Evaluation of EPISEQ SARS-CoV-2 and a Fully Integrated Application to Identify SARS-CoV-2 Variants from Several Next-Generation Sequencing Approaches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Samples
2.2. Sequencing
2.3. Sequencing Data Export and Analysis
2.4. Data Analysis
3. Results
3.1. EPISEQ® SARS-CoV-2 Application
3.2. Validation of EPISEQ SARS-CoV-2
3.2.1. SARS-CoV-2 Genome Coverage
3.2.2. SARS-CoV-2 Variant Call
3.2.3. SARS-CoV-2 Whole-Genome Consensus Sequence
3.2.4. SARS-CoV-2 Spike Protein Mutations
3.3. Comparative Performance of Sequencing Platforms and Kits Using EPISEQ SARS-CoV-2
3.3.1. SARS-CoV-2 Genome Coverage
3.3.2. SARS-CoV-2 Variant Call
3.3.3. SARS-CoV-2 Amino Acid and Nucleotide Mutations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Worobey, M.; Pekar, J.; Larsen, B.B.; Nelson, M.I.; Hill, V.; Joy, J.B.; Rambaut, A.; Suchard, M.A.; Wertheim, J.O.; Lemey, P. The Emergence of SARS-CoV-2 in Europe and North America. Science 2020, 370, 564–570. [Google Scholar] [CrossRef] [PubMed]
- Charre, C.; Ginevra, C.; Sabatier, M.; Regue, H.; Destras, G.; Brun, S.; Burfin, G.; Scholtes, C.; Morfin, F.; Valette, M.; et al. Evaluation of NGS-Based Approaches for SARS-CoV-2 Whole Genome Characterisation. Virus Evol. 2020, 6, veaa075. [Google Scholar] [CrossRef] [PubMed]
- Chiara, M.; D’Erchia, A.M.; Gissi, C.; Manzari, C.; Parisi, A.; Resta, N.; Zambelli, F.; Picardi, E.; Pavesi, G.; Horner, D.S.; et al. Next Generation Sequencing of SARS-CoV-2 Genomes: Challenges, Applications and Opportunities. Brief. Bioinform. 2021, 22, 616–630. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Chen, Z.; Chen, W.; Chen, X.; Hosseini, M.; Yang, Z.; Li, J.; Ho, D.; Turay, D.; Gheorghe, C.P.; et al. A Benchmarking Study of SARS-CoV-2 Whole-Genome Sequencing Protocols Using COVID-19 Patient Samples. iScience 2021, 24, 102892. [Google Scholar] [CrossRef]
- Wang, M.; Fu, A.; Hu, B.; Tong, Y.; Liu, R.; Liu, Z.; Gu, J.; Xiang, B.; Liu, J.; Jiang, W.; et al. Nanopore Targeted Sequencing for the Accurate and Comprehensive Detection of SARS-CoV-2 and Other Respiratory Viruses. Small 2020, 16, 2002169. [Google Scholar] [CrossRef]
- De Maio, N.; Walker, C.; Borges, R.; Weilguny, L.; Slodkowicz, G.; Goldman, N. Issues with SARS-CoV-2 Sequencing Data. Available online: https://virological.org/t/issues-with-sars-cov-2-sequencing-data/473 (accessed on 15 March 2022).
- Yutao, F. SARS-CoV-2 Samples from Same Early COVID-19 Patients Were Sequenced Repeatedly with Errors Distorting Phylogenetic Trees. Available online: https://virological.org/t/sars-cov-2-samples-from-same-early-covid-19-patients-were-sequenced-repeatedly-with-errors-distorting-phylogenetic-trees/434 (accessed on 15 March 2022).
- Kreier, F. Deltacron: The Story of the Variant That Wasn’t. Nature 2022, 602, 19. [Google Scholar] [CrossRef]
- Maxmen, A. Omicron Blindspots: Why It’s Hard to Track Coronavirus Variants. Nature 2021, 600, 579. [Google Scholar] [CrossRef]
- Pekar, J.; Parker, E.; Havens, J.L.; Suchard, M.A.; Andersen, K.G.; Moshiri, N.; Worobey, M.; Rambaut, A.; Wertheim, J.O. Evidence Against the Veracity of SARS-CoV-2 Genomes Intermediate between Lineages A and B. Available online: https://virological.org/t/evidence-against-the-veracity-of-sars-cov-2-genomes-intermediate-between-lineages-a-and-b/754 (accessed on 15 March 2022).
- Sanderson, T.; Barrett, J.C. Variation at Spike Position 142 in SARS-CoV-2 Delta Genomes Is a Technical Artifact Caused by Dropout of a Sequencing Amplicon. Wellcome Open Res. 2021, 6, 305. [Google Scholar] [CrossRef]
- Davis, J.J.; Long, S.W.; Christensen, P.A.; Olsen, R.J.; Olson, R.; Shukla, M.; Subedi, S.; Stevens, R.; Musser, J.M. Analysis of the ARTIC Version 3 and Version 4 SARS-CoV-2 Primers and Their Impact on the Detection of the G142D Amino Acid Substitution in the Spike Protein. Microbiol. Spectr. 2021, 9, e0180321. [Google Scholar] [CrossRef]
- GISAID—HCov19 Variants. Available online: https://www.gisaid.org/hcov19-variants// (accessed on 29 March 2022).
- Shu, Y.; McCauley, J. GISAID: Global Initiative on Sharing All Influenza Data—From Vision to Reality. Eurosurveill 2017, 22, 30494. [Google Scholar] [CrossRef] [Green Version]
- Tilloy, V.; Cuzin, P.; Leroi, L.; Guérin, E.; Durand, P.; Alain, S. ASPICov: An Automated Pipeline for Identification of SARS-Cov2 Nucleotidic Variants. PLoS ONE 2022, 17, e0262953. [Google Scholar] [CrossRef]
- Wagner, D.D.; Marine, R.L.; Ramos, E.; Ng, T.F.F.; Castro, C.J.; Okomo-Adhiambo, M.; Harvey, K.; Doho, G.; Kelly, R.; Jain, Y.; et al. VPipe: An Automated Bioinformatics Platform for Assembly and Management of Viral Next-Generation Sequencing Data. Microbiol. Spectr. 2022, 10, e0256421. [Google Scholar] [CrossRef]
- Rueca, M.; Giombini, E.; Messina, F.; Bartolini, B.; Di Caro, A.; Capobianchi, M.R.; Gruber, C.E. The Easy-to-Use SARS-CoV-2 Assembler for Genome Sequencing: Development Study. JMIR Bioinform. Biotech. 2022, 3, e31536. [Google Scholar] [CrossRef]
- Farkas, C.; Mella, A.; Turgeon, M.; Haigh, J.J. A Novel SARS-CoV-2 Viral Sequence Bioinformatic Pipeline Has Found Genetic Evidence That the Viral 3′ Untranslated Region (UTR) Is Evolving and Generating Increased Viral Diversity. Front. Microbiol. 2021, 12, 665041. [Google Scholar] [CrossRef]
- Advancing Real-Time Infection Control (ARTIC) Network—ARTIC Network. Available online: https://artic.network/ (accessed on 29 March 2022).
- Gautreau, I. NEBNext® ARTIC Protocols Collection. Available online: https://www.protocols.io/view/nebnext-artic-protocols-collection-bw2apgae (accessed on 29 March 2022).
- Quick, J. NCoV-2019 Sequencing Protocol v2 (GunIt). Available online: https://www.protocols.io/view/ncov-2019-sequencing-protocol-v2-bdp7i5rn (accessed on 29 March 2022).
- Genepii Seqmet. Available online: https://github.com/genepii/seqmet (accessed on 7 April 2022).
- Bal, A.; Simon, B.; Destras, G.; Chalvignac, R.; Semanas, Q.; Oblette, A.; Queromes, G.; Fanget, R.; Regue, H.; Morfin, F.; et al. Detection and Prevalence of SARS-CoV-2 Co-Infections during the Omicron Variant Circulation, France, December 2021–February 2022. Medrxiv 2022. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads. EMBnet. J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Li, H. Minimap2: Pairwise Alignment for Nucleotide Sequences. Bioinform. 2018, 34, 3094–3100. [Google Scholar] [CrossRef]
- Picard Tools—By Broad Institute. Available online: http://broadinstitute.github.io/picard/ (accessed on 21 July 2022).
- Mose, L.E.; Perou, C.M.; Parker, J.S. Improved Indel Detection in DNA and RNA via Realignment with ABRA2. Bioinform. 2019, 35, 2966–2973. [Google Scholar] [CrossRef] [Green Version]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve Years of SAMtools and BCFtools. GigaScience 2021, 10, giab008. [Google Scholar] [CrossRef]
- Garrison, E.; Marth, G. Haplotype-Based Variant Detection from Short-Read Sequencing. arXiv 2012, arXiv:1207.3907. [Google Scholar] [CrossRef]
- Tan, A.; Abecasis, G.R.; Kang, H.M. Unified Representation of Genetic Variants. Bioinform 2015, 31, 2202–2204. [Google Scholar] [CrossRef]
- Nextstrain—Nextclade. Available online: https://github.com/nextstrain/nextclade (accessed on 30 March 2022).
- Centre for Genomic Pathogen Surveillance—Phylogenetic Assignment of Named Global Outbreak LINeages (Pangolin). Available online: https://github.com/cov-lineages/pangolin (accessed on 30 March 2022).
- Aksamentov, I.; Roemer, C.; Hodcroft, E.B.; Neher, R.A. Nextclade: Clade Assignment, Mutation Calling and Quality Control for Viral Genomes. J. Open Source Softw. 2021, 6, 3773. [Google Scholar] [CrossRef]
- Krzywinski, M.; Altman, N. Visualizing Samples with Box Plots. Nat. Methods 2014, 11, 119–120. [Google Scholar] [CrossRef]
- Chen, S.; He, C.; Li, Y.; Li, Z.; Melançon, C.E., III. A Computational Toolset for Rapid Identification of SARS-CoV-2, Other Viruses and Microorganisms from Sequencing Data. Brief. Bioinform. 2021, 22, 924–935. [Google Scholar] [CrossRef]
- Li, H. Aligning Sequence Reads, Clone Sequences and Assembly Contigs with BWA-MEM. arXiv 2013, arXiv:1303.3997. [Google Scholar] [CrossRef]
- Grubaugh, N.D.; Gangavarapu, K.; Quick, J.; Matteson, N.L.; De Jesus, J.G.; Main, B.J.; Tan, A.L.; Paul, L.M.; Brackney, D.E.; Grewal, S.; et al. An Amplicon-Based Sequencing Framework for Accurately Measuring Intrahost Virus Diversity Using PrimalSeq and IVar. Genome. Biol. 2019, 20, 8. [Google Scholar] [CrossRef] [Green Version]
- Loman, N.; Rowe, W.; Rambaut, A. ARTIC-NCoV-BioinformaticsSOP-v1.1.0. Available online: https://artic.network/ncov-2019/ncov2019-bioinformatics-sop.html (accessed on 28 April 2022).
- ECDC SARS-CoV-2 Variants of Concern (VOC). Available online: https://www.ecdc.europa.eu/en/covid-19/variants-concern (accessed on 28 April 2022).
- Sanderson, T.; De Maio, N.; Hinrichs, A.S.; de Bernardi Schneider, A.; Walker, C.; Goldman, N.; Turakhia, Y.; Lanfear, R.; Corbett-Detig, R. Issues with SARS-CoV-2 Sequencing Data—Systematic Errors Associated with Some Implementations of ARTIC V4 and a Fast Workflow to Prescreen Samples for New Problematic Sites. Available online: https://virological.org/t/issues-with-sars-cov-2-sequencing-data/473 (accessed on 15 March 2022).
- New England Biolabs SARS-CoV-2 Lineage Variant Summary. Available online: https://primer-monitor.neb.com/lineages (accessed on 29 March 2022).
- Wilkinson, S.; Groves, N.; Quick, J. Loman Erroneous Mutations Associated with 64_L-60_R Primer-Dimer in ARTIC 4/4.1—Laboratory. Available online: https://community.artic.network/t/erroneous-mutations-associated-with-64-l-60-r-primer-dimer-in-artic-4-4-1/419 (accessed on 29 April 2022).
- Lambisia, A.W.; Mohammed, K.S.; Makori, T.O.; Ndwiga, L.; Mburu, M.W.; Morobe, J.M.; Moraa, E.O.; Musyoki, J.; Murunga, N.; Mwangi, J.N.; et al. Optimization of the SARS-CoV-2 ARTIC Network V4 Primers and Whole Genome Sequencing Protocol. Front. Med. 2022, 9, 836728. [Google Scholar] [CrossRef]
- W-L ProblematicSites_SARS-CoV2—Human-Friendly Version of the Vcf File. Available online: https://github.com/W-L/ProblematicSites_SARS-CoV2 (accessed on 17 May 2022).
- ARTIC Network SARS-CoV-2 Version 4 Scheme Release—Laboratory. Available online: https://community.artic.network/t/sars-cov-2-version-4-scheme-release/312 (accessed on 29 April 2022).
- ARTIC Network SARS-CoV-2 V4.1 Update for Omicron Variant—Laboratory. Available online: https://community.artic.network/t/sars-cov-2-v4-1-update-for-omicron-variant/342 (accessed on 29 April 2022).
Sequencer | Primer Pool | Kits |
---|---|---|
MiSeq (Illumina) | ARTIC v3 | NEBNext® ARTIC SARS-CoV-2 Library Prep Kit (Illumina) (NEB, E7650) |
ARTIC v4 | NEBNext® ARTIC SARS-CoV-2 Library Prep Kit (Illumina) (NEB, E7650); ARTIC V4 NCOV-2019 Panel (IDT, 10008554) | |
ARTIC v4.1 | NEBNext® ARTIC SARS-CoV-2 FS Library Prep Kit (Illumina) (NEB, E7658); ARTIC V4.1 NCOV-2019 Panel (IDT, 10011442) | |
VSS v1 | NEBNext® ARTIC SARS-CoV-2 FS Library Prep Kit (Illumina) (NEB, E7658) | |
VSS v2 | NEBNext® ARTIC SARS-CoV-2 FS Library Prep Kit (Illumina) (NEB, E7658) | |
GridION Mk1 (Oxford Nanopore Technologies) | ARTIC v3 | NEBNext® ARTIC SARS-CoV-2 Companion Kit (ONT) (NEB, E7660) |
ARTIC v4 | NEBNext® ARTIC SARS-CoV-2 Companion Kit (ONT) (NEB, E7660); ARTIC V4 NCOV-2019 Panel (IDT, 10008554) | |
ARTIC v4.1 | NEBNext® ARTIC SARS-CoV-2 Companion Kit (ONT) (NEB, E7660); ARTIC V4.1 NCOV-2019 Panel (IDT, 10011442) | |
VSS v1 | NEBNext® ARTIC SARS-CoV-2 Companion Kit (ONT) (NEB, E7660) | |
VSS v2 | NEBNext® ARTIC SARS-CoV-2 Companion Kit (ONT) (NEB, E7660) |
Nextstrain Clade | Pango Lineage | |||
---|---|---|---|---|
Sequencing Kit | n/N 1 | % [95% CI] | n/N 1 | % [95% CI] |
ARTIC v3 | 527/527 2 | 100.0% [99.3–100.0] | 525/527 | 99.6% [98.6–99.9] |
ARTIC v4 | 316/316 3 | 100.0% [98.8–100.0] | 315/316 | 99.7% [98.3–99.9] |
ARTIC v4.1 | 517/519 4 | 99.6% [98.6–99.9] | 512/519 | 98.7% [97.2–99.5] |
Total | 1360/1362 | 99.9% [99.5–100.0] | 1352/1362 | 99.3% [98.7–99.7] |
Sequencing Kit | 0 SNP n/N 1 (%) | 1 SNP n/N 1 (%) | 2 SNPs n/N 1 (%) | >2 SNPs n/N 1 (%) |
---|---|---|---|---|
ARTIC v3 | 524/527 (99.4%) | 3/527 (0.6%) | 0/527 (0.0%) | 0/527 (0.0%) |
ARTIC v4 | 253/316 (80.1%) | 55/316 (17.4%) | 8/316 (2.5%) | 0/316 (0.0%) |
ARTIC v4.1 | 363/519 (69.9%) | 137/519 (26.4%) | 15/519 (2.9%) | 4/519 (0.8%) |
Total | 1140/1362 (83.7%) | 195/1362 (14.3%) | 23/1362 (1.7%) | 4/1362 (0.3%) |
Sequencing Kit | Spike Mutations, n/N 1 (%) |
---|---|
ARTIC v3 | 527/527 (100.0%) |
ARTIC v4 | 315/316 (99.7%) |
ARTIC v4.1 | 510/519 (98.3%) |
Total | 1352/1362 (99.3%) |
SARS-CoV-2 Samples | Nextstrain Clade | Pango Lineage |
---|---|---|
Pre-omicron variants 1 | 21/21 (100.0%) | 21/21 (100.0%) |
Omicron variants 2 | 19/19 (100.0%) | 19/19 (100.0%) |
Total | 40/40 (100.0%) | 40/40 (100.0%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mugnier, N.; Griffon, A.; Simon, B.; Rambaud, M.; Regue, H.; Bal, A.; Destras, G.; Tournoud, M.; Jaillard, M.; Betraoui, A.; et al. Evaluation of EPISEQ SARS-CoV-2 and a Fully Integrated Application to Identify SARS-CoV-2 Variants from Several Next-Generation Sequencing Approaches. Viruses 2022, 14, 1674. https://doi.org/10.3390/v14081674
Mugnier N, Griffon A, Simon B, Rambaud M, Regue H, Bal A, Destras G, Tournoud M, Jaillard M, Betraoui A, et al. Evaluation of EPISEQ SARS-CoV-2 and a Fully Integrated Application to Identify SARS-CoV-2 Variants from Several Next-Generation Sequencing Approaches. Viruses. 2022; 14(8):1674. https://doi.org/10.3390/v14081674
Chicago/Turabian StyleMugnier, Nathalie, Aurélien Griffon, Bruno Simon, Maxence Rambaud, Hadrien Regue, Antonin Bal, Gregory Destras, Maud Tournoud, Magali Jaillard, Abel Betraoui, and et al. 2022. "Evaluation of EPISEQ SARS-CoV-2 and a Fully Integrated Application to Identify SARS-CoV-2 Variants from Several Next-Generation Sequencing Approaches" Viruses 14, no. 8: 1674. https://doi.org/10.3390/v14081674
APA StyleMugnier, N., Griffon, A., Simon, B., Rambaud, M., Regue, H., Bal, A., Destras, G., Tournoud, M., Jaillard, M., Betraoui, A., Santiago, E., Cheynet, V., Vignola, A., Ligeon, V., Josset, L., & Brengel-Pesce, K. (2022). Evaluation of EPISEQ SARS-CoV-2 and a Fully Integrated Application to Identify SARS-CoV-2 Variants from Several Next-Generation Sequencing Approaches. Viruses, 14(8), 1674. https://doi.org/10.3390/v14081674