Identification of MHC-I-Presented Porcine Respiratory and Reproductive Syndrome Virus (PRRSV) Peptides Reveals Immunogenic Epitopes within Several Non-Structural Proteins Recognized by CD8+ T Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Porcine Alveolar Macrophages
2.2. Animals and PBMC Isolation
2.3. SLA-I Typing
2.4. Virus
2.5. Infection of PAMs
2.6. Immunoprecipitation of the MHC-I/Peptide Complex
2.7. Western Blot
2.8. Sample Preparation and LC-MS/MS Analysis
2.9. Data Analysis and Peptide Sequence Identification
2.10. Synthetic Peptides
2.11. In Vitro Stimulation of PBMCs
2.12. Intracellular Cytokine Staining
2.13. Flow Cytometry
3. Results
3.1. Isolation of MHC-I/Peptide Complexes by Immunoprecipitation
3.2. Peptides Originating from PRRSV Non-Structural Proteins Are Displayed by MHC-I
3.3. MHC-I-Bound PRRSV Peptides Elicit a CD8+ T-Cell-Specific IFNγ Response
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murtaugh, M.P.; Elam, M.R.; Kakach, L.T. Comparison of the Structural Protein Coding Sequences of the VR-2332 and Lelystad Virus Strains of the PRRS Virus. Arch. Virol. 1995, 140, 1451–1460. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-C.; Yoon, K.-J.; Zimmerman, J.J.; Harmon, K.M.; Dixon, P.M.; Dvorak, C.M.T.; Murtaugh, M.P. Evolution of Porcine Reproductive and Respiratory Syndrome Virus during Sequential Passages in Pigs. J. Virol. 2002, 76, 4750–4763. [Google Scholar] [CrossRef] [PubMed]
- Hanada, K.; Suzuki, Y.; Nakane, T.; Hirose, O.; Gojobori, T. The Origin and Evolution of Porcine Reproductive and Respiratory Syndrome Viruses. Mol. Biol. Evol. 2005, 22, 1024–1031. [Google Scholar] [CrossRef] [PubMed]
- Lauber, C.; Goeman, J.J.; de Parquet, M.C.; Thi Nga, P.; Snijder, E.J.; Morita, K.; Gorbalenya, A.E. The Footprint of Genome Architecture in the Largest Genome Expansion in RNA Viruses. PLoS Pathog. 2013, 9, e1003500. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, T.L.; Lowe, J.F.; Milburn, S.M.; Firkins, L.D. Quasispecies Variation of Porcine Reproductive and Respiratory Syndrome Virus during Natural Infection. Virology 2003, 317, 197–207. [Google Scholar] [CrossRef]
- Lunney, J.K.; Fang, Y.; Ladinig, A.; Chen, N.; Li, Y.; Rowland, B.; Renukaradhya, G.J. Porcine Reproductive and Respiratory Syndrome Virus (PRRSV): Pathogenesis and Interaction with the Immune System. Annu. Rev. Anim. Biosci. 2016, 4, 129–154. [Google Scholar] [CrossRef] [PubMed]
- Neumann, E.J.; Kliebenstein, J.B.; Johnson, C.D.; Mabry, J.W.; Bush, E.J.; Seitzinger, A.H.; Green, A.L.; Zimmerman, J.J. Assessment of the Economic Impact of Porcine Reproductive and Respiratory Syndrome on Swine Production in the United States. J. Am. Vet. Med. Assoc. 2005, 227, 385–392. [Google Scholar] [CrossRef]
- Kim, T.; Park, C.; Choi, K.; Jeong, J.; Kang, I.; Park, S.-J.; Chae, C. Comparison of Two Commercial Type 1 Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Modified Live Vaccines against Heterologous Type 1 and Type 2 PRRSV Challenge in Growing Pigs. Clin. Vaccine Immunol. 2015, 22, 631–640. [Google Scholar] [CrossRef]
- Charerntantanakul, W. Porcine Reproductive and Respiratory Syndrome Virus Vaccines: Immunogenicity, Efficacy and Safety Aspects. World J. Virol. 2012, 1, 23–30. [Google Scholar] [CrossRef]
- Scortti, M.; Prieto, C.; Álvarez, E.; Simarro, I.; Castro, J.M. Failure of an Inactivated Vaccine against Porcine Reproductive and Respiratory Syndrome to Protect Gilts against a Heterologous Challenge with PRRSV. Vet. Rec. 2007, 161, 809–813. [Google Scholar]
- Zhao, D.; Yang, B.; Yuan, X.; Shen, C.; Zhang, D.; Shi, X.; Zhang, T.; Cui, H.; Yang, J.; Chen, X.; et al. Advanced Research in Porcine Reproductive and Respiratory Syndrome Virus Co-Infection with Other Pathogens in Swine. Front. Vet. Sci. 2021, 8, 699561. [Google Scholar] [CrossRef] [PubMed]
- Lager, K.M.; Mengeling, W.L.; Brockmeier, S.L. Duration of Homologous Porcine Reproductive and Respiratory Syndrome Virus Immunity in Pregnant Swine. Vet. Microbiol. 1997, 58, 127–133. [Google Scholar] [CrossRef]
- Yoon, I.J.; Joo, H.S.; Goyal, S.M.; Molitor, T.W. A Modified Serum Neutralization Test for the Detection of Antibody to Porcine Reproductive and Respiratory Syndrome Virus in Swine Sera. J. Vet. Diagn. Investig. 1994, 6, 289–292. [Google Scholar] [CrossRef] [PubMed]
- Meier, W.; Wheeler, J.; Husmann, R.J.; Osorio, F.; Zuckermann, F.A. Characteristics of the Immune Response of Pigs to PRRS Virus. Vet. Res. 2000, 31, 41. [Google Scholar] [CrossRef]
- Wang, X.; Eaton, M.; Mayer, M.; Li, H.; He, D.; Nelson, E.; Christopher-Hennings, J. Porcine Reproductive and Respiratory Syndrome Virus Productively Infects Monocyte-Derived Dendritic Cells and Compromises Their Antigen-Presenting Ability. Arch. Virol. 2007, 152, 289–303. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.M.; Subramaniam, S.; Ni, Y.Y.; Cao, D.; Meng, X.J. The Non-Structural Protein Nsp2TF of Porcine Reproductive and Respiratory Syndrome Virus down-Regulates the Expression of Swine Leukocyte Antigen Class I. Virology 2016, 491, 115–124. [Google Scholar] [CrossRef]
- Hammer, S.E.; Ho, C.S.; Ando, A.; Rogel-Gaillard, C.; Charles, M.; Tector, M.; Tector, A.J.; Lunney, J.K. Importance of the Major Histocompatibility Complex (Swine Leukocyte Antigen) in Swine Health and Biomedical Research. Annu. Rev. Anim. Biosci. 2020, 8, 171–198. [Google Scholar] [CrossRef]
- Tey, S.K.; Khanna, R. Autophagy Mediates Transporter Associated with Antigen Processing- Independent Presentation of Viral Epitopes through MHC Class I Pathway. Blood 2012, 120, 994–1004. [Google Scholar] [CrossRef]
- Medina, F.; Ramos, M.; Iborra, S.; de León, P.; Rodríguez-Castro, M.; Del Val, M. Furin-Processed Antigens Targeted to the Secretory Route Elicit Functional TAP1 −/− CD8 + T Lymphocytes In Vivo. J. Immunol. 2009, 183, 4639–4647. [Google Scholar] [CrossRef]
- Oliveira, C.C.; van Hall, T. Alternative Antigen Processing for MHC Class I: Multiple Roads Lead to Rome. Front. Immunol. 2015, 6, 298. [Google Scholar] [CrossRef]
- Murphy, K.; Weaver, C.; Janeway, C. Janeway ’s Immunobiology, 9th ed.; Garland Science/Taylor’ Francis: New York, NY, USA, 2017; ISBN 9780815345053. [Google Scholar]
- Ho, C.S.; Lunney, J.K.; Ando, A.; Rogel-Gaillard, C.; Lee, J.H.; Schook, L.B.; Smith, D.M. Nomenclature for Factors of the SLA System, Update 2008. Tissue Antigens 2009, 73, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Bautista, E.M.; Molitor, T.W. IFNγ Inhibits Porcine Reproductive and Respiratory Syndrome Virus Replication in Macrophages. Arch. Virol. 1999, 144, 1191–1200. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Zhang, N.; Wei, X.; Jiang, Y.; Chen, R.; Li, Q.; Liang, R.; Zhang, L.; Ma, L.; Xia, C. Illumination of PRRSV Cytotoxic T Lymphocyte Epitopes by the Three-Dimensional Structure and Peptidome of Swine Lymphocyte Antigen Class I (SLA-I). Front. Immunol. 2020, 10, 2995. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Xia, Q.; Zhou, J.; Liu, H.; Chen, Y.; Liu, Y.; Ding, P.; Qi, Y.; Wang, A. Identification of Potential SLA-I-Restricted CTL Epitopes within the M Protein of Porcine Reproductive and Respiratory Syndrome Virus. Vet. Microbiol. 2021, 259, 109131. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.X.; Zhou, Y.J.; Li, G.X.; Zhang, S.R.; Jiang, Y.F.; Xu, A.T.; Yu, H.; Wang, M.M.; Yan, L.P.; Tong, G.Z. Identification of Immunodominant T-Cell Epitopes in Membrane Protein of Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus. Virus Res. 2011, 158, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Saalmüller, A.; Jonjic, S.; Bühring, H.J.; Reddehase, M.J.; Koszinowski, U.H. Monoclonal Antibodies Reactive with Swine Lymphocytes. II. Detection of an Antigen on Resting T Cells down-Regulated after Activation. J. Immunol. 1987, 138, 1852–1857. [Google Scholar]
- Hammer, S.E.; Duckova, T.; Groiss, S.; Stadler, M.; Jensen-Waern, M.; Golde, W.T.; Gimsa, U.; Saalmueller, A. Comparative Analysis of Swine Leukocyte Antigen Gene Diversity in European Farmed Pigs. Anim. Genet. 2021, 52, 523–531. [Google Scholar] [CrossRef]
- Lamont, E.A.; Poulin, E.; Sreevatsan, S.; Cheeran, M.C.J. Major Histocompatibility Complex i of Swine Respiratory Cells Presents Conserved Regions of Influenza Proteins. J. Gen. Virol. 2018, 99, 303–308. [Google Scholar] [CrossRef]
- Rappsilber, J.; Mann, M.; Ishihama, Y. Protocol for Micro-Purification, Enrichment, Pre-Fractionation and Storage of Peptides for Proteomics Using StageTips. Nat. Protoc. 2007, 2, 1896–1906. [Google Scholar] [CrossRef]
- Olsen, J.V.; de Godoy, L.M.F.; Li, G.; Macek, B.; Mortensen, P.; Pesch, R.; Makarov, A.; Lange, O.; Horning, S.; Mann, M. Parts per Million Mass Accuracy on an Orbitrap Mass Spectrometer via Lock Mass Injection into a C-Trap. Mol. Cell Proteomics 2005, 4, 2010–2021. [Google Scholar] [CrossRef]
- Henikoff, S.; Henikoff, J.G.; Alford, W.J.; Pietrokovski, S. Automated Construction and Graphical Presentation of Protein Blocks from Unaligned Sequences. Gene 1995, 163, GC17–GC26. [Google Scholar] [CrossRef]
- Vaudel, M.; Burkhart, J.M.; Zahedi, R.P.; Oveland, E.; Berven, F.S.; Sickmann, A.; Martens, L.; Barsnes, H. PeptideShaker Ena-bles Reanalysis of MS-Derived Proteomics Data Sets: To the Editor. Nat. Biotechnol. 2015, 33, 22–24. [Google Scholar] [CrossRef] [PubMed]
- Cossarizza, A.; Chang, H.D.; Radbruch, A.; Acs, A.; Adam, D.; Adam-Klages, S.; Agace, W.W.; Aghaeepour, N.; Akdis, M.; Allez, M.; et al. Guidelines for the Use of Flow Cytometry and Cell Sorting in Immunological Studies (Second Edition). Eur. J. Immunol. 2019, 49, 1457–1973. [Google Scholar] [CrossRef] [PubMed]
- Murtaugh, M.P.; Genzow, M. Immunological Solutions for Treatment and Prevention of Porcine Reproductive and Respira-tory Syndrome (PRRS). Vaccine 2011, 29, 8192–8204. [Google Scholar] [CrossRef]
- Labarque, G.G.; Nauwynck, H.J.; Van Reeth, K.; Pensaert, M.B. Effect of Cellular Changes and Onset of Humoral Immunity on the Replication of Porcine Reproductive and Respiratory Syndrome Virus in the Lungs of Pigs. J. Gen. Virol. 2000, 81, 1327–1334. [Google Scholar] [CrossRef]
- Jurtz, V.; Paul, S.; Andreatta, M.; Marcatili, P.; Peters, B.; Nielsen, M. NetMHCpan-4.0: Improved Peptide–MHC Class I In-teraction Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data. J. Immunol. 2017, 199, 3360–3368. [Google Scholar] [CrossRef]
- Chung, C.J.; Cha, S.H.; Grimm, A.L.; Chung, G.; Gibson, K.A.; Yoon, K.J.; Parish, S.M.; Ho, C.S.; Lee, S.S. Recognition of Highly Diverse Type-1 and -2 Porcine Reproductive and Respiratory Syndrome Viruses (PRRSVs) by T-Lymphocytes Induced in Pigs after Experimental Infection with a Type-2 PRRSV Strain. PLoS ONE 2016, 11, e0165450. [Google Scholar] [CrossRef]
- Parida, R.; Choi, I.S.; Peterson, D.A.; Pattnaik, A.K.; Laegreid, W.; Zuckermann, F.A.; Osorio, F.A. Location of T-Cell Epitopes in Nonstructural Proteins 9 and 10 of Type-II Porcine Reproductive and Respiratory Syndrome Virus. Virus Res. 2012, 169, 13–21. [Google Scholar] [CrossRef]
- Burgara-Estrella, A.; Díaz, I.; Rodríguez-Gómez, I.M.; Essler, S.E.; Hernández, J.; Mateu, E. Predicted Peptides from Non-Structural Proteins of Porcine Reproductive and Respiratory Syndrome Virus Are Able to Induce IFN-γ and IL-10. Viruses 2013, 5, 663–677. [Google Scholar] [CrossRef]
- Mokhtar, H.; Eck, M.; Morgan, S.B.; Essler, S.E.; Frossard, J.P.; Ruggli, N.; Graham, S.P. Proteome-Wide Screening of the European Porcine Reproductive and Respiratory Syndrome Virus Reveals a Broad Range of T Cell Antigen Reactivity. Vaccine 2014, 32, 6828–6837. [Google Scholar] [CrossRef]
- Sijts, E.J.A.M.; Kloetzel, P.M. The Role of the Proteasome in the Generation of MHC Class I Ligands and Immune Responses. Cell. Mol. Life Sci. 2011, 68, 1491–1502. [Google Scholar] [CrossRef] [PubMed]
- Hunt, D.F.; Henderson, R.A.; Shabanowitz, J.; Sakaguchi, K.; Michel, H.; Sevilir, N.; Cox, A.L.; Appella, E.; Engelhard, V.H. Characterization of Peptides Bound to the Class I MHC Molecule HLA-A2.1 by Mass Spectrometry. Science 1992, 255, 1261–1263. [Google Scholar] [CrossRef] [Green Version]
- Batista, L.; Pijoan, C.; Dee, S.; Olin, M.; Molitor, T.; Joo, H.S.; Xiao, Z.; Murtaugh, M. Virological and Immunological Responses to Porcine Reproductive and Respiratory Syndrome Virus in a Large Population of Gilts. Can. J. Vet. Res. 2004, 68, 267–273. [Google Scholar] [PubMed]
- Perez-Riverol, Y.; Bai, J.; Bandla, C.; Hewapathirana, S.; García-Seisdedos, D.; Kamatchinathan, S.; Kundu, D.; Prakash, A.; Frericks-Zipper, A.; Eisenacher, M.; et al. The PRIDE database resources in 2022: A Hub for mass spectrometry-based pro-teomics evidences. Nucleic Acids Res. 2021, 50, D543–D552. [Google Scholar] [CrossRef] [PubMed]
Marker | Clone | Isotype | Fluorophore | Labelling | Source |
---|---|---|---|---|---|
Surface antigens | |||||
CD8α | 76-2-11 | IgG2a | PerCPerfluor 710 | Indirect A | In house |
CD27 | b30c7 | IgG1 | Alexa fluor 647 | Direct | In house |
CD8β | PPT23 | IgG1 | Alexa fluor 488 | Direct | In house |
Intracellular antigens | |||||
TNFα | Mab11 | IgG1 | Alexa fluor 700 | Direct | Biolegend |
IFNγ | P2G10 | IgG1 | PE | Direct | BD Biosciences |
Peptide | Sequence | PRRSV Protein Origin | Length (Amino Acids) |
---|---|---|---|
1 | SVVFPLARM | NSP1α | 9 |
2 | LVKVAEVLYR | NSP1α | 10 |
3 | RLQINGIR | NSP1β | 8 |
4 | LDKMWDRV | NSP2 | 8 |
5 | LALEQRQL | NSP2 | 8 |
6 | VISESGDLI | NSP4 | 9 |
7 | DIKLSPAII | NSP4 | 9 |
8 | SQALSTYCF | NSP5 | 9 |
9 | VEKLKRII | NSP8 | 8 |
10 | QGFVLPGVL | NSP9 | 9 |
11 | GRCLEADL | NSP9 | 8 |
12 | LLEIQPML | NSP9 | 8 |
13 | VITDKPSFL | NSP9 | 9 |
Pig | SLA-1 | SLA-3 | SLA-2 | Lr-Hp |
---|---|---|---|---|
PAM 1 | 12XX, 13XX | 05XX | 10XX | 35.0 |
07XX, 08XX | 04XX | 06XX | 24.0 mod | |
Gilt16 2 | 12XX, 13XX | 05XX | 10XX | 35.0 |
02XX, 18:01 | 01XX | 11XX | 57.0 | |
Gilt24 2 | 12XX, 13XX | 05XX | 10XX | 35.0 |
02XX, 07XX | 04XX | 02XX | 2.0 | |
Piglet55 2 | 13XX | 04XX | 06XX | 24.0 mod |
08XX | 05XX | blank | 49.0 | |
Piglet62 2 | blank 11:03 | 04XX 05XX | 06XX 16:02 | 24.0 59.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mötz, M.; Stas, M.R.; Hammer, S.E.; Duckova, T.; Fontaine, F.; Kiesler, A.; Seitz, K.; Ladinig, A.; Müller, A.C.; Riedel, C.; et al. Identification of MHC-I-Presented Porcine Respiratory and Reproductive Syndrome Virus (PRRSV) Peptides Reveals Immunogenic Epitopes within Several Non-Structural Proteins Recognized by CD8+ T Cells. Viruses 2022, 14, 1891. https://doi.org/10.3390/v14091891
Mötz M, Stas MR, Hammer SE, Duckova T, Fontaine F, Kiesler A, Seitz K, Ladinig A, Müller AC, Riedel C, et al. Identification of MHC-I-Presented Porcine Respiratory and Reproductive Syndrome Virus (PRRSV) Peptides Reveals Immunogenic Epitopes within Several Non-Structural Proteins Recognized by CD8+ T Cells. Viruses. 2022; 14(9):1891. https://doi.org/10.3390/v14091891
Chicago/Turabian StyleMötz, Marlene, Melissa R. Stas, Sabine E. Hammer, Tereza Duckova, Frederic Fontaine, Alexandra Kiesler, Kerstin Seitz, Andrea Ladinig, André C. Müller, Christiane Riedel, and et al. 2022. "Identification of MHC-I-Presented Porcine Respiratory and Reproductive Syndrome Virus (PRRSV) Peptides Reveals Immunogenic Epitopes within Several Non-Structural Proteins Recognized by CD8+ T Cells" Viruses 14, no. 9: 1891. https://doi.org/10.3390/v14091891
APA StyleMötz, M., Stas, M. R., Hammer, S. E., Duckova, T., Fontaine, F., Kiesler, A., Seitz, K., Ladinig, A., Müller, A. C., Riedel, C., Saalmüller, A., & Rümenapf, T. (2022). Identification of MHC-I-Presented Porcine Respiratory and Reproductive Syndrome Virus (PRRSV) Peptides Reveals Immunogenic Epitopes within Several Non-Structural Proteins Recognized by CD8+ T Cells. Viruses, 14(9), 1891. https://doi.org/10.3390/v14091891