Epidemiological Study of Multiple Zoonotic Mosquito-Borne Alphaviruses in Horses in Queensland, Australia (2018–2020)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Cell Culture and Virus Stock Production
2.3. Virus Neutralisation Test (VNT)
2.4. Statistical Analysis
3. Results
3.1. Sample Population
3.2. Serological Surveys of Alphaviruses
3.3. Spatial Analysis of RRV Seroprevalence in QLD
3.4. Risk Factors Analysis of RRV Seropositivity in Horses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yuen, K.Y.; Bielefeldt-Ohmann, H. Ross River virus infection: A cross-disciplinary review with a veterinary perspective. Pathogens 2021, 10, 357. [Google Scholar] [CrossRef] [PubMed]
- Russell, R.C. Ross River virus: Ecology and distribution. Annu. Rev. Entomol. 2002, 47, 1–31. [Google Scholar] [CrossRef]
- Harley, D.; Sleigh, A.; Ritchie, S. Ross River virus transmission, infection, and disease: A cross-disciplinary review. Clin. Microbiol. Rev. 2001, 14, 909–932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qian, W.; Viennet, E.; Glass, K.; Harley, D. Epidemiological models for predicting Ross River virus in Australia: A systematic review. PLoS Negl. Trop. Dis. 2020, 14, e0008621. [Google Scholar] [CrossRef]
- Prow, N.A.; Tan, C.S.E.; Wang, W.; Hobson-Peters, J.; Kidd, L.; Barton, A.; Wright, J.; Hall, R.A.; Bielefeldt-Ohmann, H. Natural exposure of horses to mosquito-borne flaviviruses in south-east Queensland, Australia. Int. J. Environ. Res. Public Health 2013, 10, 4432–4443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barton, A.J.; Prow, N.A.; Hall, R.A.; Kidd, L.; Bielefeldt-Ohmann, H. A case of Murray Valley encephalitis in a 2-year-old Australian Stock Horse in south-east Queensland. Aust. Vet. J. 2015, 93, 53–57. [Google Scholar] [CrossRef]
- Roche, S.E.; Wicks, R.; Garner, M.G.; East, I.J.; Paskin, R.; Moloney, B.J.; Carr, M.; Kirkland, P. Descriptive overview of the 2011 epidemic of arboviral disease in horses in Australia. Aust. Vet. J. 2013, 91, 5–13. [Google Scholar] [CrossRef]
- Barton, A.J.; Bielefeldt-Ohmann, H. Clinical presentation, progression, and management of five cases of Ross River virus infection in performance horses located in southeast Queensland: A longitudinal case series. J. Equine Vet. Sci. 2017, 51, 34–40. [Google Scholar] [CrossRef] [Green Version]
- Bannai, H.; Ochi, A.; Nemoto, M.; Tsujimura, K.; Yamanaka, T.; Kondo, T. A 2015 outbreak of Getah virus infection occurring among Japanese racehorses sequentially to an outbreak in 2014 at the same site. BMC Vet. Res. 2016, 12, 98. [Google Scholar] [CrossRef] [Green Version]
- Nemoto, M.; Banna, H.; Tsujimura, K.; Kobayashi, M.; Kikuchi, T.; Yamanaka, T.; Kondo, T. Getah virus infection among racehorses, Japan, 2014. Emerg. Infect. Dis. 2015, 21, 883–885. [Google Scholar] [CrossRef]
- Gummow, B.; Tan, R.H.H.; Joice, R.K.; Burgess, G.; Picard, J. Seroprevalence and associated risk factors of mosquito-borne alphaviruses in horses in northern Queensland. Aust. Vet. J. 2018, 96, 243–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azuolas, J.K.; Knight, P.K.; Evans, D.L.; Wishart, E.; Bibby, S.; Ainsworth, C. Isolation of Ross River virus from mosquitoes and from horses with signs of musculo-skeletal disease. Aust. Vet. J. 2003, 81, 344–347. [Google Scholar] [CrossRef] [PubMed]
- Vale, T.G.; Spratt, D.M.; Cloonan, M.J. Serological evidence of arbovirus infection in native and domesticated mammals on the south coast of New South Wales. Aust. J. Zool. 1991, 39, 1–7. [Google Scholar] [CrossRef]
- Knope, K.; Doggett, S.L.; Jansen, C.C.; Johansen, C.A.; Kurucz, N.; Feldman, R.; Lynch, S.E.; Hobby, M.P.; Sly, A.; Jardine, A.; et al. Arboviral diseases and malaria in Australia, 2014–15: Annual report of the National Arbovirus and Malaria Advisory Committee. Commun. Dis. Intell. 2019, 43, 1–69. [Google Scholar] [CrossRef]
- Gyawali, N.; Taylor-Robinson, A.W.; Bradbury, R.S.; Pederick, W.; Faddy, H.M.; Aaskov, J.G. Neglected Australian Arboviruses Associated with Undifferentiated Febrile Illnesses. Front. Microbiol. 2019, 10, 2818. [Google Scholar] [CrossRef]
- Adouchief, S.; Smura, T.; Sane, J.; Vapalahti, O.; Kurkela, S. Sindbis virus as a human pathogen-epidemiology, clinical picture and pathogenesis. Rev. Med. Virol. 2016, 26, 221–241. [Google Scholar] [CrossRef]
- van Niekerk, S.; Human, S.; Williams, J.; van Wilpe, E.; Pretorius, M.; Swanepoel, R.; Venter, M. Sindbis and Middelburg Old World Alphaviruses Associated with Neurologic Disease in Horses, South Africa. Emerg. Infect. Dis. 2015, 21, 2225–2229. [Google Scholar] [CrossRef]
- Meno, K.; Yah, C.; Mendes, A.; Venter, M. Incidence of Sindbis Virus in Hospitalized Patients With Acute Fevers of Unknown Cause in South Africa, 2019–2020. Front. Microbiol. 2021, 12, 798810. [Google Scholar] [CrossRef]
- Rawle, D.J.; Nguyen, W.; Dumenil, T.; Parry, R.; Warrilow, D.; Tang, B.; Le, T.T.; Slonchak, A.; Khromykh, A.A.; Lutzky, V.P.; et al. Sequencing of historical isolates, k-mer mining and high serological cross-reactivity with Ross River virus argue against the presence of Getah virus in Australia. Pathogens 2020, 9, 848. [Google Scholar] [CrossRef]
- Fukunaga, Y.; Kumanomido, T.; Kamada, M. Getah virus as an equine pathogen. Vet. Clin. North Am. Equine Pract. 2000, 16, 605–617. [Google Scholar] [CrossRef]
- Xing, C.; Jiang, J.; Lu, Z.; Mi, S.; He, B.; Tu, C.; Liu, X.; Gong, W. Isolation and characterization of Getah virus from pigs in Guangdong province of China. Transbound. Emerg. Dis. 2020, 67, 2249–2253. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Li, R.; Hu, Y.; Yang, L.; Zhao, D.; Du, L.; Li, J.; Ge, M.; Yu, X. An outbreak of Getah virus infection among pigs in China, 2017. Transbound. Emerg. Dis. 2018, 65, 632–637. [Google Scholar] [CrossRef] [PubMed]
- Prow, N.A.; Setoh, Y.X.; Biron, R.M.; Sester, D.P.; Kim, K.S.; Hobson-Peters, J.; Hall, R.A.; Bielefeldt-Ohmann, H. The West Nile virus-like flavivirus Koutango is highly virulent in mice due to delayed viral clearance and the induction of a poor neutralizing antibody response. J. Virol. 2014, 88, 9947–9962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jansen, C.C.; Prow, N.A.; Webb, C.E.; Hall, R.A.; Pyke, A.T.; Harrower, B.J.; Pritchard, I.L.; Zborowski, P.; Ritchie, S.A.; Russell, R.C.; et al. Arboviruses isolated from mosquitoes collected from urban and peri-urban areas of eastern Australia. J. Am. Mosq. Control Assoc. 2009, 25, 272–278. [Google Scholar] [CrossRef]
- Australian Bureau of Statistics. Statistical Area Level 3. Available online: https://www.abs.gov.au/statistics/standards/australian-statistical-geography-standard-asgs-edition-3/jul2021-jun2026/main-structure-and-greater-capital-city-statistical-areas/statistical-area-level-3 (accessed on 9 February 2021).
- Knope, K.; Whelan, P.; Smith, D.; Johansen, C.; Moran, R.; Doggett, S.; Sly, A.; Hobby, M.; Kurucz, N.; Wright, P.; et al. Arboviral diseases and malaria in Australia, 2010–11: Annual report of the National Arbovirus and Malaria Advisory Committee. Commun. Dis. Intell. 2013, 37, E1–E20. [Google Scholar]
- Knope, K.; Doggett, S.L.; Kurucz, N.; Feldman, R.; Johansen, C.A.; Nicholson, J.; Sly, A.; Hobby, M.; Saadi, D.E.; Muller, M.; et al. Arboviral diseases and malaria in Australia, 2011–12: Annual report of the National Arbovirus and Malaria Advisory Committee. Commun. Dis. Intell. 2014, 38, E112–E142. [Google Scholar]
- Knope, K.E.; Kurucz, N.; Doggett, S.L.; Muller, M.; Johansen, C.A.; Feldman, R.; Hobby, M.; Bennett, S.; Sly, A.; Lynch, S.; et al. Arboviral diseases and malaria in Australia, 2012–13: Annual report of the National Arbovirus and Malaria Advisory Committee. Commun. Dis. Intell. 2016, 40, E17–E47. [Google Scholar]
- Knope, K.E.; Muller, M.; Kurucz, N.; Doggett, S.L.; Feldman, R.; Johansen, C.A.; Hobby, M.; Bennett, S.; Lynch, S.; Sly, A.; et al. Arboviral diseases and malaria in Australia, 2013–14: Annual report of the National Arbovirus and Malaria Advisory Committee. Commun. Dis. Intell. 2016, 40, E401–E436. [Google Scholar]
- The University of Queensland. Gatton. Available online: https://campuses.uq.edu.au/gatton (accessed on 26 April 2022).
- Koolhof, I.S.; Carver, S. Epidemic host community contribution to mosquito-borne disease transmission: Ross River virus. Epidemiol. Infect 2017, 145, 656–666. [Google Scholar] [CrossRef] [Green Version]
- Sunshine Coast Regional Council. Mosquitoes and Biting Midges. Available online: https://library.sunshinecoast.qld.gov.au/ (accessed on 26 April 2022).
- Csurhes, S.; Paroz, G.; Markula, A. Feral Horses Equus Caballus; Department of Agriculture and Fisheries, Biosecurity Queensland, Queensland Government: Brisbane, Australia, 2016. [Google Scholar]
- Crill, W.D.; Chang, G.-J.J. Localization and characterization of flavivirus envelope glycoprotein cross-reactive epitopes. J. Virol. 2004, 78, 13975–13986. [Google Scholar] [CrossRef] [Green Version]
- Colmant, A.M.G.; Hall-Mendelin, S.; Ritchie, S.A.; Bielefeldt-Ohmann, H.; Harrison, J.J.; Newton, N.D.; O’Brien, C.A.; Cazier, C.; Johansen, C.A.; Hobson-Peters, J.; et al. The recently identified flavivirus Bamaga virus is transmitted horizontally by Culex mosquitoes and interferes with West Nile virus replication in vitro and transmission in vivo. PLoS Negl. Trop. Dis. 2018, 12, e0006886. [Google Scholar] [CrossRef]
Examples | Zoonotic | Status in Australia | Type of Clinical Signs (Animals) |
---|---|---|---|
Ross River virus | Yes | Endemic | Musculoskeletal |
Barmah Forest virus | Yes | Endemic | Musculoskeletal |
Sindbis virus | Yes | Endemic | Musculoskeletal/Neurological |
Getah virus | No | Exotic | Systemic |
Category | Level | QRIC | UQ | Total |
---|---|---|---|---|
Sex | Male | 318 | 39 | 357 |
Female | 196 | 69 | 265 | |
Age at sampling (years) | 2–6 | 447 | 27 | 474 |
>6 | 67 | 81 | 148 | |
Breed | Australian Stockhorse | 0 | 25 | 25 |
Australian Stockhorse × Standardbred | 0 | 7 | 7 | |
Quarter horse | 0 | 2 | 2 | |
Standardbred | 0 | 51 | 51 | |
Thoroughbred | 514 | 17 | 531 | |
Warmblood | 0 | 6 | 6 |
RRV % (n) | BFV % (n) | SINV % (n) | ||||
---|---|---|---|---|---|---|
Seropositive | Seronegative | Seropositive | Seronegative | Seropositive | Seronegative | |
QRIC | 40.9 (210) | 59.1 (304) | 1.4 (7) | 98.6 (506) | 2.1 (11) | 97.9 (503) |
UQ | 85.2 (92) | 14.8 (16) | 20.2 (19) | 79.8 (75) | 1.0 (1) | 99.0 (96) |
p-value * | p < 0.001 | p < 0.001 | p = 0.702 |
QRIC | UQ | |||
---|---|---|---|---|
Statistical Local Area 3 (SLA 3) | RRV Seropositive | RRV Seronegative | RRV Seropositive | RRV Seronegative |
Cleveland–Stradbroke | 4 | 0 | 0 | 0 |
Nundah | 60 | 110 | 0 | 0 |
Sandgate | 5 | 5 | 0 | 0 |
Kenmore–Brookfield–Moggill | 0 | 0 | 9 | 0 |
Brisbane Inner–North | 0 | 3 | 0 | 0 |
Cairns–South | 4 | 3 | 0 | 0 |
Innisfail–Cassowary Coast | 1 | 1 | 0 | 0 |
Tablelands (East)–Kuranda | 2 | 0 | 0 | 0 |
Granite Belt | 2 | 2 | 0 | 0 |
Rockhampton | 8 | 12 | 0 | 0 |
Gold Coast Hinterland | 39 | 59 | 0 | 0 |
Ipswich Hinterland | 4 | 7 | 83 | 16 |
Beaudesert | 5 | 3 | 0 | 0 |
Mackay | 0 | 2 | 0 | 0 |
Far North | 0 | 5 | 0 | 0 |
Sunshine Coast Hinterland | 47 | 39 | 0 | 0 |
Toowoomba | 26 | 50 | 0 | 0 |
Townsville | 1 | 3 | 0 | 0 |
Bundaberg | 1 | 0 | 0 | 0 |
Gympie–Cooloola | 1 | 0 | 0 | 0 |
Total | 210 | 304 | 92 | 16 |
Dataset | Moran’s I | p-Value |
---|---|---|
Overall | –0.02734297 | 0.437 |
Spring | 0.04030128 | 0.301 |
Summer | –0.1685299 | 0.361 |
Autumn | 0.06044266 | 0.254 |
Winter | –0.11316486 | 0.549 |
Univariant Analysis | Multivariant Analysis | ||||||
---|---|---|---|---|---|---|---|
Risk Factors | Level | RRV Seropositive % (n) | RRV Seronegative % (n) | Odds Ratio (95% CI) | p-Value | Odds Ratio (95% CI) | p-Value |
Sex | Female | 48.3 (128) | 51.7 (137) | 1 | |||
Male | 48.7 (174) | 51.3 (183) | 1.02 (0.74–1.40) | p = 0.914 | |||
Group | QRIC | 40.9 (210) | 59.1 (304) | 1 | 1 | ||
UQ | 85.2 (92) | 14.8 (16) | 8.32 (4.76–14.56) | p < 0.001 | 5.84 (3.16–10.80) | p < 0.001 | |
Age at sampling (years) | 2–6 | 41.8 (195) | 58.2 (271) | 1 | 1 | ||
>6 | 72.3 (107) | 27.7 (41) | 3.73 (2.49–5.59) | p < 0.001 | 1.86 (1.16–2.97) | p = 0.010 | |
Season | Spring | 57.6 (95) | 42.4 (70) | 1 | p = 0.004 * | ||
Summer | 45.9 (61) | 54.1 (72) | 0.62 (0.39–0.99) | p = 0.045 | |||
Autumn | 54.4 (62) | 45.6 (52) | 0.88 (0.54–1.42) | p = 0.598 | |||
Winter | 40.0 (84) | 60.0 (126) | 0.49 (0.32–0.74) | p = 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuen, K.Y.; Henning, J.; Eng, M.D.; Wang, A.S.W.; Lenz, M.F.; Caldwell, K.M.; Coyle, M.P.; Bielefeldt-Ohmann, H. Epidemiological Study of Multiple Zoonotic Mosquito-Borne Alphaviruses in Horses in Queensland, Australia (2018–2020). Viruses 2022, 14, 1846. https://doi.org/10.3390/v14091846
Yuen KY, Henning J, Eng MD, Wang ASW, Lenz MF, Caldwell KM, Coyle MP, Bielefeldt-Ohmann H. Epidemiological Study of Multiple Zoonotic Mosquito-Borne Alphaviruses in Horses in Queensland, Australia (2018–2020). Viruses. 2022; 14(9):1846. https://doi.org/10.3390/v14091846
Chicago/Turabian StyleYuen, Ka Y., Joerg Henning, Melodie D. Eng, Althea S. W. Wang, Martin F. Lenz, Karen M. Caldwell, Mitchell P. Coyle, and Helle Bielefeldt-Ohmann. 2022. "Epidemiological Study of Multiple Zoonotic Mosquito-Borne Alphaviruses in Horses in Queensland, Australia (2018–2020)" Viruses 14, no. 9: 1846. https://doi.org/10.3390/v14091846
APA StyleYuen, K. Y., Henning, J., Eng, M. D., Wang, A. S. W., Lenz, M. F., Caldwell, K. M., Coyle, M. P., & Bielefeldt-Ohmann, H. (2022). Epidemiological Study of Multiple Zoonotic Mosquito-Borne Alphaviruses in Horses in Queensland, Australia (2018–2020). Viruses, 14(9), 1846. https://doi.org/10.3390/v14091846