Clinical, Virological and Immunological Responses after Experimental Infection with African Horse Sickness Virus Serotype 9 in Immunologically Naïve and Vaccinated Horses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Horses
2.3. Challenge Inoculum
2.4. Vaccination
2.5. Clinical Monitoring
2.6. Sampling
2.7. Virus Detection
2.7.1. Serogroup-Specific Reverse-Transcription Real-Time PCR (GS-rRT-PCR)
2.7.2. Serotype-Specific Reverse-Transcription Real-Time PCR (TS-rRT-PCR)
2.7.3. Virus Isolation
2.7.4. ELISA for Antigen Detection
2.8. Detection of Circulating AHSV-Specific Antibodies
2.8.1. VP7-Blocking-ELISA Test (b-ELISA)
2.8.2. Seroneutralization Test (SNT)
2.9. Statistical Analysis
3. Results
3.1. Clinical Signs and Pathology
3.2. Laboratory Parameters
3.2.1. Virus RNA Detection in EDTA Blood
3.2.2. Virus RNA Detection in Blood Sera
3.2.3. Virus Isolation in EDTA Blood
3.2.4. Virus Isolation in Blood Sera
3.2.5. Virus Antigen Detection in EDTA Blood (Only in Experiment 1)
3.2.6. Virus Detection and Virus Isolation in Organs after Necropsy
3.2.7. Antibody Detection in Sera
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tena-Tomás, C.; Rocha, A.; Buitrago, D.; Agüero, M. Single and Multiplex real time RT-PCR assays serotype specific to detect African horse sickness virus. In Proceedings of the IV International Conference on Bluetongue and related Orbiviruses, Rome, Italy, 5–7 November 2014; p. 158. [Google Scholar]
- Coetzer, J.A.W.; Guthrie, A.J. African Horse Sickness, in Infectious Diseases of Livestock; Coetzer, J.A.W., Tustin, R.C., Eds.; Oxford University Press: Oxford, UK, 2004; Volume 2, pp. 1231–1264. [Google Scholar]
- Mellor, P.S.; Hamblin, C. African Horse Sickness. Vet. Res. 2004, 35, 445–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- OIE. Infection with African Horse Sickness Virus. In Terrestrial Animal Health Code. Chapter 12.1. 19 July 2021. Available online: https://www.oie.int/index.php?id=169&L=0&htmfile=chapitre_ahs.htm (accessed on 23 February 2022).
- Alberca, B.; Bachanek-Bankowska, K.; Cabana, M.; Calvo-Pinilla, E.; Viaplana, E.; Frost, L.; Gubbins, S.; Urniza, A.; Mertens, P.; Castillo-Olivares, J. Vaccination of horses with a recombinant modified vaccinia Ankara virus (MVA) expressing African horse sickness (AHS) virus major capsid protein VP2 provides complete clinical protection against challenge. Vaccine 2014, 32, 3670–3674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castillo-Olivares, J. African horse sickness in Thailand: Challenges of controlling an outbreak by vaccination. Equine Vet. J. 2021, 53, 9–14. [Google Scholar] [CrossRef]
- Weyer, C.T.; Grewar, J.D.; Burger, P.; Rossouw, E.; Lourens, C.; Joone, C.; Le Grange, M.; Coetzee, P.; Venter, E.; Martin, D.P.; et al. African Horse Sickness Caused by Genome Reassortment and Reversion to Virulence of Live, Attenuated Vaccine Viruses, South Africa, 2004-2014. Emerg. Infect. Dis. 2016, 12, 2087–2096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guthrie, A.J.; Quan, M.; Lourens, C.W.; Audonnet, J.C.; Minke, J.M.; Yao, J.; He, L.; Nordgren, R.; Gardner, I.A.; Maclachlan, N.J. Protective immunization of horses with a recombinant canarypox virus vectored vaccine co-expressing genes encoding the outer capsid proteins of african horse sickness virus. Vaccine 2009, 27, 4434–4438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lulla, V.; Losada, A.; Lecollinet, S.; Kerviel, A.; Lilin, T.; Sailleau, C.; Beck, C.; Zientara, S.; Roy, P. Protective efficacy of multivalent replication-abortive vaccine strains in horses against African horse sickness virus challenge. Vaccine 2017, 35, 4262–4269. [Google Scholar] [CrossRef]
- Manning, N.M.; Bachanek-Bankowska, K.; Mertens, P.P.C.; Castillo-Olivares, J. Vaccination with recombinant Modified Vaccinia Ankara (MVA) viruses expressing single African horse sickness virus VP2 antigens induced cross-reactive virus neutralising antibodies (VNAb) in horses when administered in combination. Vaccine 2017, 35, 6024–6029. [Google Scholar] [CrossRef]
- Van Rijn, P.A.; Maris-Veldhuis, M.A.; Potgieter, C.A.; Van Gennip, R.G.P. African horse sickness virus (AHSV) with a deletion of 77 amino acids in NS3/NS3a protein is not virulent and a safe promising AHS Disabled Infectious Single Animal (DISA) vaccine platform. Vaccine 2018, 36, 1925–1933. [Google Scholar] [CrossRef]
- Zientara, S.; Weyer, C.T.; Lecollinet, S. African horse sickness. Rev. Sci. Tech. 2015, 34, 315–327. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, S.; Mellor, P.S.; Fall, A.G.; Garros, C.; Venter, G.J. African Horse Sickness Virus: History, Transmission, and Current Status. Annu. Rev. Entomol. 2017, 62, 343–358. [Google Scholar] [CrossRef]
- King, S.; Rajko-Nenow, P.; Ashby, M.; Frost, L.; Carpenter, S.; Batten, C. Outbreak of African horse sickness in Thailand. Transbound. Emerg. Dis. 2020, 67, 1764–1767. [Google Scholar] [CrossRef]
- Lu, G.; Pan, J.; Ou, J.; Shao, R.; Hu, X.; Wang, C.; Li, S. African horse sickness: Its emergence in Thailand and potential threat to other Asian countries. Transbound. Emerg. Dis. 2020, 67, 1751–1753. [Google Scholar] [CrossRef] [PubMed]
- OIE. March 2022. Official Disease Status: African Horse Sickness. Available online: https://www.oie.int/en/disease/african-horse-sickness/ (accessed on 23 February 2022).
- European Union. Regulation (EU) 2016/429 of the European Parliament and of the Council of 9 March 2016 on Transmissible Animal Diseases and Amending and Repealing Certain Acts in the Area of Animal Health (“Animal Health Law”). Official Journal of the European Union-L84.31.3.2016. 1 November 2016. Available online: http://data.europa.eu/eli/reg/2016/429/oj (accessed on 23 September 2021).
- European Union. Regulation (EU) 2017/625 of the European Parliament and of the Council of 15 March 2017 on Official Controls and Other Official Activities Performed to Ensure the Application of Food and Feedlaw, Rules on Animal Health and Welfare, Plant Health and Plant Protection Products(Official Controls Regulation). Official Journal of the European Union- L95.07.4.2017. 15 March 2017. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32017R0625&from=ES (accessed on 23 September 2021).
- OIE. 2022. Reference Experts and Laboratories. Available online: https://www.oie.int/en/scientific-expertise/reference-laboratories/list-of-laboratories/ (accessed on 23 February 2022).
- OIE. African Horse Sickness (Infection with African Horse Sickness Virus). In Manual of Diagnostic Tests and Vaccines for Terrestrial Animals; 2019; Chapter 3.5.1; Available online: https://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/3.05.01_AHS.pdf (accessed on 23 February 2022).
- Royal Decree 53/2013, of February 1, Which Establishes the Basic Applicable Standards for the Protection of Animals Used in Experimentation and Other Scientific Purposes, Including Teaching. Available online: https://www.boe.es/diario_boe/txt.php?id=BOE-A-2013-1337 (accessed on 23 April 2022).
- Reed, L.J.; Muench, H. A simple method of estimating fifty per cent endpoints. Am. J. Epidemiol. 1938, 27, 493–497. [Google Scholar] [CrossRef]
- Von Teichman, B.F.; Dungu, B.; Smit, T.K. In vivo cross-protection to African horse sickness Serotypes 5 and 9 after vaccination with Serotypes 8 and 6. Vaccine 2010, 28, 6505–6517. [Google Scholar] [CrossRef] [PubMed]
- Weyer, C.T.; Grewar, J.D.; Burger, P.; Joone, C.; Lourens, C.; MacLachlan, N.J.; Guthrie, A.J. Dynamics of African horse sickness virus nucleic acid and antibody in horses following immunization with a commercial polyvalent live attenuated vaccine. Vaccine 2017, 35, 2504–2510. [Google Scholar] [CrossRef]
- Agüero, M.; Gómez-Tejedor, C.; Angeles Cubillo, M.; Rubio, C.; Romero, E.; Jiménez-Clavero, A. Real-time fluorogenic reverse transcription polymerase chain reaction assay for detection of African horse sickness virus. J. Vet. Diagn. Investig. 2008, 20, 325–328. [Google Scholar] [CrossRef] [Green Version]
- EURL, GL-LCV-07. Rev. 02. 22/06/2021 Standard Operating Procedure: RRT-PCR for African Horse Sickness Detection Method (Agüero et al. 2008). European Union Reference Laboratory for African Horse Sickness and Bluetongue Website. Available online: https://www.mapa.gob.es/en/ganaderia/temas/laboratorios/gl-lcv-07ed2jun2021rrt-pcrforahsdetectionmethodaguero2008_tcm38-576039.pdf (accessed on 23 November 2021).
- EURL, GL-LCV-14. Rev. 01. 22/06/2021. Eu Diagnostic Manual for African Horse Sickness and Bluetongue. European Union Reference Laboratory for African horse sickness and Bluetongue website. Available online: https://www.mapa.gob.es/en/ganaderia/temas/laboratorios/eudiagnosismanualahsbtrev01_tcm38-576045.pdf (accessed on 23 November 2021).
- OIE. 2018. Principles and Methods of Validation of Diagnostic Assays for Infectious Diseases. In: Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. Chapter 1.1.6. Available online: http://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/1.01.06_VALIDATION.pdf (accessed on 23 February 2022).
- EURL, GL-LCV-11. Rev. 02. 22/06/2021. Standard Operating Procedure: Sample Preparation for Orbivirus Isolation. European Union Reference Laboratory for African Horse Sickness and Bluetongue Website. Available online: https://www.mapa.gob.es/en/ganaderia/temas/laboratorios/gl-lcv-11ed2jun2021samplepreparationfororbivirusisolation_tcm38-576033.pdf (accessed on 23 November 2021).
- Barrat-Boyes, S.; MacLachlan, N.J. Dynamics of viralspread in bluetongue virus infected calves. Vet. Microbiol. 1994, 40, 361–371. [Google Scholar] [CrossRef]
- MacLachlan, N.J.; Jagels, G.; Rossitto, P.V.; Moore, P.F.; Heidner, H.W. The pathogenesis of experimental bluetongue virus infection of calves. Vet. Pathol. 1990, 27, 223–229. [Google Scholar] [CrossRef]
- EURL, GL-LCV-12. Rev. 02. 22/06/2021. Standard Operating Procedure: Orbivirus Isolation in Cell Culture. European Union Reference Laboratory for African Horse Sickness and Bluetongue Website. Available online: https://www.mapa.gob.es/en/ganaderia/temas/laboratorios/gl-lcv-12ed2jun2021orbivirusisolationincellculture_tcm38-576034.pdf (accessed on 23 November 2021).
- Ingenasa Eurofins. 2022. Technical Information about Antigen ELISA Ingezim PEA DAS. Available online: https://ingenasa.eurofins-technologies.com/home-es/productos/veterinaria/elisa-y-tests-r%C3%A1pidos-veterinaria/equino/pea-peste-equina-africana/ingezim-pea-das/ (accessed on 23 March 2022).
- EURL, GL-LCV-04. Rev. 02. 22/06/2021. Standard Operating Procedure: Detection of Antibodies Against African Horse Sickness Using A Blocking Elisa Method. European Union Reference Laboratory for African Horse Sickness and Bluetongue Website. Available online: https://www.mapa.gob.es/en/ganaderia/temas/laboratorios/gl-lcv-04ed2jun2021detectionofantibodiesagainstahsusingabelisamethod_tcm38-576040.pdf (accessed on 23 November 2021).
- Ingenasa Eurofins. 2022. Technical Information about Antibodies ELISA Ingezim AHSV Compac Plus. Available online: //ingenasa.eurofins-technologies.com/home-es/productos/veterinaria/elisa-y-tests-r%C3%A1pidos-veterinaria/equino/pea-peste-equina-africana/ingezim-ahsv-compac-plus/ (accessed on 23 March 2022).
- Durán-Ferrer, M.; Agüero, M.; Zientara, S.; Beck, C.; Lecollinet, S.; Sailleau, C.; Smith, S.; Potgieter, C.; Rueda, P.; Sastre, P.; et al. Assessment of reproducibility of a VP7 Blocking ELISA diagnostic test for African horse sickness. Transbound. Emerg. Dis. 2019, 66, 83–90. [Google Scholar] [CrossRef] [Green Version]
- EURL, GL-LCV-09. Rev. 02. 22/06/2021. Standard Operating Procedure: Detection of Antibodies Against Orbivirus Byseroneutralization Test (SNT). European Union Reference Laboratory for African Horse Sickness and Bluetongue Website. Available online: https://www.mapa.gob.es/en/ganaderia/temas/laboratorios/gl-lcv-09ed2jun2021detectionofantibodiesagainstorbivirusbysnt_tcm38-576032.pdf (accessed on 23 November 2021).
- Kärber, G. Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche. Arch. Exp. Pathol Pharmakol 1931, 162, 480–483. [Google Scholar] [CrossRef]
- Spearman, C. The Method of “Right and Wrong Cases” (ConstantStimuli) without Gauss’s Formula. Br. J. Psychol 1908, 2, 227–242. [Google Scholar] [CrossRef] [Green Version]
- Sergeant, ESG. Epitools Epidemiological Calculators. Ausvet. 2018. Available online: http://epitools.ausvet.com.au (accessed on 23 February 2022).
- MacLachlan, N.J.; Nunamaker, R.A.; Katz, J.B.; Sawyer, M.M.; Akita, G.Y.; Osburn, B.I.; Tabachnick, W.J. Detection of bluetongue virus in the blood of inoculated calves: Comparison of virus isolation, PCR assay, and in vitro feeding of Culicoides variipennis. Arch. Virol. 1994, 136, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Weyer, C.T.; Quan, M.; Joone, C.; Lourens, C.W.; MacLachlan, L.J.; Guthrie, A.J. African horse sickness in naturally infected, immunised horses. Equine Vet. J. 2012, 45, 117–119. [Google Scholar] [CrossRef] [PubMed]
- Maree, S.; Paweska, J.T. Preparation of recombinant African horse sickness virus VP7 antigen via a simple method and validation of a VP7-based indirect ELISA for the detection of group-specific IgG antibodies in horse sera. J. Virol. Methods 2005, 125, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Lelli, R.; Molini, U.; Ronchi, G.F.; Rossi, E.; Franchi, P.; Ulisse, S.; Armillotta, G.; Capista, S.; Khaiseb, S.; Di Ventura, M.; et al. Inactivated and adjuvanted vaccine for the control of the African horse sickness virus serotype 9 infection: Evaluation of efficacy in horses and guinea-pig model. Vet. Ital. 2013, 49, 89–98. [Google Scholar]
- Crafford, J.E.; Lourens, C.W.; Smit, T.K.; Gardner, I.A.; MacLachlan, N.J.; Guthrie, A.J. Serological response of foals to polyvalent and monovalent live-attenuated African horse sickness virus vaccines. Vaccine 2014, 32, 3611–3616. [Google Scholar] [CrossRef] [Green Version]
Parameter (Sample) | Test † | Sampling Scheme |
---|---|---|
Detection of virus in peripheral blood (EDTA blood sample) (Serum sample) * | GS-rRT-PCR TS-rRT-PCR (only vaccinated horses) Virus isolation in cell culture ELISA for Antigen detection (only in Experiment 1) | Horses #1n. #2n: 0.1.2.3. 4. 5.6.7.8.9.10 dpi Horse #3n:0.3.7.9.10 dpi Horses #4v #5v: 0.3.6.9. 13.16.21.24.27.30.34.37.41.43.44.45.48.50 dpv-C2 |
Antibody detection in sera of peripheral blood (Serum sample) | VP7-Blocking-ELISA (b-ELISA) Seroneutralization test (SN) | |
Post-mortem detection of virus in organs (Tissue homogenate sample) | GS-rRT-PCR TS-rRT-PCR (only vaccinated horses) Virus isolation in cell culture ELISA for Antigen detection | Euthanasia day: Horse #1n: 9 dpi; Horse #2n: 10 dpi; Horse #3: 10 dpi; Horse #4v: 14 dpi; Horse #5v: 16 dpi |
AHSV | Primers (F/R) and Probe | Sequence 5′-3′ |
---|---|---|
Serotype 1 | AHS-1F | GCAAGCGCTGGCACTTG |
AHS-1R | TTCGAACTCATTCCTTACATCAACA | |
AHS1P | FAM-AATGTCTTAGATCGTCAACT-MGB | |
Serotype 2 | AHS-2F | CGGAAACTYTGTATTGCCAAA |
AHS-2R | TTGTCRTCCTGATCAACCCTAA | |
AHS-2P | Cy5-TGAAGGTGCTTACCCGATCTTTCCACA-BBQ | |
Serotype 3 | AHS-3F | AATTATTACAGCGGAGAATGCAGTT |
AHS-3R | GGTTATGAGTGGGGTGCGA | |
AHS-3P | FAM-AGAGTTGAGGTTGCGGGA-MGB | |
Serotype 4 | AHS-4F | TGAGGTGGAACACGAYATGTC |
AHS-4R | GATATGCCCCCTCACAYCTGA | |
AHS-4P | VIC-TATCGGRATTTATGTACAATGAG-MGB | |
Serotype 5 | AHS-5F | GAAGAGACAGGCGATTCAAATGA |
AHS-5R | AAAGCCACCCTTTTTGGTACAAA | |
AHS-5P | NED -TGTTGARATGCTGAGGC-MGB | |
Serotype 6 | AHS-6F | AGCCAGGGCTTCTTTGCA |
AHS-6R | CTCATGTTCAACCCACTGTACATTAA | |
AHS-6P | VIC-GTCATCACCGTAAGCG-MGB | |
Serotype 7 | AHS-7F | AGCCAGGGCTTCTTTGCA |
AHS-7R | CTCATGTTCAACCCACTGTACATTAA | |
AHS-7P | VIC-GTCATCACCGTAAGCG-MGB | |
Serotype 8 | AHS-8F | GAAATTATCAGCGGACTGACTAAGAA |
AHS-8R | AAACATCTACCTTTTGCGAATCTTG | |
AHS-8P | NED-ACGTGATTCTTTTCCC-MGB | |
Serotype 9 | AHS-9F | TACTGTGTCGGTGAGGGATTTT |
AHS-9R | GCCACGACCGGATATGA | |
AHS-9P | FAM-AAACAAACGAAATGTGAA-MGB |
Sampling Date | Isolation (Serotype) † | GS-rRT-PCR (Ct) | ||||
---|---|---|---|---|---|---|
#1n | #2n | #3n | #1n | #2n | #3n | |
0 dpi | Nd | Nd | Nd | Neg | Neg | Neg |
1 dpi | Nd | Nd | -- | Neg | Neg | -- |
2 dpi | Nd | Nd | -- | Neg | Neg | -- |
3 dpi | Nd | Pos (S-9) | Nd | Neg | Inc (37.2) | Neg |
4 dpi | Pos (S-9) | Pos (S-9) | -- | Pos (32.3) | Pos (31.9) | -- |
5 dpi | Pos (S-9) | Pos (S-9) | -- | Pos (28.4) | Pos (27.8) | -- |
6 dpi | Pos (S-9) | Pos (S-9) | -- | Pos (25.8) | Pos (25.9) | -- |
7 dpi | Pos (S-9) | Pos (S-9) | Pos (S-9) | Pos (22.5) | Pos (22.5) | Pos * (26) (S-9) |
8 dpi | Pos (S-9) | Pos (S-9) | -- | Pos (18.8) | Pos (19.7) | -- |
9 dpi | Pos (S-9) | Pos (S-9) | Pos (S-9) | Pos (19.1) | Pos (17.8) | Pos * (23.5) (S-9) |
10dpi | -- | Pos (S-9) | Pos (S-9) | -- | Pos (18.9) | Pos * (21.5) (S-9) |
Sampling Date | Isolation (Serotype) † | GS-rRT-PCR (Ct) | TS-rRT-PCR * (Ct) | |||
---|---|---|---|---|---|---|
#4v | #5v | #4v | #5v | #4v | #5v | |
0 dpv | Nd | Nd | Neg | Neg | Nd | Nd |
3 dpv | Nd | Nd | Neg | Neg | Nd | Nd |
6 dpv | Nd | Nd | Neg | Neg | Nd | Nd |
9 dpv | Nd | Nd | Neg | Neg | Nd | Nd |
13 dpv | Neg | Neg | Pos (34.0) | Neg | Pos S-8 (31.6) | Neg |
16 dpv | Pos (S-8) | Neg | Pos (31.5) | Neg | Inc S-6 (35.5) Pos S-8 (28.8) | Neg |
21 dpv | Neg | Neg | Pos (30.7) | Pos (36.5) | Inc S-6 (36.1) Pos S-8 (28.2) | Neg |
24 dpv | Neg | Neg | Pos (32.2) | Pos (31.4) | Inc S-6 (38.2) Pos S-8 (28.8) | Pos S-2 (32.7) |
27 dpv | Neg | Neg | Pos (33.5) | Pos (33.0) | Pos S-8 (31.3) | Pos S-2 (34.7) |
30 dpv | Neg | Neg | Pos (34.5) | Pos (33.5) | Pos S-8 (32.6) | Inc S-2 (35.1) |
34 dpv/0 dpi | Neg | Neg | Pos (33.3) | Pos (33.1) | Pos S-2 (33.6) | Inc S-2 (36.6) |
37 dpv / 3 dpi | Pos (S-2) | Neg | Pos (32.1) | Pos (32.0) | Inc S-2 (38) | Pos S-2 (34) |
41 dpv/7 dpi | Neg | Neg | Pos (32.1) | Pos (33.4) | Pos S-2 (32.9) | Pos S-2 (34.4) |
43 dpv/9 dpi | Neg | Neg | Pos (32.4) | Pos (33.5) | Pos S-2 (33.2) | Pos S-2 (35) |
45 dpv/11 dpi | Neg | Neg | Pos (32.2) | Pos (33.0) | Pos S-2 (34.9) | Inc S-2 (35.5) |
48 dpv/14 dpi | Neg | -- | Pos (35.3) | -- | Pos S-2 (35.0) | -- |
50 dpv/16 dpi | -- | Pos (S-9) | -- | Pos (29.6) | -- | Pos S-9 (31.4) |
Isolation (Serotype) † | ELISA for Antigen Detection | GS-rRT-PCR (Ct) | |||||||
---|---|---|---|---|---|---|---|---|---|
#1n | #2n | #3n | #1n | #2n | #3n | #1n | #2n | #3n | |
Heart | Pos (S-9) | Neg | Neg | Pos | Pos | Pos | Pos (21) | Pos (22.3) | Pos (22.5) |
Lung | Pos (S-9) | Pos (S-9) | Pos (S-9) | Pos | Pos | Pos | Pos (18.6) | Pos (19.6) | Pos (22.8) |
Mediastinal lymph node | Neg | Pos (S-9) | Pos (S-9) | Pos | Pos | Pos | Pos (25.5) | Pos (25.3) | Pos (29.4) |
Liver | Neg | Pos (S-9) | Pos (S-9) | Pos | Pos | Pos | Pos (22.4) | Pos (21.3) | Pos (22.1) |
Spleen | Pos (S-9) | Pos (S-9) | Pos (S-9) | Pos | Pos | Pos | Pos (21.8) | Pos (18.2) | Pos (19.9) |
Kidney | Neg | Pos (S-9) | Pos (S-9) | Pos | Pos | Pos | Pos (24.6) | Pos (24.2) | Pos (28.3) |
Mesenteric lymph node | Neg | Pos (S-9) | Pos (S-9) | Neg | Pos | Pos | Nd | Pos (23.6) | Pos (28.4) |
Isolation (Serotype) † | ELISA for Antigen Detection | GS-rRT-PCR (Ct) | TS-rRT-PCR (Ct) | |||||
---|---|---|---|---|---|---|---|---|
#4v | #5v | #4v | #5v | #4v | #5v | #4v | #5v | |
Heart | Neg | Neg | Nd | Nd | Inc (37.5) | Pos (31.7) | Neg | Inc S-9 (35.9) |
Lung | Neg | Neg | Nd | Nd | Pos (35) | Pos (28.2) | Neg | Pos S-9 (31.8) |
Mediastinal lymph node | Neg | Neg | Nd | Nd | Inc (37.4) | Pos (31.8) | Neg | Pos S-2 (33.4) Pos S-9 (33.1) |
Liver | Neg | Neg | Nd | Nd | Pos (35.2) | Pos (29.7) | Pos S-2 (35) Pos S-9 (34.8) | Pos S-9 (30.4) |
Spleen | Neg | Pos (S-9) | Neg | Neg | Pos (30.6) | Pos (25.1) | Pos S-2 (30.8) Pos S-8 (33.7) | Pos S-2 (29) Pos S-9 (28.4) |
Kidney | Neg | Neg | Nd | Nd | Neg | Inc (36.5) | Nd | Pos S-9 (34.1) |
Mesenteric lymph node | Neg | Neg | Nd | Nd | Neg | Pos (32.9) | Nd | Inc S-2 (39.9) Pos S-9 (32.3) |
Horse #4v | |||||||||||
Titre † to Serotypes Included in Comb2 | Titre † to Serotypes Included in Comb1 | Titre † to Serotypes Not Included | |||||||||
Day pv-C2 | Day Pv-C1 | Day pi | S-2 | S-6 | S-7 | S-8 | S-1 | S-3 | S-4 | S-5 | S-9 |
21 | 0 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | |
24 | 3 | <5 | 7.5 | <5 | 7.5 | <5 | <5 | <5 | <5 | <5 | |
27 | 6 | <5 | 15 | <5 | 7.5 | <5 | <5 | <5 | <5 | <5 | |
30 | 9 | <5 | 5 | <5 | 7.5 | <5 | <5 | 5 | <5 | <5 | |
34 | 13 | 0 | <5 | 7.5 | <5 | 15 | <5 | <5 | <5 | <5 | <5 |
37 | 16 | 3 | <5 | 5 | <5 | 10 | <5 | <5 | <5 | <5 | <5 |
41 | 20 | 7 | <5 | 5 | <5 | 15 | <5 | <5 | <5 | <5 | <5 |
43 | 22 | 9 | <5 | 10 | <5 | 15 | <5 | <5 | 7.5 | 7.5 | <5 |
45 | 24 | 11 | 7.5 | 30 | <5 | 15 | <5 | <5 | 5 | 5 | <5 |
48 | 27 | 14 | 30 | 20 | <5 | 15 | 7.5 | <5 | 10 | 7.5 | <5 |
Horse #5v | |||||||||||
Titre † to Serotypes included in Comb2 | Titre † to Serotypes included in Comb1 | Titre † to Serotypes not included | |||||||||
Day pv-C2 | Day Pv-C1 | Day pi | S-2 | S-6 | S-7 | S-8 | S-1 | S-3 | S-4 | S-5 | S-9 |
21 | 0 | Nd | Nd | Nd | Nd | Nd | Nd | Nd | Nd | Nd | |
24 | 3 | Nd | Nd | Nd | Nd | Nd | Nd | Nd | Nd | Nd | |
27 | 6 | Nd | Nd | Nd | Nd | Nd | Nd | Nd | Nd | Nd | |
30 | 9 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | |
34 | 13 | 0 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 |
37 | 16 | 3 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 |
41 | 20 | 7 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 |
43 | 22 | 9 | 7.5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 |
45 | 24 | 11 | 15 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 |
50 | 29 | 16 | 15 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durán-Ferrer, M.; Villalba, R.; Fernández-Pacheco, P.; Tena-Tomás, C.; Jiménez-Clavero, M.-Á.; Bouzada, J.-A.; Ruano, M.-J.; Fernández-Pinero, J.; Arias, M.; Castillo-Olivares, J.; et al. Clinical, Virological and Immunological Responses after Experimental Infection with African Horse Sickness Virus Serotype 9 in Immunologically Naïve and Vaccinated Horses. Viruses 2022, 14, 1545. https://doi.org/10.3390/v14071545
Durán-Ferrer M, Villalba R, Fernández-Pacheco P, Tena-Tomás C, Jiménez-Clavero M-Á, Bouzada J-A, Ruano M-J, Fernández-Pinero J, Arias M, Castillo-Olivares J, et al. Clinical, Virological and Immunological Responses after Experimental Infection with African Horse Sickness Virus Serotype 9 in Immunologically Naïve and Vaccinated Horses. Viruses. 2022; 14(7):1545. https://doi.org/10.3390/v14071545
Chicago/Turabian StyleDurán-Ferrer, Manuel, Rubén Villalba, Paloma Fernández-Pacheco, Cristina Tena-Tomás, Miguel-Ángel Jiménez-Clavero, José-Antonio Bouzada, María-José Ruano, Jovita Fernández-Pinero, Marisa Arias, Javier Castillo-Olivares, and et al. 2022. "Clinical, Virological and Immunological Responses after Experimental Infection with African Horse Sickness Virus Serotype 9 in Immunologically Naïve and Vaccinated Horses" Viruses 14, no. 7: 1545. https://doi.org/10.3390/v14071545
APA StyleDurán-Ferrer, M., Villalba, R., Fernández-Pacheco, P., Tena-Tomás, C., Jiménez-Clavero, M. -Á., Bouzada, J. -A., Ruano, M. -J., Fernández-Pinero, J., Arias, M., Castillo-Olivares, J., & Agüero, M. (2022). Clinical, Virological and Immunological Responses after Experimental Infection with African Horse Sickness Virus Serotype 9 in Immunologically Naïve and Vaccinated Horses. Viruses, 14(7), 1545. https://doi.org/10.3390/v14071545