Virus Safety of Xenotransplantation †
Abstract
:1. Introduction
2. Potential Zoonotic Pig Viruses
3. Detection of Porcine Viruses
4. Elimination of Porcine Viruses
5. Future Clinical Trials
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Griffith, B.P.; Goerlich, C.E.; Singh, A.K.; Rothblatt, M.; Lau, C.L.; Shah, A.; Lorber, M.; Grazioli, A.; Saharia, K.K.; Hong, S.N.; et al. Genetically Modified Porcine-to-Human Cardiac Xenotransplantation. N. Engl. J. Med. 2022, 387, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Denner, J. Reduction of the survival time of pig xenotransplants by porcine cytomegalovirus. Virol. J. 2018, 15, 171. [Google Scholar] [CrossRef]
- Denner, J. Xenotransplantation and porcine cytomegalovirus. Xenotransplantation 2015, 22, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; Tasaki, M.; Sekijima, M.; Wilkinson, R.A.; Villani, V.; Moran, S.G.; Cormack, T.A.; Hanekamp, I.; Arn, J.S.; Fishman, J.A.; et al. Porcine Cytomegalovirus Infection Is Associated With Early Rejection of Kidney Grafts in a Pig to Baboon Xenotransplantation Model. Transplantation 2014, 98, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Sekijima, M.; Waki, S.; Sahara, H.; Tasaki, M.; Wilkinson, R.A.; Villani, V.; Shimatsu, Y.; Nakano, K.; Matsunari, H.; Nagashima, H.; et al. Results of Life-Supporting Galactosyltransferase Knockout Kidneys in Cynomolgus Monkeys Using Two Different Sources of Galactosyltransferase Knockout Swine. Transplantation 2014, 98, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Denner, J.; Längin, M.; Reichart, B.; Krüger, L.; Fiebig, U.; Mokelke, M.; Radan, J.; Mayr, T.; Milusev, A.; Luther, F.; et al. Impact of porcine cytomegalovirus on long-term orthotopic cardiac xenotransplant survival. Sci. Rep. 2020, 10, 17531. [Google Scholar] [CrossRef]
- Denner, J. The porcine cytomegalovirus (PCMV) will not stop xenotransplantation. Xenotransplantation 2022, 13, e12763. [Google Scholar] [CrossRef]
- Denner, J. Xenotransplantation and Hepatitis E virus. Xenotransplantation 2015, 22, 167–173. [Google Scholar] [CrossRef]
- Denner, J. Hepatitis E virus (HEV)-The Future. Viruses 2019, 11, 251. [Google Scholar] [CrossRef]
- Denner, J. Porcine Lymphotropic Herpesviruses (PLHVs) and Xenotranplantation. Viruses 2021, 13, 1072. [Google Scholar] [CrossRef]
- Denner, J. Porcine Endogenous Retroviruses and Xenotransplantation, 2021. Viruses 2021, 13, 2156. [Google Scholar] [CrossRef] [PubMed]
- Denner, J. Why was PERV not transmitted during preclinical and clinical xenotransplantation trials and after inoculation of animals? Retrovirology 2018, 15, 28. [Google Scholar] [CrossRef] [PubMed]
- Adlhoch, C.; Wolf, A.; Meisel, H.; Kaiser, M.; Ellerbrok, H.; Pauli, G. High HEV presence in four different wild boar populations in East and West Germany. Veter-Microbiol. 2009, 139, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Dremsek, P.; Joel, S.; Baechlein, C.; Pavio, N.; Schielke, A.; Ziller, M.; Dürrwald, R.; Renner, C.; Groschup, M.H.; Johne, R.; et al. Hepatitis E virus seroprevalence of domestic pigs in Germany determined by a novel in-house and two reference ELISAs. J. Virol. Methods 2013, 190, 11–16. [Google Scholar] [CrossRef]
- Matsuda, H.; Okada, K.; Takahashi, K.; Mishiro, S. Severe Hepatitis E Virus Infection after Ingestion of Uncooked Liver from a Wild Boar. J. Infect. Dis. 2003, 188, 944. [Google Scholar] [CrossRef]
- Takahashi, K.; Kitajima, N.; Abe, N.; Mishiro, S. Complete or near-complete nucleotide sequences of hepatitis E virus genome recovered from a wild boar, a deer, and four patients who ate the deer. Virology 2004, 330, 501–505. [Google Scholar] [CrossRef]
- Colson, P.; Borentain, P.; Queyriaux, B.; Kaba, M.; Moal, V.; Gallian, P.; Heyries, L.; Raoult, D.; Gerolami, R. Pig Liver Sausage as a Source of Hepatitis E Virus Transmission to Humans. J. Infect. Dis. 2010, 202, 825–834. [Google Scholar] [CrossRef]
- Wang, B.; Meng, X.J. Hepatitis E virus: Host tropism and zoonotic infection. Curr. Opin. Microbiol. 2021, 59, 8–15. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.-F.; Huang, S.-J.; Wu, T.; Hu, Y.-M.; Wang, Z.-Z.; Wang, H.; Jiang, H.-M.; Wang, Y.-J.; Yan, Q.; et al. Long-Term Efficacy of a Hepatitis E Vaccine. N. Engl. J. Med. 2015, 372, 914–922. [Google Scholar] [CrossRef]
- Kamar, N.; Izopet, J.; Tripon, S.; Bismuth, M.; Hillaire, S.; Dumortier, J.; Radenne, S.; Coilly, A.; Garrigue, V.; D’Alteroche, L.; et al. Ribavirin for Chronic Hepatitis E Virus Infection in Transplant Recipients. N. Engl. J. Med. 2014, 370, 1111–1120. [Google Scholar] [CrossRef] [Green Version]
- A Fishman, J. Xenosis and xenotransplantation: Addressing the infectious risks posed by an emerging technology. Kidney Int. Suppl. 1997, 58, S41–S45. [Google Scholar] [PubMed]
- Yoo, D.; Giulivi, A. Xenotransplantation and the potential risk of xenogeneic transmission of porcine viruses. Can. J. Vet. Res. 2000, 64, 193–203. [Google Scholar] [PubMed]
- Takeuchi, Y.; Magre, S.; Patience, C. The potential hazards of xenotransplantation: An overview. Rev. Sci. Tech. 2005, 24, 323–334. [Google Scholar] [CrossRef]
- Mattiuzzo, G.; Scobie, L.; Takeuchi, Y. Strategies to enhance the safety profile of xenotransplantation: Minimizing the risk of viral zoonoses. Curr. Opin. Organ Transplant. 2008, 13, 184–188. [Google Scholar] [CrossRef]
- Scobie, L.; Takeuchi, Y. Porcine endogenous retrovirus and other viruses in xenotransplantation. Curr. Opin. Organ Transplant. 2009, 14, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Mueller, N.J.; Takeuchi, Y.; Mattiuzzo, G.; Scobie, L. Microbial safety in xenotransplantation. Curr. Opin. Organ Transplant. 2011, 16, 201–206. [Google Scholar] [CrossRef]
- Fishman, J.A.; Scobie, L.; Takeuchi, Y. Xenotransplantation-associated infectious risk: A WHO consultation. Xenotransplantation 2012, 19, 72–81. [Google Scholar] [CrossRef]
- Denner, J.; Mueller, N.J. Preventing transfer of infectious agents. Int. J. Surg. 2015, 23 Pt B, 306–311. [Google Scholar] [CrossRef]
- Fishman, J.A. Infectious disease risks in xenotransplantation. Am. J. Transplant. 2018, 18, 1857–1864. [Google Scholar] [CrossRef]
- Nellore, A.; Fishman, J.A. Donor-derived infections and infectious risk in xenotransplantation and allotransplantation. Xenotransplantation 2018, 25, e12423. [Google Scholar] [CrossRef]
- Fishman, J.A. Prevention of infection in xenotransplantation: Designated pathogen-free swine in the safety equation. Xenotransplantation 2020, 27, e12595. [Google Scholar] [CrossRef]
- Mueller, N.J.; Fishman, J.A. Herpesvirus infections in xenotransplantation: Pathogenesis and approaches. Xenotransplantation 2004, 11, 486–490. [Google Scholar] [CrossRef] [PubMed]
- Tischer, B.K.; Osterrieder, N. Herpesviruses--a zoonotic threat? Vet. Microbiol. 2010, 140, 266–270. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C.A. Porcine endogenous retroviruses and xenotransplantation. Cell Mol. Life Sci. 2008, 65, 3399–3412. [Google Scholar] [CrossRef]
- Denner, J. Recombinant porcine endogenous retroviruses (PERV-A/C): A new risk for xenotransplantation? Arch Virol. 2008, 153, 1421–1426. [Google Scholar] [CrossRef]
- Denner, J.; Schuurman, H.J.; Patience, C. The International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes--chapter 5: Strategies to prevent transmission of porcine endogenous retroviruses. Xenotransplantation 2009, 16, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Denner, J.; Tönjes, R.R. Infection barriers to successful xenotransplantation focusing on porcine endogenous retroviruses. Clin. Microbiol. Rev. 2012, 25, 318–343. [Google Scholar] [CrossRef]
- Kimsa, M.C.; Strzalka-Mrozik, B.; Kimsa, M.W.; Gola, J.; Nicholson, P.; Lopata, K.; Mazurek, U. Porcine Endogenous Retroviruses in Xenotransplantation—Molecular Aspects. Viruses 2014, 6, 2062–2083. [Google Scholar] [CrossRef]
- Denner, J. How Active Are Porcine Endogenous Retroviruses (PERVs)? Viruses 2016, 8, 215. [Google Scholar] [CrossRef]
- McGregor, C.G.A.; Takeuchi, Y.; Scobie, L.; Byrne, G. PERVading strategies and infectious risk for clinical xenotransplantation. Xenotransplantation 2018, 25, e12402. [Google Scholar] [CrossRef] [Green Version]
- Denner, J.; Scobie, L.; Schuurman, H.-J. Is it currently possible to evaluate the risk posed by PERVs for clinical xenotransplantation? Xenotransplantation 2018, 25, e12403. [Google Scholar] [CrossRef]
- Karuppannan, A.K.; Opriessnig, T. Possible risks posed by single-stranded DNA viruses of pigs associated with xenotransplantation. Xenotransplantation 2018, 25, e12453. [Google Scholar] [CrossRef] [PubMed]
- Denner, J.; Mankertz, A. Porcine Circoviruses and Xenotransplantation. Viruses 2017, 9, 83. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, S.; Tan, P.; Baker, J.; Durbin, K.; Tomiya, M.; Azuma, K.; Doi, M.; Elliott, R. Clinical Porcine Islet Xenotransplantation Under Comprehensive Regulation. Transplant. Proc. 2014, 46, 1992–1995. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, S.; Abalovich, A.; Wechsler, C.; Wynyard, S.; Elliott, R.B. Clinical Benefit of Islet Xenotransplantation for the Treatment of Type 1 Diabetes. EBioMedicine 2016, 12, 255–262. [Google Scholar] [CrossRef]
- Matsumoto, S.; Wynyard, S.; Giovannangelo, M.; Hemdev, S.L.; Abalovich, A.; Carulla, M.E.; Wechsler, C.J. Long-term follow-up for the microbiological safety of clinical microencapsulated neonatal porcine islet transplantation. Xenotransplantation 2020, 27, e12631. [Google Scholar] [CrossRef]
- Garkavenko, O.; Muzina, M.; Muzina, Z.; Powels, K.; Elliott, R.B.; Croxson, M.C. Monitoring for potentially xenozoonotic viruses in New Zealand pigs. J. Med. Virol. 2003, 72, 338–344. [Google Scholar] [CrossRef]
- Garkavenko, O.; Wynyard, S.; Nathu, D.; Simond, D.; Muzina, M.; Muzina, Z.; Scobie, L.; Hector, R.; Croxson, M.C.; Tan, P.; et al. Porcine Endogenous Retrovirus (PERV) and its Transmission Characteristics: A Study of the New Zealand Designated Pathogen-Free Herd. Cell Transplant. 2008, 17, 1381–1388. [Google Scholar] [CrossRef]
- Garkavenko, O.; Dieckhoff, B.; Wynyard, S.; Denner, J.; Elliott, R.B.; Tan, P.L.; Croxson, M.C. Absence of transmission of potentially xenotic viruses in a prospective pig to primate islet xenotransplantation study. J. Med. Virol. 2008, 80, 2046–2052. [Google Scholar] [CrossRef] [PubMed]
- Garkavenko, O.; Croxson, M.C.; Irgang, M.; Karlas, A.; Denner, J.; Elliott, R.B. Monitoring for Presence of Potentially Xenotic Viruses in Recipients of Pig Islet Xenotransplantation. J. Clin. Microbiol. 2004, 42, 5353–5356. [Google Scholar] [CrossRef] [Green Version]
- Wynyard, S.; Nathu, D.; Garkavenko, O.; Denner, J.; Elliott, R. Microbiological safety of the first clinical pig islet xenotransplantation trial in New Zealand. Xenotransplantation 2014, 21, 309–323. [Google Scholar] [CrossRef] [PubMed]
- Morozov, V.A.; Wynyard, S.; Matsumoto, S.; Abalovich, A.; Denner, J.; Elliott, R. No PERV transmission during a clinical trial of pig islet cell transplantation. Virus Res. 2016, 227, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Egerer, S.; Fiebig, U.; Kessler, B.; Zakhartchenko, V.; Kurome, M.; Reichart, B.; Kupatt, C.; Klymiuk, N.; Wolf, E.; Denner, J.; et al. Early weaning completely eliminates porcine cytomegalovirus from a newly established pig donor facility for xenotransplantation. Xenotransplantation 2018, 25, e12449. [Google Scholar] [CrossRef]
- Noordergraaf, J.; Schucker, A.; Martin, M.; Schuurman, H.-J.; Ordway, B.; Cooley, K.; Sheffler, M.; Theis, K.; Armstrong, C.; Klein, L.; et al. Pathogen elimination and prevention within a regulated, Designated Pathogen Free, closed pig herd for long-term breeding and production of xenotransplantation materials. Xenotransplantation 2018, 25, e12428. [Google Scholar] [CrossRef] [PubMed]
- Gazda, L.S.; Collins, J.; Lovatt, A.; Holdcraft, R.W.; Morin, M.J.; Galbraith, D.; Graham, M.; Laramore, M.A.; MacLean, C.; Black, J.; et al. A comprehensive microbiological safety approach for agarose encapsulated porcine islets intended for clinical trials. Xenotransplantation 2016, 23, 444–463. [Google Scholar] [CrossRef] [PubMed]
- Pomeranz, L.E.; Reynolds, A.E.; Hengartner, C.J. Molecular Biology of Pseudorabies Virus: Impact on Neurovirology and Veterinary Medicine. Microbiol. Mol. Biol. Rev. 2005, 69, 462–500. [Google Scholar] [CrossRef]
- Corn, J.L.; Stallknecht, D.E.; Mechlin, N.M.; Luttrell, M.P.; Fischer, J.R. Persistence of Pseudorabies Virus in Feral Swine Populations. J. Wildl. Dis. 2004, 40, 307–310. [Google Scholar] [CrossRef]
- Tan, L.; Yao, J.; Yang, Y.; Luo, W.; Yuan, X.; Yang, L.; Wang, A. Current Status and Challenge of Pseudorabies Virus Infection in China. Virol. Sin. 2021, 36, 588–607. [Google Scholar] [CrossRef]
- Ou, J.; Cai, S.; Zheng, F.; Lu, G.; Zhang, G. Human pseudorabies virus infection: A new threat in China. J. Infect. 2020, 80, 578–606. [Google Scholar] [CrossRef]
- Ibrahim, Y.M.; Werid, G.M.; Zhang, H.; Fu, L.; Wang, W.; Chen, H.; Wang, Y. Potential zoonotic swine enteric viruses: The risk ignored for public health. Virus Res. 2022, 315, 198767. [Google Scholar] [CrossRef]
- Denner, J. What does the PERV copy number tell us? Xenotransplantation 2022, 29, e12732. [Google Scholar] [CrossRef] [PubMed]
- Denner, J. Sensitive detection systems for infectious agents in xenotransplantation. Xenotransplantation 2020, 18, e12594. [Google Scholar] [CrossRef] [PubMed]
- Chmielewicz, B.; Goltz, M.; Lahrmann, K.-H.; Ehlers, B. Approaching virus safety in xenotransplantation: A search for unrecognized herpesviruses in pigs. Xenotransplantation 2003, 10, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Tucker, A.W.; McNeilly, F.; Meehan, B.; Galbraith, D.; McArdle, P.D.; Allan, G.; Patience, C. FMethods for the exclusion of circoviruses and gammaherpesviruses from pigs. Xenotransplantation 2003, 10, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Abrahante, J.; Martins, K.; Papas, K.K.; Hering, B.J.; Schuurman, H.-J.; Murtaugh, M.P. Microbiological safety of porcine islets: Comparison with source pig. Xenotransplantation 2011, 18, 88–93. [Google Scholar] [CrossRef]
- Plotzki, E.; Heinrichs, G.; Kubícková, B.; Ulrich, R.G.; Denner, J. Microbiological characterization of a newly established pig breed, Aachen Minipigs. Xenotransplantation 2016, 23, 159–167. [Google Scholar] [CrossRef]
- Plotzki, E.; Buerck, L.W.-V.; Knauf, Y.; Becker, T.; Maetz-Rensing, K.; Schuster, M.; Baehr, A.; Klymiuk, N.; Wolf, E.; Seissler, J.; et al. Virus safety of islet cell transplantation from transgenic pigs to marmosets. Virus Res. 2015, 204, 95–102. [Google Scholar] [CrossRef]
- Morozov, V.A.; Ludwig, S.; Ludwig, B.; Rotem, A.; Barkai, U.; Bornstein, S.R.; Denner, J. Islet cell transplantation from Göttingen minipigs to cynomolgus monkeys: Analysis of virus safety. Xenotransplantation 2016, 23, 320–327. [Google Scholar] [CrossRef]
- Morozov, V.A.; Plotzki, E.; Rotem, A.; Barkai, U.; Denner, J. Extended microbiological characterization of Göttingen minipigs: Porcine cytomegalovirus and other viruses. Xenotransplantation 2016, 23, 490–496. [Google Scholar] [CrossRef]
- Denner, J. Sensitive methods and improved screening strategies are needed for the detection of pig viruses. Xenotransplantation 2017, 24, e12303. [Google Scholar] [CrossRef]
- Hartline, C.B.; Conner, R.L.; James, S.H.; Potter, J.; Gray, E.; Estrada, J.; Tector, M.; Tector, A.J.; Prichard, M.N. Xenotransplantation panel for the detection of infectious agents in pigs. Xenotransplantation 2018, 25, e12427. [Google Scholar] [CrossRef] [PubMed]
- Crossan, C.; O’Hara, Z.; Mourad, N.; Gianello, P.; Scobie, L. Examining the potential for porcine-derived islet cells to harbour viral pathogens. Xenotransplantation 2018, 25, e12375. [Google Scholar] [CrossRef] [PubMed]
- Krüger, L.; Kristiansen, Y.; Reuber, E.; Möller, L.; Laue, M.; Reimer, C.; Denner, J. A Comprehensive Strategy for Screening for Xenotransplantation-Relevant Viruses in a Second Isolated Population of Göttingen Minipigs. Viruses 2019, 12, 38. [Google Scholar] [CrossRef]
- Halecker, S.; Metzger, J.; Strube, C.; Krabben, L.; Kaufer, B.; Denner, J. Virological and Parasitological Characterization of Mini-LEWE Minipigs Using Improved Screening Methods and an Overview of Data on Various Minipig Breeds. Microorganisms 2021, 9, 2617. [Google Scholar] [CrossRef]
- Mueller, N.J.; Barth, R.N.; Yamamoto, S.; Kitamura, H.; Patience, C.; Yamada, K.; Cooper, D.K.C.; Sachs, D.H.; Kaur, A.; Fishman, J.A. Activation of Cytomegalovirus in Pig-to-Primate Organ Xenotransplantation. J. Virol. 2002, 76, 4866–4872. [Google Scholar] [CrossRef] [PubMed]
- Mueller, N.J.; Livingston, C.; Knosalla, C.; Barth, R.; Yamamoto, S.; Gollackner, B.; Dor, F.J.M.F.; Buhler, L.; Sachs, D.H.; Yamada, K.; et al. Activation of porcine cytomegalovirus, but not porcine lymphotropic herpesvirus, in pig-to-baboon xenotransplantation. J. Infect. Dis. 2004, 189, 1628–1633. [Google Scholar] [CrossRef] [PubMed]
- Plotzki, E.; Keller, M.; Ivanusic, D.; Denner, J. A new Western blot assay for the detection of porcine cytomegalovirus (PCMV). J. Immunol. Methods 2016, 437, 37–42. [Google Scholar] [CrossRef]
- Fiebig, U.; Abicht, J.-M.; Mayr, T.; Längin, M.; Bähr, A.; Guethoff, S.; Falkenau, A.; Wolf, E.; Reichart, B.; Shibahara, T.; et al. Distribution of Porcine Cytomegalovirus in Infected Donor Pigs and in Baboon Recipients of Pig Heart Transplantation. Viruses 2018, 10, 66. [Google Scholar] [CrossRef] [PubMed]
- Hansen, S.; Franzo, G.; Menandro, M.L.; Krabben, L.; Marino, S.F.; Kaufer, B.; Denner, J. Prevalence of the porcine cytomegalovirus virus (PCMV), a porcine roseolovirus, in wild boars in Italy and Germany. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Halecker, S.; Hansen, S.; Krabben, L.; Ebner, F.; Kaufer, B.; Denner, J. How, where and when to screen for porcine cytomegalovirus (PCMV) in donor pigs for xenotransplantation. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Paradis, K.; Langford, G.; Long, Z.; Heneine, W.; Sandstrom, P.; Switzer, W.M.; Chapman, L.E.; Lockey, C.; Onions, D.; Otto, E. Search for Cross-Species Transmission of Porcine Endogenous Retrovirus in Patients Treated with Living Pig Tissue. Science 1999, 285, 1236–1241. [Google Scholar] [CrossRef] [PubMed]
- Blusch, J.H.; Roos, C.; Nitschko, H. A polymerase chain reaction-based protocol for the detection of transmission of pig endogenous retroviruses in pig to human xenotransplantation. Transplantation 2000, 69, 2167–2172. [Google Scholar] [CrossRef]
- Stephan, O.; Schwendemann, J.; Specke, V.; Tacke, S.J.; Boller, K.; Denner, J. Porcine endogenous retroviruses (PERVs): Generation of specific antibodies, development of an immunoperoxidase assay (IPA) and inhibition by AZT. Xenotransplantation 2001, 8, 310–316. [Google Scholar] [CrossRef]
- Tacke, S.J.; Bodusch, K.; Berg, A.; Denner, J. Sensitive and specific immunological detection methods for porcine endogenous retroviruses applicable to experimental and clinical xenotransplantation. Xenotransplantation 2001, 8, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Herring, C.; A Cunningham, D.; Whittam, A.J.; Fernández-Suárez, X.M.; Langford, G.A. Monitoring xenotransplant recipients for infection by PERV. Clin. Biochem. 2001, 34, 23–27. [Google Scholar] [CrossRef]
- Denner, J. Porcine endogenous retroviruses (PERVs) and xenotransplantation: Screening for transmission in several clinical trials and in experimental models using non-human primates. Ann. Transplant. 2003, 8, 39–48. [Google Scholar] [PubMed]
- Nishitai, R.; Ikai, I.; Shiotani, T.; Katsura, N.; Matsushita, T.; Yamanokuchi, S.; Matsuo, K.; Sugimoto, S.; Yamaoka, Y. Absence of PERV infection in baboons after transgenic porcine liver perfusion1. J. Surg. Res. 2005, 124, 45–51. [Google Scholar] [CrossRef]
- Issa, N.C.; Wilkinson, R.A.; Griesemer, A.; Cooper, D.K.C.; Yamada, K.; Sachs, D.H.; Fishman, J.A. Absence of Replication of Porcine Endogenous Retrovirus and Porcine Lymphotropic Herpesvirus Type 1 with Prolonged Pig Cell Microchimerism after Pig-to-Baboon Xenotransplantation. J. Virol. 2008, 82, 12441–12448. [Google Scholar] [CrossRef]
- Xing, X.; Hawthorne, W.; Yi, S.; Simond, D.; Dong, Q.; Ye, B.; Tong, Q.; Ye, Z.; Wang, W. Investigation of Porcine Endogenous Retrovirus in the Conservation Population of Ningxiang Pig. Transplant. Proc. 2009, 41, 4389–4393. [Google Scholar] [CrossRef]
- Zhang, P.; Yu, P.; Wang, W.; Zhang, L.; Li, S.; Bu, H. An effective method for the quantitative detection of porcine endogenous retrovirus in pig tissues. Vitr. Cell Dev. Biol. Anim. 2010, 46, 408–410. [Google Scholar] [CrossRef]
- Kaulitz, D.; Mihica, D.; Dorna, J.; Costa, M.R.; Petersen, B.; Niemann, H.; Tönjes, R.R.; Denner, J. Development of sensitive methods for detection of porcine endogenous retrovirus-C (PERV-C) in the genome of pigs. J. Virol. Methods 2011, 175, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Wynyard, S.; Garkavenko, O.; Elliot, R. Multiplex high resolution melting assay for estimation of Porcine Endogenous Retrovirus (PERV) relative gene dosage in pigs and detection of PERV infection in xenograft recipients. J. Virol. Methods 2011, 175, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Xiang, S.; Ma, Y.; Yan, Q.; Lv, M.; Zhao, X.; Yin, H.; Zhang, N.; Jia, J.; Yu, R.; Zhang, J. Construction and characterization of an infectious replication competent clone of porcine endogenous retrovirus from Chinese miniature pigs. Virol. J. 2013, 10, 228–229. [Google Scholar] [CrossRef]
- Kaulitz, D.; Mihica, D.; Adlhoch, C.; Semaan, M.; Denner, J. Improved pig donor screening including newly identified variants of porcine endogenous retrovirus-C (PERV-C). Arch. Virol. 2013, 158, 341–348. [Google Scholar] [CrossRef]
- Semaan, M.; Rotem, A.; Barkai, U.; Bornstein, S.; Denner, J. Screening pigs for xenotransplantation: Prevalence and expression of porcine endogenous retroviruses in Göttingen minipigs. Xenotransplantation 2013, 20, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Xing, X.; Hawthorne, W.J.; Dong, Q.; Ye, B.; Zhang, J.; Liang, Q.; Nie, W.; Wang, W. Characterization of PERV in a new conserved pig herd as potential donor animals for xenotransplantation in China. Virol. J. 2014, 11, 212. [Google Scholar] [CrossRef]
- Costa, M.R.; Fischer, N.; Gulich, B.; Tönjes, R.R. Comparison of porcine endogenous retroviruses infectious potential in supernatants of producer cells and in cocultures. Xenotransplantation 2014, 21, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Gola, J.; Mazurek, U. Detection of porcine endogenous retrovirus in xenotransplantation. Reprod. Biol. 2014, 14, 68–73. [Google Scholar] [CrossRef]
- Godehardt, A.W.; Rodrigues Costa, M.; Tönjes, R.R. Review on porcine endogenous retrovirus detection assays--impact on quality and safety of xenotransplants. Xenotransplantation 2015, 22, 95–101. [Google Scholar] [CrossRef]
- Mourad, N.I.; Crossan, C.; Cruikshank, V.; Scobie, L.; Gianello, P. Characterization of porcine endogenous retrovirus expression in neonatal and adult pig pancreatic islets. Xenotransplantation 2017, 24, e12311. [Google Scholar] [CrossRef] [Green Version]
- Li, A.; Zhang, Y.; Liu, Y.; Pan, Z. Corneal Xenotransplantation From Pig to Rhesus Monkey: No Signs of Transmission of Endogenous Porcine Retroviruses. Transplant. Proc. 2017, 49, 2209–2214. [Google Scholar] [CrossRef] [PubMed]
- Fiebig, U.; Fischer, K.; Bähr, A.; Runge, C.; Schnieke, A.; Wolf, E.; Denner, J. Porcine endogenous retroviruses: Quantification of the copy number in cell lines, pig breeds, and organs. Xenotransplantation 2018, 25, e12445. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.J.; Kim, J.; Kim, J.Y.; Lee, H.J.; Wee, W.R.; Kim, M.K.; Hwang, E.S. Long-term safety from transmission of porcine endogenous retrovirus after pig-to-non-human primate corneal transplantation. Xenotransplantation 2017, 24, e12314. [Google Scholar] [CrossRef]
- Kono, K.; Kataoka, K.; Yuan, Y.; Yusa, K.; Uchida, K.; Sato, Y. A highly sensitive method for the detection of recombinant PERV-A/C env RNA using next generation sequencing technologies. Sci. Rep. 2020, 10, 21935. [Google Scholar] [CrossRef] [PubMed]
- Halecker, S.; Krabben, L.; Kristiansen, Y.; Krüger, L.; Möller, L.; Becher, D.; Laue, M.; Kaufer, B.; Reimer, C.; Denner, J. Rare isolation of human-tropic recombinant porcine endogenous retroviruses PERV-A/C from Göttingen minipigs. Virol. J. 2022, 19, 30. [Google Scholar] [CrossRef] [PubMed]
- Hattermann, K.; Maerz, A.; Slanina, H.; Schmitt, C.; Mankertz, A. Assessing the risk potential of porcine circoviruses for xenotransplantation: Consensus primer-PCR-based search for a human circovirus. Xenotransplantation 2004, 11, 547–550. [Google Scholar] [CrossRef]
- Krüger, L.; Längin, M.; Reichart, B.; Fiebig, U.; Kristiansen, Y.; Prinz, C.; Kessler, B.; Egerer, S.; Wolf, E.; Abicht, J.-M.; et al. Transmission of Porcine Circovirus 3 (PCV3) by Xenotransplantation of Pig Hearts into Baboons. Viruses 2019, 11, 650. [Google Scholar] [CrossRef]
- Prinz, C.; Stillfried, M.; Neubert, L.K.; Denner, J. Detection of PCV3 in German wild boars. Virol. J. 2019, 16, 25. [Google Scholar] [CrossRef]
- Busby, S.-A.; Crossan, C.; Godwin, J.; Petersen, B.; Galli, C.; Cozzi, E.; Takeuchi, Y.; Scobie, L. Suggestions for the diagnosis and elimination of hepatitis E virus in pigs used for xenotransplantation. Xenotransplantation 2013, 20, 188–192. [Google Scholar] [CrossRef]
- Morozov, V.A.; Morozov, A.; Rotem, A.; Barkai, U.; Bornstein, S.; Denner, J. Extended Microbiological Characterization of Göttingen Minipigs in the Context of Xenotransplantation: Detection and Vertical Transmission of Hepatitis E Virus. PLoS ONE 2015, 10, e0139893. [Google Scholar] [CrossRef] [Green Version]
- Abicht, J.-M.; Mayr, T.A.; Reichart, B.; Plotzki, E.; Güthoff, S.; Falkenau, A.; Kind, A.; Denner, J. Hepatic Failure After Pig Heart Transplantation Into a Baboon: No Involvement of Porcine Hepatitis E Virus. Ann. Transplant. 2016, 21, 12–16. [Google Scholar]
- Brema, S.; Lindner, I.; Goltz, M.; Ehlers, B. Development of a recombinant antigen-based ELISA for the sero-detection of porcine lymphotropic herpesviruses. Xenotransplantation 2008, 15, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Plotzki, E.; Keller, M.; Ehlers, B.; Denner, J. Immunological methods for the detection of porcine lymphotropic herpesviruses (PLHV). J. Virol. Methods 2016, 233, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Tönjes, R.R. Non-viral pathogens: Identification, relevance, and prevention for xenotransplantation. Xenotransplantation 2018, 25, e12413. [Google Scholar] [CrossRef] [PubMed]
- Denner, J. Risk of pathogenic virus transmission by somatic cell nuclear transfer (SCNT): Implications for xenotransplantation. Biol. Reprod. 2022. online ahead of print. [Google Scholar] [CrossRef]
- Mueller, N.J.; Kuwaki, K.; Knosalla, C.; Dor, F.J.M.F.; Gollackner, B.; Wilkinson, R.A.; Arn, S.; Sachs, D.H.; Cooper, D.K.C.; Fishman, J.A. Early weaning of piglets fails to exclude porcine lymphotropic herpesvirus. Xenotransplantation 2005, 12, 59–62. [Google Scholar] [CrossRef]
- Bartosch, B.; Stefanidis, D.; Myers, R.; Weiss, R.; Patience, C.; Takeuchi, Y. Evidence and Consequence of Porcine Endogenous Retrovirus Recombination. J. Virol. 2004, 78, 13880–13890. [Google Scholar] [CrossRef] [PubMed]
- Harrison, I.; Takeuchi, Y.; Bartosch, B.; Stoye, J.P. Determinants of High Titer in Recombinant Porcine Endogenous Retroviruses. J. Virol. 2004, 78, 13871–13879. [Google Scholar] [CrossRef]
- Denner, J.; Schuurman, H.J. High Prevalence of Recombinant Porcine Endogenous Retroviruses (PERV-A/Cs) in Minipigs: A Review on Origin and Presence. Viruses 2021, 13, 1869. [Google Scholar] [CrossRef]
- Fiebig, U.; Stephan, O.; Kurth, R.; Denner, J. Neutralizing antibodies against conserved domains of p15E of porcine endogenous retroviruses: Basis for a vaccine for xenotransplantation? Virology 2003, 307, 406–413. [Google Scholar] [CrossRef]
- Kaulitz, D.; Fiebig, U.; Eschricht, M.; Wurzbacher, C.; Kurth, R.; Denner, J. Generation of neutralising antibodies against porcine endogenous retroviruses (PERVs). Virology 2011, 411, 78–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denner, J.; Mihica, D.; Kaulitz, D.; Schmidt, C.-M. Increased titers of neutralizing antibodies after immunization with both envelope proteins of the porcine endogenous retroviruses (PERVs). Virol. J. 2012, 9, 260. [Google Scholar] [CrossRef] [PubMed]
- Denner, J. Immunising with the transmembrane envelope proteins of different retroviruses including HIV-1: A comparative study. Hum Vaccin Immunother. 2013, 9, 462–470. [Google Scholar] [CrossRef]
- Denner, J. Can Antiretroviral Drugs Be Used to Treat Porcine Endogenous Retrovirus (PERV) Infection after Xenotransplantation? Viruses 2017, 9, 213. [Google Scholar] [CrossRef] [PubMed]
- Powell, S.K.; Gates, M.E.; Langford, G.; Gu, M.-L.; Lockey, C.; Long, Z.; Otto, E. Antiretroviral Agents Inhibit Infection of Human Cells by Porcine Endogenous Retroviruses. Antimicrob. Agents Chemother. 2000, 44, 3432–3433. [Google Scholar] [CrossRef]
- Argaw, T.; Colon-Moran, W.; Wilson, C. Susceptibility of porcine endogenous retrovirus to anti-retroviral inhibitors. Xenotransplantation 2016, 23, 151–158. [Google Scholar] [CrossRef]
- Qari, S.H.; Magre, S.; García-Lerma, J.G.; Hussain, A.I.; Takeuchi, Y.; Patience, C.; Weiss, R.A.; Heneine, W. Susceptibility of the Porcine Endogenous Retrovirus to Reverse Transcriptase and Protease Inhibitors. J. Virol. 2001, 75, 1048–1053. [Google Scholar] [CrossRef]
- Wilhelm, M.; Fishman, J.A.; Pontikis, R.; Aubertin, A.-M.; Wilhelm, F.X. Susceptibility of recombinant porcine endogenous retrovirus reverse transcriptase to nucleoside and non-nucleoside inhibitors. Cell. Mol. Life Sci. 2002, 59, 2184–2190. [Google Scholar] [CrossRef]
- Karlas, A.; Kurth, R.; Denner, J. Inhibition of porcine endogenous retroviruses by RNA interference: Increasing the safety of xenotransplantation. Virology 2004, 325, 18–23. [Google Scholar] [CrossRef]
- Dieckhoff, B.; Petersen, B.; Kues, W.; Kurth, R.; Niemann, H.; Denner, J. Knockdown of porcine endogenous retrovirus (PERV) expression by PERV-specific shRNA in transgenic pigs. Xenotransplantation 2008, 15, 36–45. [Google Scholar] [CrossRef]
- Ramsoondar, J.; Vaught, T.; Ball, S.; Mendicino, M.; Monahan, J.; Jobst, P.; Vance, A.; Duncan, J.; Wells, K.; Ayares, D. Production of transgenic pigs that express porcine endogenous retrovirus small interfering RNAs. Xenotransplantation 2009, 16, 164–180. [Google Scholar] [CrossRef] [PubMed]
- Semaan, M.; Kaulitz, D.; Petersen, B.; Niemann, H.; Denner, J. Long-term effects of PERV-specific RNA interference in transgenic pigs. Xenotransplantation 2012, 19, 112–121. [Google Scholar] [CrossRef]
- Semaan, M.; Ivanusic, D.; Denner, J. Cytotoxic Effects during Knock Out of Multiple Porcine Endogenous Retrovirus (PERV) Sequences in the Pig Genome by Zinc Finger Nucleases (ZFN). PLoS ONE 2015, 10, e0122059. [Google Scholar] [CrossRef]
- Yang, L.; Güell, M.; Niu, D.; George, H.; Lesha, E.; Grishin, D.; Aach, J.; Shrock, E.; Xu, W.; Poci, J.; et al. Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science 2015, 350, 1101–1104. [Google Scholar] [CrossRef] [PubMed]
- Niu, D.; Wei, H.-J.; Lin, L.; George, H.; Wang, T.; Lee, I.-H.; Zhao, H.-Y.; Wang, Y.; Kan, Y.N.; Shrock, E.; et al. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science 2017, 357, 1303–1307. [Google Scholar] [CrossRef] [PubMed]
- Langhammer, S.; Hubner, J.; Kurth, R.; Denner, J. Antibodies neutralizing feline leukaemia virus (FeLV) in cats immunized with the transmembrane envelope protein p15E. Immunology 2006, 117, 229–237. [Google Scholar] [CrossRef]
- Langhammer, S.; Fiebig, U.; Kurth, R.; Denner, J. Increased Neutralizing Antibody Response after Simultaneous Immunization with Leucogen and the Feline Leukemia Virus Transmembrane Protein. Intervirology 2011, 54, 78–86. [Google Scholar] [CrossRef]
- Langhammer, S.; Hübner, J.; Jarrett, O.; Kurth, R.; Denner, J. Immunization with the transmembrane protein of a retrovirus, feline leukemia virus: Absence of antigenemia following challenge. Antivir. Res. 2011, 89, 119–123. [Google Scholar] [CrossRef]
- Scobie, L.; Denner, J.; Schuurman, H.-J. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9, editorial commentary. Xenotransplantation 2017, 24, e12363. [Google Scholar] [CrossRef]
- Denner, J. Paving the Path toward Porcine Organs for Transplantation. N. Engl. J. Med. 2017, 377, 1891–1893. [Google Scholar] [CrossRef]
Viruses | Reviews |
---|---|
Different viruses, general aspects | Fishman [21], Yoo & Giulivi, 2000 [22], Takeuchi et al., 2005 [23], Mattiuzzo et al., 2008 [24], Scobie & Takeuchi, 2009 [25], Mueller et al., 2011 [26], Fishman et al., 2012 [27], Denner & Mueller, 2015 [28], Fishman, 2018 [29], Nellore & Fishman, 2018 [30], Fishman, 2020 [31], |
Herpesviruses in general | Mueller & Fishman, 2004 [32], Tischer & Osterrieder, 2010 [33] |
PCMV | Denner, 2015 [3], Denner, 2018 [2], Denner, 2022 [7] |
PLHV | Denner, 2021 [10] |
PERV | Wilson, 2008 [34], Denner, 2008 [35], Denner et al., 2009 [36], Denner & Tönjes, 2013 [37], Kimsa et al., 2014 [38], Denner, 2016 [39], McGregor et al., 2018 [40], Denner et al., 2018 [41], Denner, 2018 [12], Denner, 2021 [11], |
Single stranded DNA viruses | Karuppannan & Opriessnig, 2018 [42] |
Circoviruses | Denner & Mankertz, 2017 [43] |
HEV | Denner, 2015 [8], Denner, 2019 [9] |
Virus Name | Abbreviation |
---|---|
Porcine circovirus 1 | PCV1 |
Porcine circovirus 2 | PCV2 |
Porcine lymphotrophic herpesvirus | PLHV |
Porcine cytomegalovirus/porcine roseolovirus | PCMV/PRV |
Rotavirus | RV |
Porcine enterovirus type 1 | PEV1 |
Porcine enterovirus type 3 | PEV3 |
Porcine hemagglutinating encephalomyelitis virus | PHEV |
Hepatitis E virus | HEV |
Bovine viral diarrhea virus | BVDV |
Suid herpesvirus 1 or Aujeszky’s disease virus or pseudorabies virus. | SuHV-1 or ADV or PrV |
Porcine parvovirus | PPV |
Porcine reproductive and respiratory syndrome virus | PRRSV |
Porcine encephalomyocarditis virus | EMCV |
Testing | Microorganisms |
---|---|
Serological testing | Actinobacillus pleuropneumoniae, Haemophilus parasuis, Lawsonia intracellularis, Leptospira spp., Mycoplasma hyopneumoniae, Pasteurella multocida, porcine reproductive and respiratory syndrome virus (PRRSV), swine influenza virus (SIV), Porcine epidemic diarrhea (PED), Porcine respiratory coronavirus (PRCV), hepatitis E virus (HEV), transmissable gastroenteritis virus (TGEV) |
Antigen testing | Brachyspira hyodysenteriae, salmonella, swine influenza virus |
Fecal swabs | bacteriological content, endoparasites |
PCR testing | Lawsonia intracellularis, Brachyspira pilosicoli, Brachyspira hyodysenteriae, hepatitis E virus (HEV), porcine cytomegalovirus/porcine roseolovirus (PCMV/PRV), rotavirus RV), coronavirus (CoV), tescho-sapelovirus |
Cell culture | Escherichia coli, Salmonella group C |
Parasites | Strongyloides |
Microorganisms | Species |
---|---|
Bacteria | Actinobacillus pleuropneumonia, Actinobacillus suis, Bacillus anthracis, Bordetella bronchiseptica, Brucella sp., Campylobacter sp., Chlamydia sp., Erysipelothrix sp., Haemophilus parasuis, Lawsonia intracellularis, Leptospira sp., Mycoplasma hyopneumonia, Mycoplasma hyorhinis, Mycoplasma hyosynoviae, Mycobacterium tuberculosis, Mycobacterium bovis, Mycobacterium avium, Pasteurella multocida, Pasteurella. haemolytica, Salmonella sp., Brachyspira sp., Staphylococcus hyicus, Streptococcus suis, Yersinia sp. |
Fungi | Systemic mycoses including: Blastomyces sp., Cryptococcus sp., Histoplasma sp. |
Parasites | Pathogeneic Protozoa including: Cryptosporidium parvum, Giardia sp., Toxoplasma sp., Helminths, Trichinella spiralis, Blood parasites |
Arthropods | All pathogenic arthropods, e.g., lice and mite |
Viruses | Porcine adenovirus, Bovine viral diarrhea virus, Porcine circoviruses 1 and 2, Encephalitis, Eastern and Western Equine, Encephalomyocarditis virus, Enterovirus, Hemagglutinating encephalomyelitis Virus, Hepatitis E virus, Infectious bovine rhinotracheitis Virus, Swine influenza virus, Porcine cytomegalovirus/porcine roseolovirus, Porcine parvovirus, Porcine reproductive and respiratory syndrome virus, Parainfluenza 3 Virus, Pseudorabies virus, Porcine respiratory coronavirus, Rotavirus, Transmissible gastroenteritis virus, Vesicular stomatitis virus (NJ & Indiana), West Nile fever virus, Porcine lymphotropic herpes virus 1 and 2 |
Vaccine | Target Microorganisms | Manufacturer |
---|---|---|
ParaSail | Haemophilus parasuis | Newport Laboratories |
CircoFLEX | Porcine circovirus 2 (PCV2) | Boehringer Ingelheim |
MycoFLEX | Mycoplasma hyopneumoniae | Boehringer Ingelheim |
Myco Shield | Mycoplasma hyopneumoniae | Novartis |
Pneumostar SIV | H1N1 & H1N2 & H3N | Novartis |
Enterisol Ileitis | Lawsonia intracellularis | Boehringer Ingelheim |
Parvo Shield L5E | porcine parvovirus, Erysipelothrix rhusiopathiae, and Leptospira canicola, grippotyphosa, hardjo, icterohaemorrhagiae, and pomona. | Novartis |
Prefarrow Shield 9d | Bordetella bronchiseptica, Clostridium perfringens type C, Erysipelothrix rhusiopathiae, K88, K99, 987P & F41 piliated E. coli, and Pasteurella multocida types A & D. | Novartis |
Prosystem RCE | Two major Rotavirus serotypes, four major E. coli pilus antigens (K88, K99, F41 and 987P) and C. perfringens type C toxoid. | Merck |
Ingelvac PRRS | PRRSV Stamm ATCC VR 2332 (Genotyp 2): | Boehringer Ingelheim |
PRRS | PRRSV | Newport |
Viruses | Publication |
---|---|
General aspects | Chmielewicz et al., 2003 [63], Tucker et al., 2003 [64], Garkavenko et al., 2004 [50], Garkavenko et al., 2008 [49], Abrahante et al., 2011 [65], Wynyard et al., 2014 [51], Plotzki et al., 2016 [66,67], Gazda et al., 2016 [55], Morozov et al., 2016 [68,69], Denner, 2017 [70], Hartline et al. 2018 [71], Crossan et al., 2018 [72], Noordergraaf et al. 2018 [54], Krüger et al., 2019 [73], Matsumoto et al., 2020 [46], Denner 2020 [62], Halecker et al., 2021 [74] |
PCMV | Mueller et al., 2002 [75], Mueller et al., 2004 [76], Morozov et al., 2016 [69], Plotzki et al., 2016 [77], Fiebig et al., 2018 [78], Hansen et al., 2022 [79], Halecker et al., 2022 [80] |
PERV | Paradis et al., 1999 [81], Blusch et al., 2000 [82], Stephan et al., 2001 [83], Tacke et al., 2001 [84], Herring et al., 2001 [85], Denner 2003 [86], Nishitai et al., 2005 [87], Issa et al., 2008 [88], Xing et al., 2009 [89], Zhang et al., 2010 [90], Kaulitz et al., 2011 [91], Wynyard et al., 2011 [92], Xiang et al., 2013 [93], Kaulitz et al., 2013 [94], Semaan et al., 2013 [95], Guo et al., 2014 [96], Costa et al., 2014 [97], Gola & Mazurek, 2014 [98], Godehardt et al., 2015 [99], Morozov et al., 2017 [52], Mourad et al., 2017, [100], Li et al., 2017 [101], Fiebig et al., 2018 [102], Choi et al., 2017 [103], Kono et al. 2020 [104], Halecker et al., 2022 [105], |
Circoviruses | Tucker et al., 2003 [63], Hattermann et al., 2004 [106], Karuppannan & Opriessnig, 2018 [42], Krüger et al., 2019 [107], Prinz et al., 2019 [108], |
Single stranded DNA viruses | Karuppannan & Opriessnig, 2018 [42] |
HEV | Busby et al., 2013 [109], Morozov et al., 2015 [110], Abicht et al., 2016 [111], |
PLHV | Tucker et al., 2003 [63], Mueller et al., 2004 [75], Brema et al., 2008 [112], Issa et al., 2008 [88], Plotzki et al., 2016 [113] |
Non-viral pathogens | Tönjes, 2018 [114] |
▪ Sensitive and specific detection methods |
▪ PCR-based methods |
▪ Cell-based methods |
▪ Immunological methods. |
▪ Sample generation |
▪ Sample preparation |
▪ Sample origin |
▪ Time of sampling |
▪ Negative and positive controls |
▪ Vaccine, based on neutralizing antibodies against the transmembrane and surface envelope proteins of PERV [120,121,122,123] |
▪ Antiretroviral drugs [83,124,125,126,127,128] |
▪ Reduction of PERV expression by siRNA [129,130,131,132] |
▪ Gene editing |
▪ Zinc finger nuclease (ZFN) [133] |
▪ Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated 9 (CRISPR/Cas9) [134,135] (Figure 3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Denner, J. Virus Safety of Xenotransplantation. Viruses 2022, 14, 1926. https://doi.org/10.3390/v14091926
Denner J. Virus Safety of Xenotransplantation. Viruses. 2022; 14(9):1926. https://doi.org/10.3390/v14091926
Chicago/Turabian StyleDenner, Joachim. 2022. "Virus Safety of Xenotransplantation" Viruses 14, no. 9: 1926. https://doi.org/10.3390/v14091926
APA StyleDenner, J. (2022). Virus Safety of Xenotransplantation. Viruses, 14(9), 1926. https://doi.org/10.3390/v14091926