Collaborative Referral Model to Achieve Hepatitis C Micro-Elimination in Methadone Maintenance Treatment Patients during the COVID-19 Pandemic
Abstract
:1. Introduction
2. Materials and Methods
2.1. MMT Patients
2.2. Collaboration of a Multidisciplinary Team
2.2.1. Referral-for-Diagnosis Stage
2.2.2. On-Site-Diagnosis Stage
2.3. Assessment of Treatment Responses
2.4. Statistical Analysis
3. Results
3.1. Characteristics of Participants
3.2. Effects of On-Site Diagnosis after Referral-for-Diagnosis Failure
3.3. Treatment Outcomes of 129 Patients Receiving DAA
3.4. Overall Performance of HCV Care Cascade in DAA Era
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blach, S.; Zeuzem, S.; Manns, M.; Altraif, I.; Duberg, A.S.; Muljono, D.H.; Waked, I.; Alavian, S.M.; Lee, M.H.; Negro, F.; et al. Polaris Observatory HCV Collaborators. Global prevalence and genotype distribution of hepatitis C virus infection in 2015: A modelling study. Lancet Gastroenterol. Hepatol. 2017, 2, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Grebely, J.; Larney, S.; Peacock, A.; Colledge, S.; Leung, J.; Hickman, M.; Vickerman, P.; Blach, S.; Cunningham, E.B.; Dumchev, K.; et al. Global, regional, and country-level estimates of hepatitis C infection among people who have recently injected drugs. Addiction 2019, 114, 150–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Degenhardt, L.; Peacock, A.; Colledge, S.; Leung, J.; Grebely, J.; Vickerman, P.; Stone, J.; Cunningham, E.B.; Trickey, A.; Dumchev, K.; et al. Global prevalence of injecting drug use and sociodemographic characteristics and prevalence of HIV, HBV, and HCV in people who inject drugs: A multistage systematic review. Lancet Glob. Health 2017, 5, e1192–e1207. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, M.H.; Tsai, J.J.; Hsieh, M.Y.; Huang, C.F.; Yeh, M.L.; Yang, J.F.; Chang, K.; Lin, W.R.; Lin, C.Y.; Chen, T.C.; et al. Hepatitis C virus infection among injection drug users with and without human immunodeficiency virus co-infection. PLoS ONE 2014, 9, e94791. [Google Scholar] [CrossRef]
- WHO. Global Health Sector Strategy on Viral Hepatitis 2016–2021. Towards Ending Viral Hepatitis; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Wu, G.H.; Pwu, R.F.; Chen, S.C.; Chen, D.S. Taiwan is on track of accelerating hepatitis C elimination by 2025. Liver Int. 2020, 40, 1506–1507. [Google Scholar] [CrossRef]
- Matičič, M.; Lombardi, A.; Mondelli, M.U.; Colombo, M.; ESCMID Study Group for Viral Hepatitis (ESGVH). Elimination of hepatitis C in Europe: Can WHO targets be achieved? Clin. Microbiol. Infect. 2020, 26, 818–823. [Google Scholar] [CrossRef]
- Mahmud, S.; Mumtaz, G.R.; Chemaitelly, H.; Al Kanaani, Z.; Kouyoumjian, S.P.; Hermez, J.G.; Abu-Raddad, L.J. The status of hepatitis C virus infection among people who inject drugs in the Middle East and North Africa. Addiction 2020, 115, 1244–1262. [Google Scholar] [CrossRef] [Green Version]
- Zelenev, A.; Li, J.; Mazhnaya, A.; Basu, S.; Altice, F.L. Hepatitis C virus treatment as prevention in an extended network of people who inject drugs in the USA: A modelling study. Lancet Infect. Dis. 2018, 18, 215–224. [Google Scholar] [CrossRef]
- Trickey, A.; Fraser, H.; Lim, A.G.; Peacock, A.; Colledge, S.; Walker, J.G.; Leung, J.; Grebely, J.; Larney, S.; Martin, N.K.; et al. The contribution of injection drug use to hepatitis C virus transmission globally, regionally, and at country level: A modelling study. Lancet Gastroenterol. Hepatol. 2019, 4, 435–444. [Google Scholar] [CrossRef] [Green Version]
- Grebely, J.; Tran, L.; Degenhardt, L.; Dowell-Day, A.; Santo, T.; Larney, S.; Hickman, M.; Vickerman, P.; French, C.; Butler, K.; et al. Association between opioid agonist therapy and testing, treatment uptake, and treatment outcomes for hepatitis c infection among people Who Inject Drugs: A Systematic review and meta-analysis. Clin. Infect. Dis. 2021, 73, e107–e118. [Google Scholar] [CrossRef]
- Jones, L.; Atkinson, A.; Bates, G.; McCoy, E.; Porcellato, L.; Beynon, C.; McVeigh, J.; Bellis, M.A. Views and experiences of hepatitis C testing and diagnosis among people who inject drugs: Systematic review of qualitative research. Int. J. Drug Policy 2014, 25, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Tai, C.M.; Yen, Y.C.; Bair, M.J.; Tseng, C.H.; Chang, T.T.; Huang, C.F.; Yeh, M.L.; Dai, C.Y.; Chuang, W.L.; Yu, M.L.; et al. Integrated care for methadone maintenance patients with hepatitis C virus infection. Kaohsiung J. Med. Sci. 2019, 35, 501–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falade-Nwulia, O.; Suarez-Cuervo, C.; Nelson, D.R.; Fried, M.W.; Segal, J.B.; Sulkowski, M.S. oral direct-acting agent therapy for Hepatitis C virus infection: A systematic review. Ann. Intern. Med. 2017, 166, 637–648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hajarizadeh, B.; Cunningham, E.B.; Reid, H.; Law, M.; Dore, G.J.; Grebely, J. Direct-acting antiviral treatment for hepatitis C among people who use or inject drugs: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2018, 3, 754–767. [Google Scholar] [CrossRef]
- Grebely, J.; Dalgard, O.; Conway, B.; Cunningham, E.B.; Bruggmann, P.; Hajarizadeh, B.; Amin, J.; Bruneau, J.; Hellard, M.; Litwin, A.H.; et al. Sofosbuvir and velpatasvir for hepatitis C virus infection in people with recent injection drug use (SIMPLIFY): An open-label, single-arm, phase 4, multicentre trial. Lancet Gastroenterol. Hepatol. 2018, 3, 153–161. [Google Scholar] [CrossRef] [Green Version]
- Palmateer, N.E.; McAuley, A.; Dillon, J.F.; McDonald, S.; Yeung, A.; Smith, S.; Barclay, S.; Hayes, P.; Shepherd, S.J.; Gunson, R.N.; et al. Reduction in the population prevalence of hepatitis C virus viraemia among people who inject drugs associated with scale-up of direct-acting anti-viral therapy in community drug services: Real-world data. Addiction 2021, 116, 2893–2907. [Google Scholar] [CrossRef] [PubMed]
- Polaris Observatory HCV Collaborators. Global change in hepatitis C virus prevalence and cascade of care between 2015 and 2020: A modelling study. Lancet Gastroenterol. Hepatol. 2022, 7, 396–415. [Google Scholar] [CrossRef]
- Shakeri, A.; Konstantelos, N.; Chu, C.; Antoniou, T.; Feld, J.; Suda, K.J.; Tadrous, M. Global Utilization Trends of Direct Acting Antivirals (DAAs) during the COVID-19 pandemic: A time series analysis. Viruses 2021, 13, 1314. [Google Scholar] [CrossRef]
- Di Marco, L.; La Mantia, C.; Di Marco, V. Hepatitis C: Standard of Treatment and what to do for global elimination. Viruses 2022, 14, 505. [Google Scholar] [CrossRef]
- Bajis, S.; Dore, G.J.; Hajarizadeh, B.; Cunningham, E.B.; Maher, L.; Grebely, J. Interventions to enhance testing, linkage to care and treatment uptake for hepatitis C virus infection among people who inject drugs: A systematic review. Int. J. Drug Policy 2017, 47, 34–46. [Google Scholar] [CrossRef]
- Lazarus, J.V.; Pericàs, J.M.; Picchio, C.; Cernosa, J.; Hoekstra, M.; Luhmann, N.; Maticic, M.; Read, P.J.; Robinson, E.M.; Dillon, J.F. We know DAAs work, so now what? Simplifying models of care to enhance the hepatitis C cascade. J. Intern. Med. 2019, 286, 503–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Draper, B.L.; Htay, H.; Pedrana, A.; Yee, W.L.; Howell, J.; Pyone Kyi, K.; Naing, W.; Sanda Aung, K.; Markby, J.; Easterbrook, P.; et al. Outcomes of the CT2 study: A ‘one-stop-shop’ for community-based hepatitis C testing and treatment in Yangon, Myanmar. Liver Int. 2021, 41, 2578–2589. [Google Scholar] [CrossRef]
- Huang, C.F.; Wu, P.F.; Yeh, M.L.; Huang, C.I.; Liang, P.C.; Hsu, C.T.; Hsu, P.Y.; Liu, H.Y.; Huang, Y.C.; Lin, Z.Y.; et al. Scaling up the in-hospital hepatitis C virus care cascade in Taiwan. Clin. Mol. Hepatol. 2021, 27, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Mirzazadeh, A.; Hosseini-Hooshyar, S.; Shahesmaeili, A.; Sharafi, H.; Shafiei, M.; Zarei, J.; Mousavian, G.; Tavakoli, F.; Ghalekhani, N.; Shokoohi, M.; et al. An on-site community-based model for hepatitis C screening, diagnosis, and treatment among people who inject drugs in Kerman, Iran: The Rostam study. Int. J. Drug Policy. 2022, 102, 103580. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.Y.; Chen, C.T.; Shih, Y.L.; Tsai, P.C.; Hsieh, M.H.; Huang, C.F.; Yeh, M.L.; Huang, C.I.; Wang, S.C.; Tsai, Y.S.; et al. Changing epidemiology and viral interplay of hepatitis B, C and D among injecting drug user-dominant prisoners in Taiwan. Sci. Rep. 2021, 11, 8554. [Google Scholar] [CrossRef] [PubMed]
- Socías, M.E.; Ti, L.; Dong, H.; Shoveller, J.; Kerr, T.; Montaner, J.; Milloy, M.J. High prevalence of willingness to use direct-acting antiviral-based regimens for hepatitis C virus (HCV) infection among HIV/HCV coinfected people who use drugs. HIV Med. 2017, 18, 647–654. [Google Scholar] [CrossRef]
- Liu, C.H.; Sun, H.Y.; Liu, C.J.; Sheng, W.H.; Hsieh, S.M.; Lo, Y.C.; Liu, W.C.; Su, T.H.; Yang, H.C.; Hong, C.M.; et al. Generic velpatasvir plus sofosbuvir for hepatitis C virus infection in patients with or without human immunodeficiency virus coinfection. Aliment. Pharmacol. Ther. 2018, 47, 1690–1698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
1. Integration of a multidisciplinary team to increase collaboration among three departments. |
A multidisciplinary team was established, including MMT specialists, hepatologists, ID specialists and case managers. |
A consensus meeting was held before referrals began, to increase awareness of HCV treatment among MMT specialists and to avoid stigmatizing situations between the hepatologists or ID specialists and MMT patients. Regular meetings of the team were held monthly to overcome barriers to referral and treatment. |
2. Education of MMT patients to help overcome patients’ lack of awareness or unwillingness to accept HCV treatment. |
MMT case managers and MMT specialists educated the patients to improve their knowledge about HCV treatment, and also assessed the barriers to referral. |
3. Adoption of on-site diagnosis to replace r eferral-for-diagnosis method. |
On-site diagnosis increases MMT patients’ acceptance of HCV RNA testing and enhances treatment uptake after referral-for-diagnosis failure. |
4. Four-week strategy to reduce hospital visits. |
MMT patients were required to attend MMT clinic every 4 weeks. For patient convenience, hepatologist or ID specialist appointments were scheduled for HCV RNA testing or DAA therapy at the 4-week visits and usually on the same day as the MMT return visit. In addition, if patients forgot or neglected to return to the liver or ID clinic for DAA therapy or to check HCV RNA, MMT case managers reminded patients to complete the treatment course. |
5. Simplified process to reduce outpatient waiting time. |
Patients are often impatient while waiting to see a doctor or examination. Reducing outpatient waiting time helps to increase acceptance of referral and adherence to treatment. |
6. Collaboration with correctional institutions. |
If patients were incarcerated or dropped out from the MMT center before completing the DAA treatment course, we collaborated with other correctional institutions to complete the treatment course, usually including blood tests for SVR12. |
7. Routine referral model. |
Because patients at the MMT center are dynamic, the referral model ensures that assessment of referral can be applied to all new patients at first visit to the MMT center. |
Characteristics | Refused Referral | Accepted Referral | p Value |
---|---|---|---|
(n = 96) | (n = 93) | ||
Age, years | 49.1 ± 7.4 | 49.3 ± 7.5 | 0.879 |
Male sex | 86 (89.6) | 85 (91.4) | 0.671 |
Education (senior high school or higher) | 42 (43.8) | 41 (44.1) | 0.963 |
Employment | 70 (72.9) | 71 (76.3) | 0.588 |
Alcohol consumption | 23 (24.0) | 28 (30.1) | 0.341 |
Smoking | 87 (90.6) | 85 (91.4) | 0.853 |
HBV coinfection | 17 (17.7) | 21 (22.6) | 0.403 |
HIV coinfection | 8 (8.3) | 21 (22.6) | 0.007 |
Liver cirrhosis | 3 (3.1) | 7 (7.5) | 0.177 |
Prior interferon experience | 1 (1.0) | 5 (5.4) | 0.089 |
MMT duration, year | 4.7 ± 4.1 | 5.0 ± 3.9 | 0.350 |
Active drug user | 74 (77.1) | 69 (74.2) | 0.643 |
n/N (%) | |
---|---|
DAA regimens | |
SOF/LDV | 77/129 (59.7) |
GLE/PIB | 52/129 (40.3) |
Complete treatment | 128/129 (99.2) |
EOTVR | 124/129 (96.1) |
SVR12 (ITT) | 117/129 (90.7) |
SVR12 (PP) | 117/121 (96.7) |
Reasons for non-SVR12 | n = 12 |
Virologic failure | |
Non-response | 2 |
Relapse | 2 |
Non-virologic failure | |
Stopped early | 1 |
Lost to follow-up | 7 |
Characteristics | Referral-for-Diagnosis Stage | On-Site Diagnosis Stage | p Value |
---|---|---|---|
(n = 77) | (n = 52) | ||
Age, years | 48.8 ± 7.7 | 49.7 ± 7.2 | 0.607 |
Male sex | 77 (90.9) | 46 (88.5) | 0.651 |
Education (senior high school or higher) | 34 (44.2) | 23 (44.2) | 0.993 |
Employment | 57 (74.0) | 40 (76.9) | 0.709 |
Alcohol consumption | 25 (32.5) | 11 (21.2) | 0.160 |
Smoking | 73 (94.8) | 50 (96.2) | 0.721 |
HBV coinfection | 11 (14.3) | 5 (9.6) | 0.430 |
HIV coinfection | 19 (24.7) | 2 (3.8) | 0.002 |
Liver cirrhosis | 7 (9.1) | 3 (5.8) | 0.489 |
Prior interferon experience | 5 (6.5) | 1 (1.9) | 0.227 |
MMT duration, year | 4.6 ± 3.8 | 4.5 ± 4.3 | 0.190 |
Active drug user | 54 (70.1) | 40 (76.9) | 0.395 |
AST, IU/L | 58.6 ± 45.3 | 54.6 ± 50.1 | 0.706 |
ALT, IU/L | 62.6 ± 57.9 | 57.2 ± 39.4 | 0.224 |
White cell count ×103/μL | 6.3 ± 2.1 | 6.9 ± 1.9 | 0.400 |
Hemoglobin, g/dL | 14.1 ± 1.9 | 14.6 ± 1.4 | 0.186 |
Platelet count, ×103/μL | 195.5 ± 79.0 | 194.9 ± 72.1 | 0.754 |
Albumin, g/dL | 4.2 ± 0.4 | 4.3 ± 0.4 | 0.878 |
Total bilirubin, mg/dL | 0.6 ± 0.3 | 0.7 ± 0.3 | 0.158 |
Baseline HCVRNA, log IU | 6.1 ± 1.0 | 6.3 ± 0.7 | 0.107 |
HCV genotype, | 0.458 | ||
1/2/3/6 | 27 (35.1)/12 (15.6)/5 (6.5)/29 (37.7) | 20 (38.5)/8 (15.4)/0 (0)/24 (46.2) | |
1 + 2/unclassified | 2 (2.6)/2 (2.6) | 0 (0) | |
SVR 12 | |||
ITT | 70/77 (90.9) | 47/52 (90.4) | 0.920 |
PP | 70/73 (95.9) | 47/48 (97.9) | 0.542 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tai, C.-M.; Huang, C.-K.; Changchien, T.-C.; Lin, P.-C.; Wang, D.-W.; Chang, T.-T.; Chan, H.-W.; Chen, T.-H.; Tseng, C.-H.; Chen, C.-C.; et al. Collaborative Referral Model to Achieve Hepatitis C Micro-Elimination in Methadone Maintenance Treatment Patients during the COVID-19 Pandemic. Viruses 2022, 14, 1637. https://doi.org/10.3390/v14081637
Tai C-M, Huang C-K, Changchien T-C, Lin P-C, Wang D-W, Chang T-T, Chan H-W, Chen T-H, Tseng C-H, Chen C-C, et al. Collaborative Referral Model to Achieve Hepatitis C Micro-Elimination in Methadone Maintenance Treatment Patients during the COVID-19 Pandemic. Viruses. 2022; 14(8):1637. https://doi.org/10.3390/v14081637
Chicago/Turabian StyleTai, Chi-Ming, Chun-Kai Huang, Te-Chang Changchien, Po-Chun Lin, Deng-Wu Wang, Ting-Ting Chang, Hsue-Wei Chan, Tzu-Haw Chen, Cheng-Hao Tseng, Chih-Cheng Chen, and et al. 2022. "Collaborative Referral Model to Achieve Hepatitis C Micro-Elimination in Methadone Maintenance Treatment Patients during the COVID-19 Pandemic" Viruses 14, no. 8: 1637. https://doi.org/10.3390/v14081637
APA StyleTai, C. -M., Huang, C. -K., Changchien, T. -C., Lin, P. -C., Wang, D. -W., Chang, T. -T., Chan, H. -W., Chen, T. -H., Tseng, C. -H., Chen, C. -C., Tsai, C. -T., Sie, Y. -T., Yen, Y. -C., & Yu, M. -L. (2022). Collaborative Referral Model to Achieve Hepatitis C Micro-Elimination in Methadone Maintenance Treatment Patients during the COVID-19 Pandemic. Viruses, 14(8), 1637. https://doi.org/10.3390/v14081637