Isolation and Characterization of the Lytic Pseudoxanthomonas kaohsiungensi Phage PW916
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Resistance Identification of Host Bacteria
2.2. Phage Isolation and Purification
2.3. Transmission Electron Microscopy
2.4. One-Step Growth Curve of the Phage
2.5. Physicochemical Stability of Phage
2.6. Phage DNA Extraction and Genome Sequencing
2.7. Statistical Analysis
3. Results and Discussion
3.1. Phage Isolation, Morphology, and Characteristics
3.2. Multiplicity of Infection and One-Step Growth Curve of PW916
3.3. Thermal, pH, Chloroform, and UV Stability of Phage PW916
3.4. Whole-Genome Analysis of Phage PW916
3.5. Comparative Genomics and Phylogenetic Analysis of Phage PW916
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Finkmann, W.; Altendorf, K.; Stackebrandt, E.; Lipski, A. Characterization of N2O-producing Xanthomonas-like isolates from biofilters as Stenotrophomonas nitritireducens sp. nov., Luteimonas mephitis gen. nov., sp. nov. and Pseudoxanthomonas broegbernensis gen. nov., sp. nov. Int. J. Syst. Evol. Microbiol. 2000, 50, 273–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bansal, K.; Kumar, S.; Patil, P.P.; Sharma, S.; Patil, P.B. Genomic data resource of type strains of genus Pseudoxanthomonas. Data Brief 2022, 42, 108145. [Google Scholar] [CrossRef] [PubMed]
- Thierry, S.; Macarie, H.; Iizuka, T.; Geißdörfer, W.; Assih, E.A.; Spanevello, M.; Verhe, F.; Thomas, P.; Fudou, R.; Monroy, O. Pseudoxanthomonas mexicana sp. nov. and Pseudoxanthomonas japonensis sp. nov., isolated from diverse environments, and emended descriptions of the genus Pseudoxanthomonas Finkmann et al. 2000 and of its type species. Int. J. Syst. Evol. Microbiol. 2004, 54, 2245–2255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuo, S.-F.; Lee, C.-H. An oil refinery worker at Kaohsiung, with Pseudoxanthomonas kaohsiungensis bloodstream infection presenting as chronic pericarditis and masquerading as tuberculosis pericarditis. J. Microbiol. Immunol. Infect. = Wei Mian Yu Gan Ran Za Zhi 2018, 51, 575–577. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Tian, B.; Shi, W.; Tian, J.; Zhang, X.; Zeng, J.; Qin, M. A Correlation Study of the Microbiota Between Oral Cavity and Tonsils in Children With Tonsillar Hypertrophy. Front. Cell. Infect. Microbiol. 2022, 11, 1449. [Google Scholar] [CrossRef] [PubMed]
- Bernard, K.A.; Vachon, A.; Pacheco, A.L.; Burdz, T.; Wiebe, D.; Beniac, D.R.; Hiebert, S.L.; Booth, T.; Doyle, D.A.; Lawson, P.; et al. Pseudoxanthomonas winnipegensis sp. nov., derived from human clinical materials and recovered from cystic fibrosis and other patient types in Canada, and emendation of Pseudoxanthomonas spadix Young et al. 2007. Int. J. Syst. Evol. Microbiol. 2020, 70, 6313–6322. [Google Scholar] [CrossRef]
- Bansal, K.; Kumar, S.; Kaur, A.; Singh, A.; Patil, P.B. Deep phylo-taxono genomics reveals Xylella as a variant lineage of plant associated Xanthomonas and supports their taxonomic reunification along with Stenotrophomonas and Pseudoxanthomonas. Genomics 2021, 113, 3989–4003. [Google Scholar] [CrossRef]
- Clavijo-Coppens, F.; Ginet, N.; Cesbron, S.; Briand, M.; Jacques, M.A.; Ansaldi, M. Novel Virulent Bacteriophages Infecting Mediterranean Isolates of the Plant Pest Xylella fastidiosa and Xanthomonas albilineans. Viruses 2021, 13, 725. [Google Scholar] [CrossRef] [PubMed]
- Sausset, R.; Petit, M.A.; Gaboriau-Routhiau, V.; De Paepe, M. New insights into intestinal phages. Mucosal Immunol. 2020, 13, 205–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hobbs, Z.; Abedon, S.T. Diversity of phage infection types and associated terminology: The problem with “Lytic or lysogenic”. FEMS Microbiol. Lett. 2016, 363, fnw047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dahlman, S.; Avellaneda-Franco, L.; Barr, J.J. Phages to shape the gut microbiota? Curr. Opin. Biotechnol. 2021, 68, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Duckworth, D.H. Who discovered bacteriophage? Bacteriol Rev. 1976, 40, 793–802. [Google Scholar] [CrossRef] [PubMed]
- Ganeshan, S.D.; Hosseinidoust, Z. Phage Therapy with a focus on the Human Microbiota. Antibiotics 2019, 8, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kutateladze, M.; Adamia, R. Phage therapy experience at the Eliava Institute. Médecine Mal. Infect. 2008, 38, 426–430. [Google Scholar] [CrossRef] [PubMed]
- Abedon, S.T.; Kuhl, S.J.; Blasdel, B.G.; Kutter, E.M. Phage treatment of human infections. Bacteriophage 2014, 1, 66–85. [Google Scholar] [CrossRef] [Green Version]
- Djebara, S.; Maussen, C.; De Vos, D.; Merabishvili, M.; Damanet, B.; Pang, K.W.; De Leenheer, P.; Strachinaru, I.; Soentjens, P.; Pirnay, J.P. Processing Phage Therapy Requests in a Brussels Military Hospital: Lessons Identified. Viruses 2019, 11, 265. [Google Scholar] [CrossRef] [Green Version]
- Schooley, R.T.; Biswas, B.; Gill, J.J.; Hernandez-Morales, A.; Lancaster, J.; Lessor, L.; Barr, J.J.; Reed, S.L.; Rohwer, F.; Benler, S. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob. Agents Chemother. 2017, 61, 00954-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dedrick, R.M.; Smith, B.E.; Cristinziano, M.; Freeman, K.G.; Jacobs-Sera, D.; Belessis, Y.; Whitney Brown, A.; Cohen, K.A.; Davidson, R.M.; van Duin, D.; et al. Phage Therapy of Mycobacterium Infections: Compassionate-use of Phages in Twenty Patients with Drug-Resistant Mycobacterial Disease. Clin. Infect. Dis. 2022, ciac453. [Google Scholar] [CrossRef]
- Wang, X.; Wei, Z.; Yang, K.; Wang, J.; Jousset, A.; Xu, Y.; Shen, Q.; Friman, V.P. Phage combination therapies for bacterial wilt disease in tomato. Nat. Biotechnol. 2019, 37, 1513–1520. [Google Scholar] [CrossRef] [PubMed]
- Gregory, A.C.; Zayed, A.A.; Conceição-Neto, N.; Temperton, B.; Bolduc, B.; Alberti, A.; Ardyna, M.; Arkhipova, K.; Carmichael, M.; Cruaud, C.; et al. Marine DNA Viral Macro- and Microdiversity from Pole to Pole. Cell 2019, 177, 1109–1123.e1114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urbán, E.; Stone, G.G. Impact of EUCAST ceftaroline breakpoint change on the susceptibility of methicillin-resistant Staphylococcus aureus isolates collected from patients with complicated skin and soft-tissue infections. Clin. Microbiol. Infect. 2019, 25, 1429.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Wiegand, I.; Hilpert, K.; Hancock, R.E. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Wintachai, P.; Surachat, K.; Singkhamanan, K. Isolation and Characterization of a Novel Autographiviridae Phage and Its Combined Effect with Tigecycline in Controlling Multidrug-Resistant Acinetobacter baumannii-Associated Skin and Soft Tissue Infections. Viruses 2022, 14, 194. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, Y.; Shi, C.; Huang, Z.; Zhang, Y.; Li, S.; Li, Y.; Ye, J.; Yu, C.; Li, Z.; et al. SOAPnuke: A MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. GigaScience 2018, 7, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 2010, 26, 589–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, W.; Lomsadze, A.; Borodovsky, M. Ab initio gene identification in metagenomic sequences. Nucleic Acids Res. 2010, 38, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hulo, C.; de Castro, E.; Masson, P.; Bougueleret, L.; Bairoch, A.; Xenarios, I.; Le Mercier, P. ViralZone: A knowledge resource to understand virus diversity. Nucleic Acids Res. 2011, 39, 576–582. [Google Scholar] [CrossRef] [Green Version]
- Darling, A.C.; Mau, B.; Blattner, F.R.; Perna, N.T. Mauve: Multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004, 14, 1394–1403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sullivan, M.J.; Petty, N.K.; Beatson, S.A. Easyfig: A genome comparison visualizer. Bioinformatics 2011, 27, 1009–1010. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, L.; Jørgensen, B.B.; Suttle, C.A.; He, M.; Cragg, B.A.; Jiao, N.; Zhang, R. Active and diverse viruses persist in the deep sub-seafloor sediments over thousands of years. ISME J. 2019, 13, 1857–1864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lefkowitz, E.J.; Dempsey, D.M.; Hendrickson, R.C.; Orton, R.J.; Siddell, S.G.; Smith, D.B. Virus taxonomy: The database of the International Committee on Taxonomy of Viruses (ICTV). Nucleic Acids Res. 2018, 46, 708–717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCutcheon, J.G.; Lin, A.; Dennis, J.J. Isolation and Characterization of the Novel Bacteriophage AXL3 against Stenotrophomonas maltophilia. Int. J. Mol. Sci. 2020, 21, 6338. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhang, R.; Hu, Y.; Liu, Y.; Wang, L.; An, X.; Song, L.; Shi, T.; Fan, H.; Tong, Y.; et al. Biological characteristics and genomic analysis of a Stenotrophomonas maltophilia phage vB_SmaS_BUCT548. Virus. Genes. 2021, 57, 205–216. [Google Scholar] [CrossRef]
- Kumar, S.; Bansal, K.; Patil, P.P.; Patil, P.B. Phylogenomics insights into order and families of Lysobacterales. Access Microbiol. 2019, 1, 000015. [Google Scholar] [CrossRef] [PubMed]
- Tom, E.F.; Molineux, I.J.; Paff, M.L.; Bull, J.J. Experimental evolution of UV resistance in a phage. PeerJ 2018, 6, 5190. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Y.; Wang, M.; Wang, M.; Jiang, T.; Sun, J.; Gao, C.; Jiang, Y.; Guo, C.; Shao, H.; et al. Characterization and Genome Analysis of a Novel Marine Alteromonas Phage P24. Curr. Microbiol. 2020, 77, 2813–2820. [Google Scholar] [CrossRef] [PubMed]
- Debroas, D.; Siguret, C. Viruses as key reservoirs of antibiotic resistance genes in the environment. ISME J. 2019, 13, 2856–2867. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.W.; Julin, D.A. Structure and Function of the Escherichia coli RecE Protein, a Member of the RecB Nuclease Domain Family*. J. Biol. Chem. 2001, 276, 46004–46010. [Google Scholar] [CrossRef] [Green Version]
- Singleton, M.R.; Dillingham, M.S.; Gaudier, M.; Kowalczykowski, S.C.; Wigley, D.B. Crystal structure of RecBCD enzyme reveals a machine for processing DNA breaks. Nature 2004, 432, 187–193. [Google Scholar] [CrossRef] [PubMed]
- McNulty, R.; Lokareddy, R.K.; Roy, A.; Yang, Y.; Lander, G.C.; Heck, A.J.R.; Johnson, J.E.; Cingolani, G. Architecture of the Complex Formed by Large and Small Terminase Subunits from Bacteriophage P22. J. Mol. Biol. 2015, 427, 3285–3299. [Google Scholar] [CrossRef] [Green Version]
- Baumann, R.G.; Black, L.W. Isolation and characterization of T4 bacteriophage gp17 terminase, a large subunit multimer with enhanced ATPase activity. J. Biol. Chem. 2003, 278, 4618–4627. [Google Scholar] [CrossRef] [Green Version]
- Prevelige, P.E., Jr.; Cortines, J.R. Phage assembly and the special role of the portal protein. Curr. Opin. Virol. 2018, 31, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Hatfull, G.F. Bacteriophage genomics. Curr. Opin. Microbiol. 2008, 11, 447–453. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, A.M.D.; de Sanctis, D.; McSweeney, S.M. Structural and functional insights into DR2231 protein, the MazG-like nucleoside triphosphate pyrophosphohydrolase from Deinococcus radiodurans. J. Biol. Chem. 2011, 286, 30691–30705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Ruiz, I.; Coutinho, F.H.; Rodriguez-Valera, F. Thousands of Novel Endolysins Discovered in Uncultured Phage Genomes. Front. Microbiol. 2018, 9, 1033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Liu, M.; Zhang, P.; Leung, S.S.Y.; Xia, J. Membrane-Permeable Antibacterial Enzyme against Multidrug-Resistant Acinetobacter baumannii. ACS Infect. Dis. 2021, 7, 2192–2204. [Google Scholar] [CrossRef] [PubMed]
ORF | Start | Stop | Length (bp) | Strand | Start Codon | Function |
---|---|---|---|---|---|---|
7 | 3646 | 2093 | 1553 | - | ATG | DNA helicase |
9 | 4919 | 4068 | 851 | - | ATG | RecB family exonuclease |
10 | 6838 | 4919 | 1919 | - | ATG | DNA polymerase I |
16 | 10,479 | 9574 | 905 | - | ATG | DNA ligase |
18 | 11,591 | 10,743 | 848 | - | ATG | Thymidylate synthase complementing protein |
29 | 15,047 | 14,712 | 335 | - | ATG | DnaJ domain |
33 | 18,098 | 15,984 | 2114 | - | ATG | Primase |
36 | 19,871 | 21,430 | 1559 | + | ATG | Terminase large subunit |
37 | 21,442 | 22,947 | 1505 | + | ATG | Portal protein |
38 | 22,951 | 24,132 | 1181 | + | ATG | Head morphogenesis protein |
39 | 24,238 | 24,972 | 734 | + | ATG | Scaffold protein |
40 | 25,006 | 26,022 | 1016 | + | ATG | Major capsid protein |
42 | 26,410 | 26,934 | 524 | + | ATG | Structural protein |
43 | 26,939 | 27,322 | 383 | + | ATG | Head–tail joining protein |
44 | 27,319 | 27,750 | 431 | + | ATG | Structural protein |
45 | 27,755 | 29,308 | 1553 | + | ATG | Major tail protein |
46 | 29,337 | 29,768 | 431 | + | ATG | Structural protein |
48 | 30,566 | 33,406 | 2840 | + | ATG | Tape measure protein |
49 | 33,417 | 34,376 | 959 | + | ATG | Tail assembly protein |
53 | 37,928 | 40,831 | 2903 | + | ATG | Central tail hub |
54 | 40,998 | 41,447 | 449 | + | ATG | Endolysin |
58 | 43,361 | 42,915 | 446 | - | ATG | Deoxycytidylate deaminase |
60 | 44,481 | 43,663 | 818 | - | GTG | Deoxyuridylate hydroxymethyltransferase |
62 | 45,992 | 45,426 | 566 | - | ATG | Nucleoside triphosphate pyrophosphohydrolase |
63 | 46,827 | 46,003 | 824 | - | ATG | Methyltransferase |
Accession No. | Length (bp) | Coverage | Identity | E-Value | Scientific Name |
---|---|---|---|---|---|
MT536174.2 | 47,545 | 89% | 89.64% | 0.0 | Stenotrophomonas phage vB_SmaS-AXL_3 |
NC_042345.1 | 55,601 | 1% | 78.44% | 7 × 10−77 | Xylella phage Salvo |
NC_052973.1 | 56,232 | 0 | 78.79% | 3 × 10−75 | Xylella phage Bacata |
KY555144.1 | 218,729 | 0 | 86.96% | 2 × 10−07 | Caulobacter phage Ccr5 |
KY555143.1 | 220,299 | 0 | 86.96% | 2 × 10−07 | Caulobacter phage Ccr2 |
KY555142.1 | 219,348 | 0 | 86.96% | 2 × 10−07 | Caulobacter phage Ccr10 |
MK527152.1 | 486 | 0 | 84.42% | 2 × 10−07 | Caudovirales sp. GX_16_bay_2_59859 |
AP014685.1 | 9,780,023 | 0 | 76.27% | 4 × 10−10 | Bradyrhizobium diazoefficiens NK6 |
AP023108.1 | 9,278,204 | 0 | 76.27% | 4 × 10−10 | Bradyrhizobium diazoefficiens XF19 |
AP023105.1 | 9,278,205 | 0 | 76.27% | 4 × 10−10 | Bradyrhizobium diazoefficiens XF16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, C.; Ai, C.; Lu, S.; Yang, Q.; Liao, H.; Zhou, S. Isolation and Characterization of the Lytic Pseudoxanthomonas kaohsiungensi Phage PW916. Viruses 2022, 14, 1709. https://doi.org/10.3390/v14081709
Wen C, Ai C, Lu S, Yang Q, Liao H, Zhou S. Isolation and Characterization of the Lytic Pseudoxanthomonas kaohsiungensi Phage PW916. Viruses. 2022; 14(8):1709. https://doi.org/10.3390/v14081709
Chicago/Turabian StyleWen, Chang, Chaofan Ai, Shiyun Lu, Qiue Yang, Hanpeng Liao, and Shungui Zhou. 2022. "Isolation and Characterization of the Lytic Pseudoxanthomonas kaohsiungensi Phage PW916" Viruses 14, no. 8: 1709. https://doi.org/10.3390/v14081709
APA StyleWen, C., Ai, C., Lu, S., Yang, Q., Liao, H., & Zhou, S. (2022). Isolation and Characterization of the Lytic Pseudoxanthomonas kaohsiungensi Phage PW916. Viruses, 14(8), 1709. https://doi.org/10.3390/v14081709