., Peter Arensburger, and Brian A. Federici. 2022. "Host Cytoskeleton Gene Expression Is Correlated with the Formation of Ascovirus Reproductive Viral Vesicles" Viruses 14, no. 7: 1444. https://doi.org/10.3390/v14071444
APA StyleZaghloul, H. A. H., Arensburger, P., & Federici, B. A. (2022). Host Cytoskeleton Gene Expression Is Correlated with the Formation of Ascovirus Reproductive Viral Vesicles. Viruses, 14(7), 1444. https://doi.org/10.3390/v14071444