Persistent Fever and Positive PCR 90 Days Post-SARS-CoV-2 Infection in a Rituximab-Treated Patient: A Case of Late Antiviral Treatment
Abstract
:1. Introduction
2. Methods
2.1. Patient Consent and Ethical Approval
2.2. In Vitro Viral Culture
2.3. Microbiological Investigation
3. Case Report
4. Discussion
4.1. Prolonged SARS-CoV-2 Infection and Immunological Aspects
4.2. Diagnostic Considerations
4.3. Antiviral Treatments
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gaitzsch, E.; Passerini, V.; Khatamzas, E.; Strobl, C.D.; Muenchhoff, M.; Scherer, C.; Osterman, A.; Heide, M.; Reischer, A.; Subklewe, M.; et al. COVID-19 in Patients Receiving CD20-depleting Immunochemotherapy for B-cell Lymphoma. Hemasphere 2021, 5, e603. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, M.C.; Crain, C.R.; Qiu, X.; Hanage, W.; Li, J.Z. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Sequence Characteristics of Coronavirus Disease 2019 (COVID-19) Persistence and Reinfection. Clin. Infect. Dis. 2021, 74, 237–245. [Google Scholar] [CrossRef]
- Choi, B.; Choudhary, M.C.; Regan, J.; Sparks, J.A.; Padera, R.F.; Qiu, X.; Solomon, I.H.; Kuo, H.H.; Boucau, J.; Bowman, K.; et al. Persistence and Evolution of SARS-CoV-2 in an Immunocompromised Host. N. Engl. J. Med. 2020, 383, 2291–2293. [Google Scholar] [CrossRef] [PubMed]
- Baang, J.H.; Smith, C.; Mirabelli, C.; Valesano, A.L.; Manthei, D.M.; Bachman, M.A.; Wobus, C.E.; Adams, M.; Washer, L.; Martin, E.T.; et al. Prolonged Severe Acute Respiratory Syndrome Coronavirus 2 Replication in an Immunocompromised Patient. J. Infect. Dis. 2021, 223, 23–27. [Google Scholar] [CrossRef]
- Weiner, G.J. Rituximab: Mechanism of action. Semin. Hematol. 2010, 47, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Chisari, C.G.; Sgarlata, E.; Arena, S.; Toscano, S.; Luca, M.; Patti, F. Rituximab for the treatment of multiple sclerosis: A review. J. Neurol. 2022, 269, 159–183. [Google Scholar] [CrossRef] [PubMed]
- Iyer, R.B.; Raghavendra, S.; Nooraine, J.; Jaychandran, R. COVID-19 outcomes in persons with multiple sclerosis treated with rituximab. Mult. Scler. Relat. Disord. 2022, 57, 103371. [Google Scholar] [CrossRef]
- Moss, P. The T cell immune response against SARS-CoV-2. Nat. Immunol. 2022, 23, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Rabascall, C.X.; Lou, B.X.; Navetta-Modrov, B.; Hahn, S.S. Effective use of monoclonal antibodies for treatment of persistent COVID-19 infection in a patient on rituximab. BMJ Case Rep. 2021, 14, e243469. [Google Scholar] [CrossRef] [PubMed]
- Furlan, A.; Forner, G.; Cipriani, L.; Vian, E.; Rigoli, R.; Gherlinzoni, F.; Scotton, P. COVID-19 in B Cell-Depleted Patients After Rituximab: A Diagnostic and Therapeutic Challenge. Front. Immunol. 2021, 12, 763412. [Google Scholar] [CrossRef]
- Baker, D.; Roberts, C.A.K.; Pryce, G.; Kang, A.S.; Marta, M.; Reyes, S.; Schmierer, K.; Giovannoni, G.; Amor, S. COVID-19 vaccine-readiness for anti-CD20-depleting therapy in autoimmune diseases. Clin. Exp. Immunol. 2020, 202, 149–161. [Google Scholar] [CrossRef] [PubMed]
- Burgener, S.; Rochat, P.; Dollenmaier, G.; Benz, G.; Kistler, A.D.; Fulchini, R. Progression of COVID-19 in a Patient on Anti-CD20 Antibody Treatment: Case Report and Literature Review. Case Rep. Infect. Dis. 2022, 2022, 8712424. [Google Scholar] [CrossRef]
- Kos, I.; Balensiefer, B.; Roth, S.; Ahlgrimm, M.; Sester, M.; Schmidt, T.; Thurner, L.; Bewarder, M.; Bals, R.; Lammert, F.; et al. Prolonged Course of COVID-19-Associated Pneumonia in a B-Cell Depleted Patient After Rituximab. Front. Oncol. 2020, 10, 1578. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.M.; Bruno, R.; Combs, D.; Davies, B. Population pharmacokinetics of rituximab (anti-CD20 monoclonal antibody) in rheumatoid arthritis patients during a phase II clinical trial. J. Clin. Pharmacol. 2005, 45, 792–801. [Google Scholar] [CrossRef] [PubMed]
- Hogan, J.; Dossier, C.; Kwon, T.; Macher, M.A.; Maisin, A.; Couderc, A.; Niel, O.; Baudouin, V.; Deschênes, G. Effect of different rituximab regimens on B cell depletion and time to relapse in children with steroid-dependent nephrotic syndrome. Pediatr. Nephrol. 2019, 34, 253–259. [Google Scholar] [CrossRef]
- Fung, M.; Babik, J.M. COVID-19 in Immunocompromised Hosts: What We Know So Far. Clin. Infect. Dis. 2021, 72, 340–350. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jin, C.; Wu, C.C.; Zhao, H.; Liang, T.; Liu, Z.; Jian, Z.; Li, R.; Wang, Z.; Li, F.; et al. Organizing pneumonia of COVID-19: Time-dependent evolution and outcome in CT findings. PLoS ONE 2020, 15, e0240347. [Google Scholar] [CrossRef]
- de Oliveira Filho, C.M.; Vieceli, T.; de Fraga Bassotto, C.; da Rosa Barbato, J.P.; Garcia, T.S.; Scheffel, R.S. Organizing pneumonia: A late phase complication of COVID-19 responding dramatically to corticosteroids. Braz. J. Infect. Dis. 2021, 25, 101541. [Google Scholar] [CrossRef] [PubMed]
- Dahdouh, E.; Lázaro-Perona, F.; Romero-Gómez, M.P.; Mingorance, J.; García-Rodriguez, J. C(t) values from SARS-CoV-2 diagnostic PCR assays should not be used as direct estimates of viral load. J. Infect. 2021, 82, 414–451. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.D.; Ross, T.M. H3N2 influenza viruses in humans: Viral mechanisms, evolution, and evaluation. Hum. Vaccin. Immunother. 2018, 14, 1840–1847. [Google Scholar] [CrossRef]
- Mautner, L.; Hoyos, M.; Dangel, A.; Berger, C.; Ehrhardt, A.; Baiker, A. Replication kinetics and infectivity of SARS-CoV-2 variants of concern in common cell culture models. Virol. J. 2022, 19, 76. [Google Scholar] [CrossRef]
- Cevik, M.; Tate, M.; Lloyd, O.; Maraolo, A.E.; Schafers, J.; Ho, A. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: A systematic review and meta-analysis. Lancet Microbe. 2021, 2, e13–e22. [Google Scholar] [CrossRef]
- Hagman, K.; Hedenstierna, M.; Rudling, J.; Gille-Johnson, P.; Hammas, B.; Grabbe, M.; Jakobsson, J.; Dillner, J.; Ursing, J. Duration of SARS-CoV-2 viremia and its correlation to mortality and inflammatory parameters in patients hospitalized for COVID-19: A cohort study. Diagn. Microbiol. Infect. Dis. 2022, 102, 115595. [Google Scholar] [CrossRef]
- Zheng, S.; Fan, J.; Yu, F.; Feng, B.; Lou, B.; Zou, Q.; Xie, G.; Lin, S.; Wang, R.; Yang, X.; et al. Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang province, China, January-March 2020: Retrospective cohort study. BMJ 2020, 369, m1443. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, J.L.; Mellors, J.W. Detection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) RNA in Blood of Patients With Coronavirus Disease 2019 (COVID-19): What Does It Mean? Clin. Infect. Dis. 2020, 73, e2898–e2900. [Google Scholar] [CrossRef]
- Bermejo-Martin, J.F.; González-Rivera, M.; Almansa, R.; Micheloud, D.; Tedim, A.P.; Domínguez-Gil, M.; Resino, S.; Martín-Fernández, M.; Ryan Murua, P.; Pérez-García, F.; et al. Viral RNA load in plasma is associated with critical illness and a dysregulated host response in COVID-19. Crit. Care 2020, 24, 691. [Google Scholar] [CrossRef]
- Gupta, A.; Gonzalez-Rojas, Y.; Juarez, E.; Crespo Casal, M.; Moya, J.; Falci, D.R.; Sarkis, E.; Solis, J.; Zheng, H.; Scott, N.; et al. Early Treatment for COVID-19 with SARS-CoV-2 Neutralizing Antibody Sotrovimab. N. Engl. J. Med. 2021, 385, 1941–1950. [Google Scholar] [CrossRef]
- Self, W.H.; Sandkovsky, U.; Reilly, C.S.; Vock, D.M.; Gottlieb, R.L.; Mack, M.; Golden, K.; Dishner, E.; Vekstein, A.; Ko, E.R.; et al. Efficacy and safety of two neutralising monoclonal antibody therapies, sotrovimab and BRII-196 plus BRII-198, for adults hospitalised with COVID-19 (TICO): A randomised controlled trial. Lancet Infect. Dis. 2022, 22, 622–635. [Google Scholar] [CrossRef]
- The National Institutes of Health. Therapeutic Management of Hospitalized Adults with COVID-19. Available online: https://www.covid19treatmentguidelines.nih.gov/management/clinical-management/hospitalized-adults--therapeutic-management/ (accessed on 6 June 2022).
- Jayk Bernal, A.; Gomes da Silva, M.M.; Musungaie, D.B.; Kovalchuk, E.; Gonzalez, A.; Delos Reyes, V.; Martín-Quirós, A.; Caraco, Y.; Williams-Diaz, A.; Brown, M.L.; et al. Molnupiravir for Oral Treatment of COVID-19 in Nonhospitalized Patients. N. Engl. J. Med. 2022, 386, 509–520. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Singh, A.; Singh, R.; Misra, A. Molnupiravir in COVID-19: A systematic review of literature. Diabetes Metab. Syndr. 2021, 15, 102329. [Google Scholar] [CrossRef]
- Arora, P.; Kempf, A.; Nehlmeier, I.; Schulz, S.R.; Cossmann, A.; Stankov, M.V.; Jäck, H.-M.; Behrens, G.M.N.; Pöhlmann, S.; Hoffmann, M. Augmented neutralisation resistance of emerging omicron subvariants BA.2.12.1, BA.4, and BA.5. Lancet Infect. Dis. 2022, 22, 1117–1118. [Google Scholar] [CrossRef]
Analysis | Unit | Week of First Hospital Stay | Reference Interval | ||
---|---|---|---|---|---|
1 | 2 | 3 | |||
Hemoglobin | g/dL | 11.8 | 11.4 | 10.5 | 11.7–15.3 |
Total leukocytes | ×109/L | 5.0 | 5.3 | 6.1 | 4.1–9.8 |
Neutrophils | ×109/L | 3.7 | 3.7 | 3.9 | 1.8–6.9 |
Lymphocytes | ×109/L | 0.8 | 1.0 | 1.3 | 1.2–3.1 |
Monocytes | ×109/L | 0.49 | 0.57 | 0.83 | 0.28–0.90 |
Eosinophils | ×109/L | 0.0 | 0.0 | 0.1 | ≤0.5 |
Basophils | ×109/L | 0.01 | 0.02 | 0.03 | ≤0.10 |
Thrombocytes | ×109/L | 224 | 346 | 591 | 165–387 |
CRP | mg/L | 13 | 34 | 34 | <5 |
Interleukin-6 | ng/L | 32 | 53 | 28 | 0–7 |
Procalcitonin | µg/L | <0.10 | <0.10 | 0.13 | <0.10 |
Ferritin | µg/L | 65 | 92 | 215 | 18–240 |
PT-INR | ₋ | 0.9 | 1.0 | 0.9 | 0.9–1.2 |
APTT | s | 24 | 26 | ₋ | 22–30 |
Fibrinogen | g/L | 4.8 | 5.1 | ₋ | 1.9–4.0 |
D-dimer | mg/L FEU | 1.05 | 1.3 | ₋ | <0.27 |
ALAT | U/L | 17 | 86 | 303 | 10–45 |
ASAT | U/L | 35 | 71 | 227 | 15–35 |
ALP | U/L | 82 | 80 | 161 | 35–105 |
LD | U/L | 228 | 195 | 295 | 105–205 |
COVID Day | FVC (L) | FVC (% of Predicted) | FEV1 (L) | FEV1/FVC (%) | DLCO (mmol/min × kPa) | TLC (L) | TLC (% of Predicted) |
---|---|---|---|---|---|---|---|
Pre-illness | 3.8 | 114 | 3.0 | 78 | 8.0 | 5.4 | 104 |
50 | 2.1 | 61 | 1.8 | 87 | 2.6 | 2.8 | 54 |
89 | 2.3 | 68 | 1.9 | 82 | 3.0 | 3.1 | 60 |
109 | 3.6 | 106 | 2.8 | 79 | 4.0 | 4.2 | 81 |
179 | 3.1 | 93 | 2.6 | 85 | 7.2 | 5.4 | 111 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ertesvåg, N.U.; Sakkestad, S.T.; Zhou, F.; Hoff, I.; Kristiansen, T.; Jonassen, T.M.; Follesø, E.; Brokstad, K.A.; Dyrhovden, R.; Mohn, K.G.-I. Persistent Fever and Positive PCR 90 Days Post-SARS-CoV-2 Infection in a Rituximab-Treated Patient: A Case of Late Antiviral Treatment. Viruses 2022, 14, 1757. https://doi.org/10.3390/v14081757
Ertesvåg NU, Sakkestad ST, Zhou F, Hoff I, Kristiansen T, Jonassen TM, Follesø E, Brokstad KA, Dyrhovden R, Mohn KG-I. Persistent Fever and Positive PCR 90 Days Post-SARS-CoV-2 Infection in a Rituximab-Treated Patient: A Case of Late Antiviral Treatment. Viruses. 2022; 14(8):1757. https://doi.org/10.3390/v14081757
Chicago/Turabian StyleErtesvåg, Nina Urke, Sunniva Todnem Sakkestad, Fan Zhou, Ingrid Hoff, Trygve Kristiansen, Trygve Müller Jonassen, Elisabeth Follesø, Karl Albert Brokstad, Ruben Dyrhovden, and Kristin G.-I. Mohn. 2022. "Persistent Fever and Positive PCR 90 Days Post-SARS-CoV-2 Infection in a Rituximab-Treated Patient: A Case of Late Antiviral Treatment" Viruses 14, no. 8: 1757. https://doi.org/10.3390/v14081757
APA StyleErtesvåg, N. U., Sakkestad, S. T., Zhou, F., Hoff, I., Kristiansen, T., Jonassen, T. M., Follesø, E., Brokstad, K. A., Dyrhovden, R., & Mohn, K. G. -I. (2022). Persistent Fever and Positive PCR 90 Days Post-SARS-CoV-2 Infection in a Rituximab-Treated Patient: A Case of Late Antiviral Treatment. Viruses, 14(8), 1757. https://doi.org/10.3390/v14081757