Non-Human Primate Models of HIV Brain Infection and Cognitive Disorders
Abstract
:1. Introduction
- How and when does HIV enter the CNS?
- How and where does HIV establish and maintain viral reservoirs?
- Are reservoirs of HIV in the brain replication competent?
- What is the role of chronic systemic peripheral inflammation in CNS dysfunction?
2. Non-Human Primate Models of NeuroHIV
2.1. Accelerated CNS Infection
2.2. Neurotropic SIVs
Model | Strain | Species | CNS Pathology | SIVE Frequency | Time to SIVE | Reference |
---|---|---|---|---|---|---|
Accelerated CNS disease | SIV/17E-Fr + SIV/ΔB670 | PM | Consistently results in severe SIVE and full immunosuppression | ~90% | 3–6 months | [26,27,42] |
SIVmac251 + CD8+ T cell depletion | RM | Consistently results in SIVE and full immunosuppression | 50–100% | 2–6 months | [36,43,44] | |
Non-accelerated disease | SIVmac182 | RM | Reliable infection of the CNS, rarely forms encephalitic lesions | Rare | - | [45,46,47] |
SIVmac251 | RM | Consistent CNS infection with natural disease progression and reservoir formation | 25% | 7–36 months | [34,36,48] | |
SIVsm804E-CL757 | RM | High frequency of SIVE without rapid disease progression | 50% | ~12 months | [39,40] | |
SIVmac239 | RM | Consistent CNS infection with natural disease progression and reservoir formation | 25% | 12–36 months | [34,48,49] | |
Simian-HIV chimera | SHIVSF162P3 | RM | Consistent CNS infection with natural disease progression | 14% | ~6 months | [50] |
SHIV-1157ipd3N4 | RM | Reliable infection of the CNS, rarely forms encephalitic lesions | Rare | - | [51] |
2.3. Simian-Human Immunodeficiency Viruses (SHIV)
3. SIV Neuropathogenesis
3.1. SIV/HIV Entry into the CNS
3.2. CNS Infection, Immune Dysfunction, and Encephalitis during Untreated SIV Infection
3.3. SIV/HIV Persistence in the Brain Post-ART
Study | n | Virus | Inoculation Route | WPI | ART (wks) | CNS Infection (vDNA or vRNA+) | Technique | Tissue |
---|---|---|---|---|---|---|---|---|
Estes, et al. [35] | 5 | SIVmac251/RT-SHIV | i.v. | 28–30 | 20–26 | Yes (vRNA) | RNAscope/DNAscope | Cerebrum |
Hsu, et al. [51] | 12 | SHIV-1157ipd3N4 | IR or IV | 12 | No ART | Yes (vRNA) | RNAscope | Meninges |
Hsu, et al. [102] | 4 | SHIV-1157ipd3N4 | IR | 18 | 16 | No | RNAscope | Posterior cingulate gyrus |
Yarandi, et al. [97] | 3 | SIVmac251 (with CD8 depletion) | i.v. | 17 | 14 | Yes (vRNA) | RNAscope | Hippocampus |
Mavigner, et al. [98] | 4 | SIVmac251 (infant) | Oral | 31–42 | 26–37 | Yes (vRNA and vDNA) | RNAscope/DNAscope | FC, PC and BG |
12 | SIVmac251 | i.v. | 25–69 | 24–61 | Yes (vRNA and vDNA) | RNAscope/DNAscope | FC, PC and BG | |
Bissel, et al. [99] | 5 | SIVmac251 | i.v. | 48–63 | 10–25 | Yes (vRNA) | ISH | MFC, caudate, putamen, hippocampus and cerebellum |
Abreu, et al. [103] | 4 | SIVmac251 | i.v. | 19 | 17 | Yes (vRNA and vDNA) | qPCR, ddPCR, QVOA | Macrophage isolated from FC, PC, TC, BG and TH |
Zink, et al. [29] | 5 | SIV/17E-Fr + SIV/ΔB670 | i.v. | 23–25 | 21–23 | No (vRNA)Yes (vDNA) | Real time PCR and RT-PCR | BG |
Gama, et al. [30] | 5 | SIV/17E-Fr + SIV/ΔB670 | i.v. | 33–90 | 28–71 | Yes (vRNA) | RNAscope and ddPCR | OC, BG and PC |
Avalos, et al. [101] | 8 | SIV/17E-Fr + SIV/ΔB670 | i.v. | 28–91 | 26–89 | No (vRNA)Yes (vDNA) | ISH and qVOA | OC, BG and PC |
Lee, et al. [40] | 5 | SIVsm804E-CL757 | ND | 8–15 | No ART | Yes (vRNA and vDNA) | qPCR, coculture, RNAscope | Isolated mononuclear cells and midbrain |
3.4. Chronic Immune Activation Is Present in the CNS of ART-Suppressed PWH and SIV-Infected NHPs
4. Confounding Drivers of SIV Neuropathology
4.1. Chronic Systemic Inflammation
4.2. Limited Penetrance and Toxicity of ART
4.3. Substance Use, Ageing and Other Modifiable Risk Factors
5. Can We Model SIV/HIV-Related Cognitive Impairment in NHPs?
6. Targeting SIV Reservoirs and Chronic Inflammation in the Brain
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Morgan, E.E.; Iudicello, J.E.; Weber, E.; Duarte, N.A.; Riggs, P.K.; Delano-Wood, L.; Ellis, R.; Grant, I.; Woods, S.P.; Group, H.N.R.P. Synergistic effects of HIV infection and older age on daily functioning. J. Acqir. Immune Defic. Syndr. 2012, 61, 341. [Google Scholar] [CrossRef]
- Heaton, R.; Clifford, D.; Franklin, D.; Woods, S.; Ake, C.; Vaida, F.; Ellis, R.; Letendre, S.; Marcotte, T.; Atkinson, J. HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy CHARTER Study. Neurology 2010, 75, 2087–2096. [Google Scholar] [CrossRef]
- Heaton, R.K.; Franklin, D.R.; Ellis, R.J.; McCutchan, J.A.; Letendre, S.L.; LeBlanc, S.; Corkran, S.H.; Duarte, N.A.; Clifford, D.B.; Woods, S.P.; et al. HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: Differences in rates, nature, and predictors. J. Neurovirol. 2011, 17, 3–16. [Google Scholar] [CrossRef]
- Gott, C.; Gates, T.; Dermody, N.; Brew, B.J.; Cysique, L.A. Cognitive change trajectories in virally suppressed HIV-infected individuals indicate high prevalence of disease activity. PLoS ONE 2017, 12, e0171887. [Google Scholar] [CrossRef]
- Simioni, S.; Cavassini, M.; Annoni, J.-M.; Abraham, A.R.; Bourquin, I.; Schiffer, V.; Calmy, A.; Chave, J.-P.; Giacobini, E.; Hirschel, B. Cognitive dysfunction in HIV patients despite long-standing suppression of viremia. AIDS 2010, 24, 1243–1250. [Google Scholar] [CrossRef]
- Antinori, A.; Arendt, G.; Becker, J.; Brew, B.; Byrd, D.; Cherner, M.; Clifford, D.; Cinque, P.; Epstein, L.; Goodkin, K. Updated research nosology for HIV-associated neurocognitive disorders. Neurology 2007, 69, 1789–1799. [Google Scholar] [CrossRef]
- Vance, D.E.; Fazeli, P.L.; Ball, D.A.; Slater, L.Z.; Ross, L.A. Cognitive functioning and driving simulator performance in middle-aged and older adults with HIV. J. Assoc. Nurses AIDS Care 2014, 25, e11–e26. [Google Scholar] [CrossRef]
- Becker, B.W.; Thames, A.D.; Woo, E.; Castellon, S.A.; Hinkin, C.H. Longitudinal change in cognitive function and medication adherence in HIV-infected adults. AIDS Behav. 2011, 15, 1888. [Google Scholar] [CrossRef]
- Foley, J.; Gooding, A.; Thames, A.; Ettenhofer, M.; Kim, M.; Castellon, S.; Marcotte, T.; Sadek, J.; Heaton, R.; van Gorp, W. Visuospatial and attentional abilities predict driving simulator performance among older HIV-infected adults. Am. J. Alzheimer’s Dis. Other Demen. 2013, 28, 185–194. [Google Scholar] [CrossRef]
- Andrade, A.S.; Deutsch, R.; Celano, S.; Duarte, N.A.; Marcotte, T.D.; Umlauf, A.; Atkinson, J.H.; McCutchan, J.A.; Franklin, D.; Alexander, T.J. Relationships among neurocognitive status, medication adherence measured by pharmacy refill records, and virologic suppression in HIV-infected persons. J. Acqir. Immune Defic. Syndr. 2013, 62, 282. [Google Scholar] [CrossRef] [Green Version]
- Janssen, R.S.; Nwanyanwu, O.C.; Selik, R.M.; Stehr-Green, J.K. Epidemiology of human immunodeficiency virus encephalopathy in the United States. Neurology 1992, 42, 1472. [Google Scholar] [CrossRef]
- McArthur, J.; Grant, I. HIV neurocognitive disorders. In The Neurology of AIDS; International Thompson Publishing: New York, NY, USA, 1998; pp. 499–523. [Google Scholar]
- Heaton, R.K.; Grant, I.; Butters, N.; White, D.A.; Kirson, D.; Atkinson, J.H.; McCutchan, J.A.; Taylor, M.J.; Kelly, M.D.; Ellis, R.J. The HNRC 500-Neuropsychology of HIV infection at different disease stages. J. Int. Neuropsychol. Soc. 1995, 1, 231–251. [Google Scholar] [CrossRef]
- White, D.A.; Heaton, R.K.; Monsch, A.U. Neuropsychological studies of asymptomatic human immunodeficiency virus-type-1 infected individuals. J. Int. Neuropsychol. Soc. 1995, 1, 304–315. [Google Scholar] [CrossRef]
- Rodriguez-Penney, A.T.; Iudicello, J.E.; Riggs, P.K.; Doyle, K.; Ellis, R.J.; Letendre, S.L.; Grant, I.; Woods, S.P.; The HIV Neurobehavioral Research Program Group. Co-morbidities in persons infected with HIV: Increased burden with older age and negative effects on health-related quality of life. AIDS Patient Care STDS 2013, 27, 5–16. [Google Scholar] [CrossRef]
- Liu, D.; Zhao, C.; Wang, W.; Wang, Y.; Li, R.; Sun, J.; Liu, J.; Liu, M.; Zhang, X.; Liang, Y.; et al. Altered Gray Matter Volume and Functional Connectivity in Human Immunodeficiency Virus-Infected Adults. Front. Neurosci. 2020, 14, 601063. [Google Scholar] [CrossRef]
- Nichols, M.J.; Gates, T.M.; Soares, J.R.; Moffat, K.J.; Rae, C.D.; Brew, B.J.; Cysique, L.A. Atrophic brain signatures of mild forms of neurocognitive impairment in virally suppressed HIV infection. AIDS 2019, 33, 55–66. [Google Scholar] [CrossRef]
- Nir, T.M.; Fouche, J.-P.; Ananworanich, J.; Ances, B.M.; Boban, J.; Brew, B.J.; Chaganti, J.R.; Chang, L.; Ching, C.R.K.; Cysique, L.A.; et al. Association of Immunosuppression and Viral Load With Subcortical Brain Volume in an International Sample of People Living With HIV. JAMA Netw Open 2021, 4, e2031190. [Google Scholar] [CrossRef]
- Cysique, L.A.; Bain, M.P.; Brew, B.J.; Murray, J.M. The burden of HIV-associated neurocognitive impairment in Australia and its estimates for the future. Sex. Health 2011, 8, 541–550. [Google Scholar] [CrossRef]
- Blair, T.C.; Manoharan, M.; Rawlings-Rhea, S.D.; Tagge, I.; Kohama, S.G.; Hollister-Smith, J.; Ferguson, B.; Woltjer, R.L.; Frederick, M.C.; Pollaro, J.; et al. Immunopathology of Japanese macaque encephalomyelitis is similar to multiple sclerosis. J. Neuroimmunol. 2016, 291, 1–10. [Google Scholar] [CrossRef]
- Brenchley, J.M.; Price, D.A.; Schacker, T.W.; Asher, T.E.; Silvestri, G.; Rao, S.; Kazzaz, Z.; Bornstein, E.; Lambotte, O.; Altmann, D.; et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat. Med. 2006, 12, 1365–1371. [Google Scholar] [CrossRef] [Green Version]
- Estes, J.D.; Wong, S.W.; Brenchley, J.M. Nonhuman primate models of human viral infections. Nat. Rev. Immunol. 2018, 18, 390–404. [Google Scholar] [CrossRef]
- Makori, N.; Tarantal, A.F.; Lü, F.X.; Rourke, T.; Marthas, M.L.; McChesney, M.B.; Hendrickx, A.G.; Miller, C.J. Functional and morphological development of lymphoid tissues and immune regulatory and effector function in Rhesus monkeys: Cytokine-secreting cells, immunoglobulin-secreting cells, and CD5+ B-1 cells appear early in fetal development. Clin. Diagn. Lab. Immunol. 2003, 10, 140–153. [Google Scholar] [CrossRef]
- Phillips, K.A.; Bales, K.L.; Capitanio, J.P.; Conley, A.; Czoty, P.W.; ‘t Hart, B.A.; Hopkins, W.D.; Hu, S.L.; Miller, L.A.; Nader, M.A. Why primate models matter. Am. J. Primatol. 2014, 76, 801–827. [Google Scholar] [CrossRef]
- Fennessey, C.M.; Keele, B.F. Using nonhuman primates to model HIV transmission. Curr. Opin. HIV AIDS 2013, 8, 280–287. [Google Scholar] [CrossRef]
- Mankowski, J.; Queen, S.; Clements, J.; Zink, M. Cerebrospinal fluid markers that predict SIV CNS disease. J. Neuroimmunol. 2004, 157, 66–70. [Google Scholar] [CrossRef]
- Zink, M.C.; Suryanarayana, K.; Mankowski, J.L.; Shen, A.; Piatak, M.; Spelman, J.P.; Carter, D.L.; Adams, R.J.; Lifson, J.D.; Clements, J.E. High viral load in the cerebrospinal fluid and brain correlates with severity of simian immunodeficiency virus encephalitis. J. Virol. 1999, 73, 10480–10488. [Google Scholar] [CrossRef]
- Clements, J.E.; Mankowski, J.L.; Gama, L.; Zink, M.C. The accelerated simian immunodeficiency virus macaque model of human immunodeficiency virus-associated neurological disease: From mechanism to treatment. J. Neurovirol. 2008, 14, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Zink, M.C.; Brice, A.K.; Kelly, K.M.; Queen, S.E.; Gama, L.; Li, M.; Adams, R.J.; Bartizal, C.; Varrone, J.; Rabi, S.A.; et al. Simian Immunodeficiency Virus-Infected Macaques Treated with Highly Active Antiretroviral Therapy Have Reduced Central Nervous System Viral Replication and Inflammation but Persistence of Viral DNA. J. Infect. Dis. 2010, 202, 161–170. [Google Scholar] [CrossRef]
- Gama, L.; Abreu, C.M.; Shirk, E.N.; Price, S.L.; Li, M.; Laird, G.M.; Pate, K.A.M.; Wietgrefe, S.W.; O’Connor, S.L.; Pianowski, L.; et al. Reactivation of simian immunodeficiency virus reservoirs in the brain of virally suppressed macaques. AIDS 2017, 31, 5–14. [Google Scholar] [CrossRef]
- Ortiz, A.M.; Klatt, N.R.; Li, B.; Yi, Y.; Tabb, B.; Hao, X.P.; Sternberg, L.; Lawson, B.; Carnathan, P.M.; Cramer, E.M.; et al. Depletion of CD4+ T cells abrogates post-peak decline of viremia in SIV-infected rhesus macaques. J. Clin. Investig. 2011, 121, 4433–4445. [Google Scholar] [CrossRef]
- Beck, S.E.; Kelly, K.M.; Queen, S.E.; Adams, R.J.; Zink, M.C.; Tarwater, P.M.; Mankowski, J.L. Macaque species susceptibility to simian immunodeficiency virus: Increased incidence of SIV central nervous system disease in pigtailed macaques versus rhesus macaques. J. Neurovirol. 2015, 21, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Hatziioannou, T.; Evans, D.T. Animal models for HIV/AIDS research. Nat. Rev. Microbiol. 2012, 10, 852–867. [Google Scholar] [CrossRef]
- Williams, R.; Bokhari, S.; Silverstein, P.; Pinson, D.; Kumar, A.; Buch, S. Nonhuman primate models of NeuroAIDS. J. Neurovirol. 2008, 14, 292–300. [Google Scholar] [CrossRef]
- Estes, J.D.; Kityo, C.; Ssali, F.; Swainson, L.; Makamdop, K.N.; Del Prete, G.Q.; Deeks, S.G.; Luciw, P.A.; Chipman, J.G.; Beilman, G.J.; et al. Defining total-body AIDS-virus burden with implications for curative strategies. Nat. Med. 2017, 23, 1271–1276. [Google Scholar] [CrossRef]
- Mavian, C.; Ramirez-Mata, A.S.; Dollar, J.J.; Nolan, D.J.; Cash, M.; White, K.; Rich, S.N.; Magalis, B.R.; Marini, S.; Prosperi, M.C.F.; et al. Brain tissue transcriptomic analysis of SIV-infected macaques identifies several altered metabolic pathways linked to neuropathogenesis and poly (ADP-ribose) polymerases (PARPs) as potential therapeutic targets. J. Neurovirol. 2021, 27, 101–115. [Google Scholar] [CrossRef]
- Marcondes, M.C.G.; Morsey, B.; Emanuel, K.; Lamberty, B.G.; Flynn, C.T.; Fox, H.S. CD8+ T Cells Maintain Suppression of Simian Immunodeficiency Virus in the Central Nervous System. J. Infect. Dis. 2015, 211, 40–44. [Google Scholar] [CrossRef]
- Petito, C.K.; Torres-Muñoz, J.E.; Zielger, F.; McCarthy, M. Brain CD8+ and cytotoxic T lymphocytes are associated with, and may be specific for, human immunodeficiency virus type 1 encephalitis in patients with acquired immunodeficiency syndrome. J. Neurovirol. 2006, 12, 272–283. [Google Scholar] [CrossRef]
- Matsuda, K.; Riddick, N.E.; Lee, C.A.; Puryear, S.B.; Wu, F.; Lafont, B.A.P.; Whitted, S.; Hirsch, V.M. A SIV molecular clone that targets the CNS and induces neuroAIDS in rhesus macaques. PLOS Pathog. 2017, 13, e1006538. [Google Scholar] [CrossRef]
- Lee, C.A.; Beasley, E.; Sundar, K.; Smelkinson, M.; Vinton, C.; Deleage, C.; Matsuda, K.; Wu, F.; Estes, J.D.; Lafont, B.A. Simian Immunodeficiency Virus-Infected Memory CD4+ T Cells Infiltrate to the Site of Infected Macrophages in the Neuroparenchyma of a Chronic Macaque Model of Neurological Complications of AIDS. mBio 2020, 11, e00602–e00620. [Google Scholar] [CrossRef]
- Matsuda, K.; Chen, C.-Y.; Whitted, S.; Chertova, E.; Roser, D.J.; Wu, F.; Plishka, R.J.; Ourmanov, I.; Buckler-White, A.; Lifson, J.D.; et al. Enhanced antagonism of BST-2 by a neurovirulent SIV envelope. J. Clin. Investig. 2016, 126, 2295–2307. [Google Scholar] [CrossRef] [Green Version]
- Dorsey, J.L.; Mangus, L.M.; Hauer, P.; Ebenezer, G.J.; Queen, S.E.; Laast, V.A.; Adams, R.J.; Mankowski, J.L. Persistent Peripheral Nervous System Damage in Simian Immunodeficiency Virus-Infected Macaques Receiving Antiretroviral Therapy. J. Neuropathol. Exp. Neurol. 2015, 74, 1053–1060. [Google Scholar] [CrossRef]
- Nowlin, B.T.; Burdo, T.H.; Midkiff, C.C.; Salemi, M.; Alvarez, X.; Williams, K.C. SIV Encephalitis Lesions Are Composed of CD163(+) Macrophages Present in the Central Nervous System during Early SIV Infection and SIV-Positive Macrophages Recruited Terminally with AIDS. Am. J. Pathol. 2015, 185, 1649–1665. [Google Scholar] [CrossRef]
- Williams, K.; Westmoreland, S.; Greco, J.; Ratai, E.; Lentz, M.; Kim, W.-K.; Fuller, R.A.; Kim, J.P.; Autissier, P.; Sehgal, P.K. Magnetic resonance spectroscopy reveals that activated monocytes contribute to neuronal injury in SIV neuroAIDS. J. Clin. Investig. 2005, 115, 2534–2545. [Google Scholar] [CrossRef] [PubMed]
- Watry, D.; Lane, T.E.; Streb, M.; Fox, H.S. Transfer of neuropathogenic simian immunodeficiency virus with naturally infected microglia. Am. J. Pathol. 1995, 146, 914. [Google Scholar]
- Marcondes, M.C.G.; Burdo, T.H.; Sopper, S.; Huitron-Resendiz, S.; Lanigan, C.; Watry, D.; Flynn, C.; Zandonatti, M.; Fox, H.S. Enrichment and persistence of virus-specific CTL in the brain of simian immunodeficiency virus-infected monkeys is associated with a unique cytokine environment. J. Immunol. 2007, 178, 5812–5819. [Google Scholar] [CrossRef]
- Marcondes, M.C.G.; Burudi, E.; Huitron-Resendiz, S.; Sanchez-Alavez, M.; Watry, D.; Zandonatti, M.; Henriksen, S.J.; Fox, H.S. Highly activated CD8+ T cells in the brain correlate with early central nervous system dysfunction in simian immunodeficiency virus infection. J. Immunol. 2001, 167, 5429–5438. [Google Scholar] [CrossRef]
- Lewis, M.G.; Bellah, S.; McKINNON, K.; Yalley-Ogunro, J.; Zack, P.M.; Elkins, W.R.; Desrosiers, R.C.; Eddy, G.A. Titration and characterization of two rhesus-derived SIVmac challenge stocks. AIDS Res. Hum. Retrovir. 1994, 10, 213–220. [Google Scholar] [CrossRef]
- Gopalakrishnan, R.M.; Aid, M.; Mercado, N.B.; Davis, C.; Malik, S.; Geiger, E.; Varner, V.; Jones, R.; Bosinger, S.E.; Piedra-Mora, C. Increased IL-6 expression precedes reliable viral detection in the rhesus macaque brain during acute SIV infection. JCI Insight 2021, 6, e152013. [Google Scholar] [CrossRef]
- Harbison, C.; Zhuang, K.; Gettie, A.; Blanchard, J.; Knight, H.; Didier, P.; Cheng-Mayer, C.; Westmoreland, S. Giant cell encephalitis and microglial infection with mucosally transmitted simian-human immunodeficiency virus SHIVSF162P3N in rhesus macaques. J. Neurovirol. 2014, 20, 62–72. [Google Scholar] [CrossRef]
- Hsu, D.C.; Sunyakumthorn, P.; Wegner, M.; Schuetz, A.; Silsorn, D.; Estes, J.D.; Deleage, C.; Tomusange, K.; Lakhashe, S.K.; Ruprecht, R.M.; et al. Central Nervous System Inflammation and Infection during Early, Nonaccelerated Simian-Human Immunodeficiency Virus Infection in Rhesus Macaques. J. Virol. 2018, 92, e00218–e00222. [Google Scholar] [CrossRef]
- Balzarini, J.; Weeger, M.; Camarasa, M.J.; De Clercq, E.; Uberla, K. Sensitivity/resistance profile of a simian immunodeficiency virus containing the reverse transcriptase gene of human immunodeficiency virus type 1 (HIV-1) toward the HIV-1-specific non-nucleoside reverse transcriptase inhibitors. Biochem. Biophys. Res. Commun. 1995, 211, 850–856. [Google Scholar] [CrossRef] [PubMed]
- An, S.F.; Groves, M.; Gray, F.; Scaravilli, F. Early entry and widespread cellular involvement of HIV-1 DNA in brains of HIV-1 positive asymptomatic individuals. J. Neuropathol. Exp. Neurol. 1999, 58, 1156–1162. [Google Scholar] [CrossRef]
- Ragin, A.B.; Wu, Y.; Gao, Y.; Keating, S.; Du, H.; Sammet, C.; Kettering, C.S.; Epstein, L.G. Brain alterations within the first 100 days of HIV infection. Ann. Clin. Transl. Neurol. 2015, 2, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Burdo, T.H.; Soulas, C.; Orzechowski, K.; Button, J.; Krishnan, A.; Sugimoto, C.; Alvarez, X.; Kuroda, M.J.; Williams, K.C. Increased monocyte turnover from bone marrow correlates with severity of SIV encephalitis and CD163 levels in plasma. PLoS Pathog. 2010, 6, e1000842. [Google Scholar] [CrossRef]
- Persidsky, Y.; Ghorpade, A.; Rasmussen, J.; Limoges, J.; Liu, X.J.; Stins, M.; Fiala, M.; Way, D.; Kim, K.S.; Witte, M.H. Microglial and astrocyte chemokines regulate monocyte migration through the blood-brain barrier in human immunodeficiency virus-1 encephalitis. Am. J. Pathol. 1999, 155, 1599–1611. [Google Scholar] [CrossRef]
- Wang, H.; Sun, J.; Goldstein, H. Human immunodeficiency virus type 1 infection increases the in vivo capacity of peripheral monocytes to cross the blood-brain barrier into the brain and the in vivo sensitivity of the blood-brain barrier to disruption by lipopolysaccharide. J. Virol. 2008, 82, 7591–7600. [Google Scholar] [CrossRef]
- Wiley, C.A.; Schrier, R.D.; Nelson, J.A.; Lampert, P.W.; Oldstone, M. Cellular localization of human immunodeficiency virus infection within the brains of acquired immune deficiency syndrome patients. Proc. Natl. Acad. Sci. USA 1986, 83, 7089–7093. [Google Scholar] [CrossRef]
- Hickey, W.F.; Kimura, H. Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 1988, 239, 290–292. [Google Scholar] [CrossRef] [PubMed]
- Hickey, W.F.; Vass, K.; Lassmann, H. Bone marrow-derived elements in the central nervous system: An immunohistochemical and ultrastructural survey of rat chimeras. J. Neuropathol. Exp. Neurol. 1992, 51, 246–256. [Google Scholar] [CrossRef]
- Eugenin, E.A.; Osiecki, K.; Lopez, L.; Goldstein, H.; Calderon, T.M.; Berman, J.W. CCL2/monocyte chemoattractant protein-1 mediates enhanced transmigration of human immunodeficiency virus (HIV)-infected leukocytes across the blood–brain barrier: A potential mechanism of HIV–CNS invasion and NeuroAIDS. J. Neurosci. 2006, 26, 1098–1106. [Google Scholar] [CrossRef]
- Clay, C.C.; Rodrigues, D.S.; Ho, Y.S.; Fallert, B.A.; Janatpour, K.; Reinhart, T.A.; Esser, U. Neuroinvasion of fluorescein-positive monocytes in acute simian immunodeficiency virus infection. J. Virol. 2007, 81, 12040–12048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, K.C.; Corey, S.; Westmoreland, S.V.; Pauley, D.; Knight, H.; deBakker, C.; Alvarez, X.; Lackner, A.A. Perivascular macrophages are the primary cell type productively infected by simian immunodeficiency virus in the brains of macaques: Implications for the neuropathogenesis of AIDS. J. Exp. Med. 2001, 193, 905–915. [Google Scholar] [CrossRef]
- Campbell, J.H.; Ratai, E.-M.; Autissier, P.; Nolan, D.J.; Tse, S.; Miller, A.D.; González, R.G.; Salemi, M.; Burdo, T.H.; Williams, K.C. Anti-α4 antibody treatment blocks virus traffic to the brain and gut early, and stabilizes CNS injury late in infection. PLoS Pathog. 2014, 10, e1004533. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Creegan, M.; Tokarev, A.; Hsu, D.; Slike, B.M.; Sacdalan, C.; Chan, P.; Spudich, S.; Ananworanich, J.; Eller, M.A. Cerebrospinal fluid CD4+ T cell infection in humans and macaques during acute HIV-1 and SHIV infection. PLoS Pathog. 2021, 17, e1010105. [Google Scholar] [CrossRef]
- Schnell, G.; Spudich, S.; Harrington, P.; Price, R.W.; Swanstrom, R. Compartmentalized Human Immunodeficiency Virus Type 1 Originates from Long-Lived Cells in Some Subjects with HIV-1–Associated Dementia. PLoS Pathog. 2009, 5, e1000395. [Google Scholar] [CrossRef]
- Churchill, M.J.; Wesselingh, S.L.; Cowley, D.; Pardo, C.A.; McArthur, J.C.; Brew, B.J.; Gorry, P.R. Extensive astrocyte infection is prominent in human immunodeficiency virus–associated dementia. Ann. Neurol. 2009, 66, 253–258. [Google Scholar] [CrossRef]
- Strizki, J.M.; Albright, A.V.; Sheng, H.; O’Connor, M.; Perrin, L.; Gonzalez-Scarano, F. Infection of primary human microglia and monocyte-derived macrophages with human immunodeficiency virus type 1 isolates: Evidence of differential tropism. J. Virol. 1996, 70, 7654–7662. [Google Scholar] [CrossRef]
- Nakagawa, S.; Castro, V.; Toborek, M. Infection of human pericytes by HIV-1 disrupts the integrity of the blood–brain barrier. J. Cellular Mol. Med. 2012, 16, 2950–2957. [Google Scholar] [CrossRef]
- Guillemin, G.; Croitoru, J.; Le Grand, R.; Franck-Duchenne, M.; Dormont, D.; Boussin, F.D. Simian immunodeficiency virus mac251 infection of astrocytes. J. Neurovirol. 2000, 6, 173–186. [Google Scholar] [CrossRef]
- Clements, J.E.; Babas, T.; Mankowski, J.L.; Suryanarayana, K.; Piatak, M., Jr.; Tarwater, P.M.; Lifson, J.D.; Zink, M.C. The central nervous system as a reservoir for simian immunodeficiency virus (SIV): Steady-state levels of SIV DNA in brain from acute through asymptomatic infection. J. Infect. Dis. 2002, 186, 905–913. [Google Scholar] [CrossRef]
- Churchill, M.J.; Gorry, P.R.; Cowley, D.; Lal, L.; Sonza, S.; Purcell, D.F.; Thompson, K.A.; Gabuzda, D.; McArthur, J.C.; Pardo, C.A. Use of laser capture microdissection to detect integrated HIV-1 DNA in macrophages and astrocytes from autopsy brain tissues. J. Neurovirol. 2006, 12, 146–152. [Google Scholar] [CrossRef]
- Overholser, E.D.; Coleman, G.D.; Bennett, J.L.; Casaday, R.J.; Zink, M.C.; Barber, S.A.; Clements, J.E. Expression of simian immunodeficiency virus (SIV) nef in astrocytes during acute and terminal infection and requirement of nef for optimal replication of neurovirulent SIV in vitro. J. Virol. 2003, 77, 6855–6866. [Google Scholar] [CrossRef]
- Trillo-Pazos, G.; McFarlane-Abdulla, E.; Campbell, I.C.; Pilkington, G.J.; Everall, I.P. Recombinant nef HIV-IIIB protein is toxic to human neurons in culture. Brain Res. 2000, 864, 315–326. [Google Scholar] [CrossRef]
- Petito, C.; Roberts, B. Evidence of apoptotic cell death in HIV encephalitis. Am. J. Pathol. 1995, 146, 1121. [Google Scholar]
- Lehmann, M.H.; Lehmann, J.M.; Erfle, V. Nef-induced CCL2 expression contributes to HIV/SIV brain invasion and neuronal dysfunction. Front. Immunol. 2019, 10, 2447. [Google Scholar] [CrossRef]
- Dickens, A.M.; Yoo, S.W.; Chin, A.C.; Xu, J.; Johnson, T.P.; Trout, A.L.; Hauser, K.F.; Haughey, N.J. Chronic low-level expression of HIV-1 Tat promotes a neurodegenerative phenotype with aging. Sci. Reports 2017, 7, 7748. [Google Scholar] [CrossRef]
- Ratai, E.-M.; Annamalai, L.; Burdo, T.; Joo, C.-G.; Bombardier, J.P.; Fell, R.; Hakimelahi, R.; He, J.; Lentz, M.R.; Campbell, J.; et al. Brain creatine elevation and N-Acetylaspartate reduction indicates neuronal dysfunction in the setting of enhanced glial energy metabolism in a macaque model of neuroAIDS. Magn. Reson. Med. 2011, 66, 625–634. [Google Scholar] [CrossRef]
- Ratai, E.-M.; Pilkenton, S.J.; Greco, J.B.; Lentz, M.R.; Bombardier, J.P.; Turk, K.W.; He, J.; Joo, C.-G.; Lee, V.; Westmoreland, S.; et al. In vivo proton magnetic resonance spectroscopy reveals region specific metabolic responses to SIV infection in the macaque brain. BMC Neurosci. 2009, 10, 63. [Google Scholar] [CrossRef]
- Roberts, E.S.; Burudi, E.; Flynn, C.; Madden, L.J.; Roinick, K.L.; Watry, D.D.; Zandonatti, M.A.; Taffe, M.A.; Fox, H.S. Acute SIV infection of the brain leads to upregulation of IL6 and interferon-regulated genes: Expression patterns throughout disease progression and impact on neuroAIDS. J. Neuroimmunol. 2004, 157, 81–92. [Google Scholar] [CrossRef]
- Venkatachari, N.J.; Jain, S.; Walker, L.; Bivalkar-Mehla, S.; Chattopadhyay, A.; Bar-Joseph, Z.; Rinaldo, C.; Ragin, A.; Seaberg, E.; Levine, A. Transcriptome analyses identify key cellular factors associated with HIV-1 associated neuropathogenesis in infected men. AIDS 2017, 31, 623. [Google Scholar] [CrossRef]
- Abassi, M.; Morawski, B.M.; Nakigozi, G.; Nakasujja, N.; Kong, X.; Meya, D.B.; Robertson, K.; Gray, R.; Wawer, M.J.; Sacktor, N. Cerebrospinal fluid biomarkers and HIV-associated neurocognitive disorders in HIV-infected individuals in Rakai, Uganda. J. Neurovirol. 2017, 23, 369–375. [Google Scholar] [CrossRef]
- Lyons, J.L.; Uno, H.; Ancuta, P.; Kamat, A.; Moore, D.J.; Singer, E.J.; Morgello, S.; Gabuzda, D. Plasma sCD14 is a biomarker associated with impaired neurocognitive test performance in attention and learning domains in HIV infection. J. Acquir. Immune Defic. Syndr. 2011, 57, 371–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vérollet, C.; Zhang, Y.M.; Le Cabec, V.; Mazzolini, J.; Charrière, G.; Labrousse, A.; Bouchet, J.; Medina, I.; Biessen, E.; Niedergang, F.; et al. HIV-1 Nef Triggers Macrophage Fusion in a p61Hck- and Protease-Dependent Manner. J. Immunol. 2010, 184, 7030–7039. [Google Scholar] [CrossRef] [PubMed]
- Filipowicz, A.R.; McGary, C.M.; Holder, G.E.; Lindgren, A.A.; Johnson, E.M.; Sugimoto, C.; Kuroda, M.J.; Kim, W.-K. Proliferation of Perivascular Macrophages Contributes to the Development of Encephalitic Lesions in HIV-Infected Humans and in SIV-Infected Macaques. Sci. Reports 2016, 6, 32900. [Google Scholar] [CrossRef] [PubMed]
- Panigrahi, S.; Freeman, M.L.; Funderburg, N.T.; Mudd, J.C.; Younes, S.A.; Sieg, S.F.; Zidar, D.A.; Paiardini, M.; Villinger, F.; Calabrese, L.H.; et al. SIV/SHIV Infection Triggers Vascular Inflammation, Diminished Expression of Krüppel-like Factor 2 and Endothelial Dysfunction. J. Infect. Dis. 2015, 213, 1419–1427. [Google Scholar] [CrossRef]
- Pandrea, I.; Cornell, E.; Wilson, C.; Ribeiro, R.M.; Ma, D.; Kristoff, J.; Xu, C.; Haret-Richter, G.S.; Trichel, A.; Apetrei, C.; et al. Coagulation biomarkers predict disease progression in SIV-infected nonhuman primates. Blood 2012, 120, 1357–1366. [Google Scholar] [CrossRef]
- Gama, L.; Abreu, C.; Shirk, E.N.; Queen, S.E.; Beck, S.E.; Metcalf Pate, K.A.; Bullock, B.T.; Zink, M.C.; Mankowski, J.L.; Clements, J.E. SIV Latency in Macrophages in the CNS. Curr. Topics Microbiol. Immunol. 2018, 417, 111–130. [Google Scholar] [CrossRef]
- Cochrane, C.R.; Angelovich, T.A.; Byrnes, S.J.; Waring, E.; Guanizo, A.C.; Trollope, G.S.; Zhou, J.; Vue, J.; Senior, L.; Wanicek, E.; et al. Intact HIV proviruses persist in the brain despite viral suppression with ART. Ann. Neurol. 2022, in press. [CrossRef]
- Lamers, S.L.; Rose, R.; Maidji, E.; Agsalda-Garcia, M.; Nolan, D.J.; Fogel, G.B.; Salemi, M.; Garcia, D.L.; Bracci, P.; Yong, W.; et al. HIV DNA is frequently present within pathologic tissues evaluated at autopsy from cART-treated patients with undetectable viral load. J. Virol. 2016, 90, 8968–8983. [Google Scholar] [CrossRef]
- Chaillon, A.; Gianella, S.; Dellicour, S.; Rawlings, S.A.; Schlub, T.E.; De Oliveira, M.F.; Ignacio, C.; Porrachia, M.; Vrancken, B.; Smith, D.M. HIV persists throughout deep tissues with repopulation from multiple anatomical sources. J. Clin. Investig. 2020, 130, 1699–1712. [Google Scholar] [CrossRef]
- Lamers, S.L.; Gray, R.R.; Salemi, M.; Huysentruyt, L.C.; McGrath, M.S. HIV-1 phylogenetic analysis shows HIV-1 transits through the meninges to brain and peripheral tissues. Infect. Genet. Evol. 2011, 11, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Canestri, A.; Lescure, F.-X.; Jaureguiberry, S.; Moulignier, A.; Amiel, C.; Marcelin, A.; Peytavin, G.; Tubiana, R.; Pialoux, G.; Katlama, C. Discordance between cerebral spinal fluid and plasma HIV replication in patients with neurological symptoms who are receiving suppressive antiretroviral therapy. Clin. Infect. Dis. 2010, 50, 773–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dahl, V.; Peterson, J.; Fuchs, D.; Gisslen, M.; Palmer, S.; Price, R.W. Low levels of HIV-1 RNA detected in the cerebrospinal fluid after up to 10 years of suppressive therapy are associated with local immune activation. AIDS 2014, 28, 2251–2258. [Google Scholar] [CrossRef]
- Churchill, M.J.; Deeks, S.G.; Margolis, D.M.; Siliciano, R.F.; Swanstrom, R. HIV reservoirs: What, where and how to target them. Nat. Rev. Microbiol. 2016, 14, 55. [Google Scholar] [CrossRef] [PubMed]
- Hammoud, D.A.; Sinharay, S.; Shah, S.; Schreiber-Stainthorp, W.; Maric, D.; Muthusamy, S.; Lee, D.E.; Lee, C.A.; Basuli, F.; Reid, W.C.; et al. Neuroinflammatory Changes in Relation to Cerebrospinal Fluid Viral Load in Simian Immunodeficiency Virus Encephalitis. mBio 2019, 10. [Google Scholar] [CrossRef]
- Yarandi, S.S.; Robinson, J.A.; Vakili, S.; Donadoni, M.; Burdo, T.H.; Sariyer, I.K. Characterization of Nef expression in different brain regions of SIV-infected macaques. PLoS ONE 2020, 15, e0241667. [Google Scholar] [CrossRef] [PubMed]
- Mavigner, M.; Habib, J.; Deleage, C.; Rosen, E.; Mattingly, C.; Bricker, K.; Kashuba, A.; Amblard, F.; Schinazi, R.F.; Lawson, B.; et al. Simian Immunodeficiency Virus Persistence in Cellular and Anatomic Reservoirs in Antiretroviral Therapy-Suppressed Infant Rhesus Macaques. J. Virol. 2018, 92, e00518–e00562. [Google Scholar] [CrossRef]
- Bissel, S.J.; Gurnsey, K.; Jedema, H.P.; Smith, N.F.; Wang, G.; Bradberry, C.W.; Wiley, C.A. Aged Chinese-origin rhesus macaques infected with SIV develop marked viremia in absence of clinical disease, inflammation or cognitive impairment. Retrovirology 2018, 15, 17. [Google Scholar] [CrossRef]
- Mohammadzadeh, N.; Roda, W.; Branton, W.G.; Clain, J.; Rabezanahary, H.; Zghidi-Abouzid, O.; Gelman, B.B.; Angel, J.B.; Cohen, E.A.; Gill, M.J.; et al. Lentiviral Infections Persist in Brain despite Effective Antiretroviral Therapy and Neuroimmune Activation. mBio 2021, 12, e02721–e02784. [Google Scholar] [CrossRef]
- Avalos, C.R.; Abreu, C.M.; Queen, S.E.; Li, M.; Price, S.; Shirk, E.N.; Engle, E.L.; Forsyth, E.; Bullock, B.T.; Mac Gabhann, F.; et al. Brain macrophages in simian immunodeficiency virus-infected, antiretroviral-suppressed macaques: A functional latent reservoir. mBio 2017, 8, e01117–e01186. [Google Scholar] [CrossRef]
- Hsu, D.C.; Silsorn, D.; Inthawong, D.; Kuncharin, Y.; Sopanaporn, J.; Im-Erbsin, R.; Chumpolkulwong, K.; O’connell, R.J.; Michael, N.L.; Ege, C.A.; et al. Impact of analytical treatment interruption on the central nervous system in a simian-HIV model. AIDS 2019, 33, S189–S196. [Google Scholar] [CrossRef] [PubMed]
- Abreu, C.M.; Veenhuis, R.T.; Avalos, C.R.; Graham, S.; Parrilla, D.R.; Ferreira, E.A.; Queen, S.E.; Shirk, E.N.; Bullock, B.T.; Li, M. Myeloid and CD4 T cells comprise the latent reservoir in antiretroviral therapy-suppressed SIVmac251-infected macaques. mBio 2019, 10, e01619–e01659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruner, K.M.; Murray, A.J.; Pollack, R.A.; Soliman, M.G.; Laskey, S.B.; Capoferri, A.A.; Lai, J.; Strain, M.C.; Lada, S.M.; Hoh, R.; et al. Defective proviruses rapidly accumulate during acute HIV-1 infection. Nat. Med. 2016, 22, 1043–1049. [Google Scholar] [CrossRef] [PubMed]
- Glass, J.D.; Fedor, H.; Wesselingh, S.L.; McArthur, J.C. Immunocytochemical quantitation of human immunodeficiency virus in the brain: Correlations with dementia. Ann. Neurol. 1995, 38, 755–762. [Google Scholar] [CrossRef] [PubMed]
- Hammond, J.W.; Qiu, W.Q.; Marker, D.F.; Chamberlain, J.M.; Greaves-Tunnell, W.; Bellizzi, M.J.; Lu, S.-M.; Gelbard, H.A. HIV Tat causes synapse loss in a mouse model of HIV-associated neurocognitive disorder that is independent of the classical complement cascade component C1q. Glia 2018, 66, 2563–2574. [Google Scholar] [CrossRef]
- Yuan, L.; Qiao, L.; Wei, F.; Yin, J.; Liu, L.; Ji, Y.; Smith, D.; Li, N.; Chen, D. Cytokines in CSF correlate with HIV-associated neurocognitive disorders in the post-HAART era in China. J. Neurovirol. 2013, 19, 144–149. [Google Scholar] [CrossRef]
- Sun, B.; Dalvi, P.; Abadjian, L.; Tang, N.; Pulliam, L. Blood neuron-derived exosomes as biomarkers of cognitive impairment in HIV. AIDS 2017, 31, F9–F17. [Google Scholar] [CrossRef]
- Edén, A.; Marcotte, T.D.; Heaton, R.K.; Nilsson, S.; Zetterberg, H.; Fuchs, D.; Franklin, D.; Price, R.W.; Grant, I.; Letendre, S.L. Increased intrathecal immune activation in virally suppressed HIV-1 infected patients with neurocognitive impairment. PLoS ONE 2016, 11, e0157160. [Google Scholar] [CrossRef]
- Sailasuta, N.; Ananworanich, J.; Lerdlum, S.; Sithinamsuwan, P.; Fletcher, J.L.; Tipsuk, S.; Pothisri, M.; Jadwattanakul, T.; Jirajariyavej, S.; Chalermchai, T. Neuronal-glia markers by magnetic resonance spectroscopy in HIV before and after combination antiretroviral therapy. J. Acquir. Immune Defic. Syndr. 2016, 71, 24. [Google Scholar] [CrossRef]
- Roberts, E.S.; Zandonatti, M.A.; Watry, D.D.; Madden, L.J.; Henriksen, S.J.; Taffe, M.A.; Fox, H.S. Induction of pathogenic sets of genes in macrophages and neurons in NeuroAIDS. Am. J. Pathol. 2003, 162, 2041–2057. [Google Scholar] [CrossRef]
- Burdo, T.H.; Lackner, A.; Williams, K.C. Monocyte/macrophages and their role in HIV neuropathogenesis. Immunol. Rev. 2013, 254, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Kamat, A.; Lyons, J.L.; Misra, V.; Uno, H.; Morgello, S.; Singer, E.J.; Gabuzda, D. Monocyte activation markers in cerebrospinal fluid associated with impaired neurocognitive testing in advanced HIV infection. J. Acquir. Immune Defic. Syndr. 2012, 60, 234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burdo, T.H.; Weiffenbach, A.; Woods, S.P.; Letendre, S.; Ellis, R.J.; Williams, K.C. Elevated sCD163 in plasma but not cerebrospinal fluid is a marker of neurocognitive impairment in HIV infection. AIDS 2013, 27, 1387–1395. [Google Scholar] [CrossRef]
- Solis-Leal, A.; Siddiqui, S.; Wu, F.; Mohan, M.; Hu, W.; Doyle-Meyers, L.A.; Dufour, J.P.; Ling, B. Neuroinflammatory Profiling in SIV-Infected Chinese-Origin Rhesus Macaques on Antiretroviral Therapy. Viruses 2022, 14, 139. [Google Scholar] [CrossRef]
- Sullivan, M.N.; Brill, S.A.; Mangus, L.M.; Jeong, Y.J.; Solis, C.V.; Knight, A.C.; Colantuoni, C.; Keceli, G.; Paolocci, N.; Queen, S.E. Upregulation of superoxide dismutase 2 by astrocytes in the SIV/macaque model of HIV-associated neurologic disease. J. Neuropathol. Exp. Neurol. 2020, 79, 986–997. [Google Scholar] [CrossRef] [PubMed]
- Kelly, K.M.; Beck, S.E.; Pate, K.A.M.; Queen, S.E.; Dorsey, J.L.; Adams, R.J.; Avery, L.B.; Hubbard, W.; Tarwater, P.M.; Mankowski, J.L. Neuroprotective maraviroc monotherapy in simian immunodeficiency virus-infected macaques: Reduced replicating and latent SIV in the brain. AIDS 2013, 27, F21. [Google Scholar] [CrossRef]
- Trease, A.J.; Niu, M.; Morsey, B.; Guda, C.; Byrareddy, S.N.; Buch, S.; Fox, H.S. Antiretroviral therapy restores the homeostatic state of microglia in SIV-infected rhesus macaques. J. Leukoc. Biol. 2022, in press. [CrossRef]
- Brenchley, J.M.; Schacker, T.W.; Ruff, L.E.; Price, D.A.; Taylor, J.H.; Beilman, G.J.; Nguyen, P.L.; Khoruts, A.; Larson, M.; Haase, A.T. CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J. Exp. Med. 2004, 200, 749–759. [Google Scholar] [CrossRef]
- Veazey, R.S.; DeMaria, M.; Chalifoux, L.V.; Shvetz, D.E.; Pauley, D.R.; Knight, H.L.; Rosenzweig, M.; Johnson, R.P.; Desrosiers, R.C.; Lackner, A.A. Gastrointestinal tract as a major site of CD4+ T cell depletion and viral replication in SIV infection. Science 1998, 280, 427–431. [Google Scholar] [CrossRef]
- Guadalupe, M.; Reay, E.; Sankaran, S.; Prindiville, T.; Flamm, J.; McNeil, A.; Dandekar, S. Severe CD4+ T-cell depletion in gut lymphoid tissue during primary human immunodeficiency virus type 1 infection and substantial delay in restoration following highly active antiretroviral therapy. J. Virol. 2003, 77, 11708–11717. [Google Scholar] [CrossRef]
- Mehandru, S.; Poles, M.A.; Tenner-Racz, K.; Horowitz, A.; Hurley, A.; Hogan, C.; Boden, D.; Racz, P.; Markowitz, M. Primary HIV-1 infection is associated with preferential depletion of CD4+ T lymphocytes from effector sites in the gastrointestinal tract. J. Exp. Med. 2004, 200, 761–770. [Google Scholar] [CrossRef]
- Estes, J.D.; Harris, L.D.; Klatt, N.R.; Tabb, B.; Pittaluga, S.; Paiardini, M.; Barclay, G.R.; Smedley, J.; Pung, R.; Oliveira, K.M.; et al. Damaged Intestinal Epithelial Integrity Linked to Microbial Translocation in Pathogenic Simian Immunodeficiency Virus Infections. PLOS Pathog. 2010, 6, e1001052. [Google Scholar] [CrossRef] [Green Version]
- Batman, P.; Miller, A.; Forster, S.; Harris, J.; Pinching, A.; Griffin, G. Jejunal enteropathy associated with human immunodeficiency virus infection: Quantitative histology. J. Clin. Pathol. 1989, 42, 275–281. [Google Scholar] [CrossRef]
- Ciccone, E.J.; Read, S.W.; Mannon, P.J.; Yao, M.D.; Hodge, J.N.; Dewar, R.; Chairez, C.L.; Proschan, M.A.; Kovacs, J.A.; Sereti, I. Cycling of gut mucosal CD4+ T cells decreases after prolonged anti-retroviral therapy and is associated with plasma LPS levels. Mucosal Immunol. 2010, 3, 172–181. [Google Scholar] [CrossRef]
- Jiang, W.; Lederman, M.M.; Hunt, P.; Sieg, S.F.; Haley, K.; Rodriguez, B.; Landay, A.; Martin, J.; Sinclair, E.; Asher, A.I. Plasma levels of bacterial DNA correlate with immune activation and the magnitude of immune restoration in persons with antiretroviral-treated HIV infection. J. Infect. Dis. 2009, 199, 1177–1185. [Google Scholar] [CrossRef]
- Schulbin, H.; Bode, H.; Stocker, H.; Schmidt, W.; Zippel, T.; Loddenkemper, C.; Engelmann, E.; Epple, H.-J.; Arastéh, K.; Zeitz, M. Cytokine expression in the colonic mucosa of human immunodeficiency virus-infected individuals before and during 9 months of antiretroviral therapy. Antimicrob. Agents Chemother. 2008, 52, 3377–3384. [Google Scholar] [CrossRef]
- Ancuta, P.; Kamat, A.; Kunstman, K.J.; Kim, E.-Y.; Autissier, P.; Wurcel, A.; Zaman, T.; Stone, D.; Mefford, M.; Morgello, S.; et al. Microbial Translocation Is Associated with Increased Monocyte Activation and Dementia in AIDS Patients. PLoS ONE 2008, 3, e2516. [Google Scholar] [CrossRef]
- Imp, B.M.; Rubin, L.H.; Tien, P.C.; Plankey, M.W.; Golub, E.T.; French, A.L.; Valcour, V.G. Monocyte Activation Is Associated With Worse Cognitive Performance in HIV-Infected Women With Virologic Suppression. J. Infect. Dis. 2017, 215, 114–121. [Google Scholar] [CrossRef]
- Giorgi, J.V.; Hultin, L.E.; McKeating, J.A.; Johnson, T.D.; Owens, B.; Jacobson, L.P.; Shih, R.; Lewis, J.; Wiley, D.J.; Phair, J.P. Shorter survival in advanced human immunodeficiency virus type 1 infection is more closely associated with T lymphocyte activation than with plasma virus burden or virus chemokine coreceptor usage. J. Infect. Dis. 1999, 179, 859–870. [Google Scholar] [CrossRef]
- Deeks, S.G.; Kitchen, C.M.; Liu, L.; Guo, H.; Gascon, R.; Narváez, A.B.; Hunt, P.; Martin, J.N.; Kahn, J.O.; Levy, J. Immune activation set point during early HIV infection predicts subsequent CD4+ T-cell changes independent of viral load. Blood 2004, 104, 942–947. [Google Scholar] [CrossRef]
- Sandler, N.G.; Wand, H.; Roque, A.; Law, M.; Nason, M.C.; Nixon, D.E.; Ruxrungtham, K.; Lewin, S.R.; Emery, S.; Neaton, J.D. Plasma levels of soluble CD14 independently predict mortality in HIV infection. J. Infect. Dis. 2011, 203, 780–790. [Google Scholar] [CrossRef]
- Brenchley, J.M.; Ortiz, A.M. Microbiome Studies in Non-human Primates. Curr. HIV/AIDS Rep. 2021, 18, 527–537. [Google Scholar] [CrossRef]
- Siddiqui, S.; Bao, D.; Doyle-Meyers, L.; Dufour, J.; Wu, Y.; Liu, Y.-Z.; Ling, B. Alterations of the gut bacterial microbiota in rhesus macaques with SIV infection and on short-or long-term antiretroviral therapy. Sci. Reports 2020, 10, 1–13. [Google Scholar] [CrossRef]
- Blum, F.C.; Hardy, B.L.; Bishop-Lilly, K.A.; Frey, K.G.; Hamilton, T.; Whitney, J.B.; Lewis, M.G.; Merrell, D.S.; Mattapallil, J.J. Microbial dysbiosis during simian immunodeficiency virus infection is partially reverted with combination anti-retroviral therapy. Sci. Reports 2020, 10, 1–11. [Google Scholar] [CrossRef]
- Tanes, C.; Walker, E.M.; Slisarenko, N.; Gerrets, G.L.; Grasperge, B.F.; Qin, X.; Jazwinski, S.M.; Bushman, F.D.; Bittinger, K.; Rout, N. Gut Microbiome Changes Associated with Epithelial Barrier Damage and Systemic Inflammation during Antiretroviral Therapy of Chronic SIV Infection. Viruses 2021, 13, 1567. [Google Scholar] [CrossRef]
- Somsouk, M.; Estes, J.D.; Deleage, C.; Dunham, R.M.; Albright, R.; Inadomi, J.M.; Martin, J.N.; Deeks, S.G.; McCune, J.M.; Hunt, P.W. Gut epithelial barrier and systemic inflammation during chronic HIV infection. AIDS 2015, 29, 43–51. [Google Scholar] [CrossRef]
- Chauhan, A.; Turchan, J.; Pocernich, C.; Bruce-Keller, A.; Roth, S.; Butterfield, D.A.; Major, E.O.; Nath, A. Intracellular human immunodeficiency virus Tat expression in astrocytes promotes astrocyte survival but induces potent neurotoxicity at distant sites via axonal transport. J. Biol. Chem. 2003, 278, 13512–13519. [Google Scholar] [CrossRef]
- Lorenzo-Redondo, R.; Fryer, H.R.; Bedford, T.; Kim, E.-Y.; Archer, J.; Pond, S.L.K.; Chung, Y.-S.; Penugonda, S.; Chipman, J.G.; Fletcher, C.V. Persistent HIV-1 replication maintains the tissue reservoir during therapy. Nature 2016, 530, 51. [Google Scholar] [CrossRef]
- Gisolf, E.H.; Enting, R.H.; Jurriaans, S.; de Wolf, F.; van der Ende, M.E.; Hoetelmans, R.M.; Portegies, P.; Danner, S.A. Cerebrospinal fluid HIV-1 RNA during treatment with ritonavir/saquinavir or ritonavir/saquinavir/stavudine. AIDS 2000, 14, 1583–1589. [Google Scholar] [CrossRef]
- Bokhari, S.M.; Hegde, R.; Callen, S.; Yao, H.; Adany, I.; Li, Q.; Li, Z.; Pinson, D.; Yeh, H.W.; Cheney, P.D.; et al. Morphine potentiates neuropathogenesis of SIV infection in rhesus macaques. J. Neuroimmune Pharmacol. 2011, 6, 626–639. [Google Scholar] [CrossRef]
- Kumar, R.; Orsoni, S.; Norman, L.; Verma, A.S.; Tirado, G.; Giavedoni, L.D.; Staprans, S.; Miller, G.M.; Buch, S.J.; Kumar, A. Chronic morphine exposure causes pronounced virus replication in cerebral compartment and accelerated onset of AIDS in SIV/SHIV-infected Indian rhesus macaques. Virology 2006, 354, 192–206. [Google Scholar] [CrossRef] [PubMed]
- Marcondes, M.C.G.; Flynn, C.; Watry, D.D.; Zandonatti, M.; Fox, H.S. Methamphetamine increases brain viral load and activates natural killer cells in simian immunodeficiency virus-infected monkeys. Am. J. Pathol. 2010, 177, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Niu, M.; Morsey, B.; Lamberty, B.G.; Emanuel, K.; Yu, F.; León-Rivera, R.; Berman, J.W.; Gaskill, P.J.; Matt, S.M.; Ciborowski, P.S.; et al. Methamphetamine Increases the Proportion of SIV-Infected Microglia/Macrophages, Alters Metabolic Pathways, and Elevates Cell Death Pathways: A Single-Cell Analysis. Viruses 2020, 12, 1297. [Google Scholar] [CrossRef] [PubMed]
- Najera, J.A.; Bustamante, E.A.; Bortell, N.; Morsey, B.; Fox, H.S.; Ravasi, T.; Marcondes, M.C.G. Methamphetamine abuse affects gene expression in brain-derived microglia of SIV-infected macaques to enhance inflammation and promote virus targets. BMC Immunol. 2016, 17, 1–19. [Google Scholar] [CrossRef]
- Weed, M.; Adams, R.J.; Hienz, R.D.; Meulendyke, K.A.; Linde, M.E.; Clements, J.E.; Mankowski, J.L.; Zink, M.C. SIV/macaque model of HIV infection in cocaine users: Minimal effects of cocaine on behavior, virus replication, and CNS inflammation. J. Neuroimmune Pharmacol. 2012, 7, 401–411. [Google Scholar] [CrossRef]
- Weed, M.R.; Hienz, R.D.; Brady, J.V.; Adams, R.J.; Mankowski, J.L.; Clements, J.E.; Zink, M.C. Central nervous system correlates of behavioral deficits following simian immunodeficiency virus infection. J. Neurovirol. 2003, 9, 452–464. [Google Scholar] [CrossRef]
- Murray, E.A.; Rausch, D.M.; Lendvay, J.; Sharer, L.R.; Eiden, L.E. Cognitive and motor impairments associated with SIV infection in rhesus monkeys. Science 1992, 255, 1246–1249. [Google Scholar] [CrossRef] [PubMed]
- Gold, L.H.; Fox, H.S.; Henriksen, S.J.; Buchmeier, M.J.; Weed, M.R.; Taffe, M.A.; Huitrón-Resendiz, S.; Horn, T.F.W.; Bloom, F.E. Longitudinal analysis of behavioral, neurophysiological, viral and immunological effects of SIV infection in rhesus monkeys. J. Med. Primatol. 1998, 27, 104–112. [Google Scholar] [CrossRef]
- Weed, M.R.; Gold, L.H.; Polis, I.; Koob, G.F.; Fox, H.S.; Taffe, M.A. Impaired performance on a rhesus monkey neuropsychological testing battery following simian immunodeficiency virus infection. AIDS Res. Hum. Retrovir. 2004, 20, 77–89. [Google Scholar] [CrossRef]
- Marcario, J.K.; Pendyala, G.; Riazi, M.; Fleming, K.; Marquis, J.; Callen, S.; Lisco, S.J.; Fowler, S.C.; Cheney, P.D.; Buch, S.J. Effects of Morphine on Behavioral Task Performance in SIV-Infected Rhesus Macaques. J. NeuroImmune Pharmacol. 2016, 11, 348–357. [Google Scholar] [CrossRef]
- Fizet, J.; Cassel, J.-C.; Kelche, C.; Meunier, H. A review of the 5-Choice Serial Reaction Time (5-CSRT) task in different vertebrate models. Neurosci. Biobehav.l Rev. 2016, 71, 135–153. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Guo, X.; Chen, Y.; Wang, C.-E.; Gao, J.; Yang, W.; Kang, Y.; Si, W.; Wang, H.; Yang, S.-H.; et al. Early Parkinson’s disease symptoms in α-synuclein transgenic monkeys. Hum. Mol. Genet. 2015, 24, 2308–2317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lizarraga, S.; Daadi, E.W.; Roy-Choudhury, G.; Daadi, M.M. Age-related cognitive decline in baboons: Modeling the prodromal phase of Alzheimer’s disease and related dementias. Aging 2020, 12, 10099. [Google Scholar] [CrossRef] [PubMed]
- Nixon, C.C.; Mavigner, M.; Sampey, G.C.; Brooks, A.D.; Spagnuolo, R.A.; Irlbeck, D.M.; Mattingly, C.; Ho, P.T.; Schoof, N.; Cammon, C.G.; et al. Systemic HIV and SIV latency reversal via non-canonical NF-κB signalling in vivo. Nature 2020, 578, 160–165. [Google Scholar] [CrossRef] [PubMed]
- Barber-Axthelm, I.M.; Barber-Axthelm, V.; Sze, K.Y.; Zhen, A.; Suryawanshi, G.W.; Chen, I.S.; Zack, J.A.; Kitchen, S.G.; Kiem, H.P.; Peterson, C.W. Stem cell-derived CAR T cells traffic to HIV reservoirs in macaques. JCI Insight 2021, 6. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, P.; Chen, C.; Kaminski, R.; Gordon, J.; Liao, S.; Robinson, J.A.; Smith, M.D.; Liu, H.; Sariyer, I.K.; Sariyer, R.; et al. CRISPR based editing of SIV proviral DNA in ART treated non-human primates. Nat. Commun. 2020, 11, 6065. [Google Scholar] [CrossRef]
- Meulendyke, K.A.; Queen, S.E.; Engle, E.L.; Shirk, E.N.; Liu, J.; Steiner, J.P.; Nath, A.; Tarwater, P.M.; Graham, D.R.; Mankowski, J.L. Combination fluconazole/paroxetine treatment is neuroprotective despite ongoing neuroinflammation and viral replication in an SIV model of HIV neurological disease. J. Neurovirol. 2014, 20, 591–602. [Google Scholar] [CrossRef]
- Emanuel, K.M.; Runner, K.; Brodnik, Z.D.; Morsey, B.M.; Lamberty, B.G.; Johnson, H.S.; Acharya, A.; Byrareddy, S.; España, R.A.; Fox, H.S. Deprenyl reduces inflammation during acute SIV infection. iScience 2022, 25, 104207. [Google Scholar] [CrossRef]
- Garcia-Mesa, Y.; Xu, H.N.; Vance, P.; Gruenewald, A.L.; Garza, R.; Midkiff, C.; Alvarez-Hernandez, X.; Irwin, D.J.; Gill, A.J.; Kolson, D.L. Dimethyl Fumarate, an Approved Multiple Sclerosis Treatment, Reduces Brain Oxidative Stress in SIV-Infected Rhesus Macaques: Potential Therapeutic Repurposing for HIV Neuroprotection. Antioxidants 2021, 10, 416. [Google Scholar] [CrossRef]
- Pandrea, I.; Xu, C.; Stock, J.L.; Frank, D.N.; Ma, D.; Policicchio, B.B.; He, T.; Kristoff, J.; Cornell, E.; Haret-Richter, G.S.; et al. Antibiotic and Antiinflammatory Therapy Transiently Reduces Inflammation and Hypercoagulation in Acutely SIV-Infected Pigtailed Macaques. PLOS Pathog. 2016, 12, e1005384. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Byrnes, S.J.; Angelovich, T.A.; Busman-Sahay, K.; Cochrane, C.R.; Roche, M.; Estes, J.D.; Churchill, M.J. Non-Human Primate Models of HIV Brain Infection and Cognitive Disorders. Viruses 2022, 14, 1997. https://doi.org/10.3390/v14091997
Byrnes SJ, Angelovich TA, Busman-Sahay K, Cochrane CR, Roche M, Estes JD, Churchill MJ. Non-Human Primate Models of HIV Brain Infection and Cognitive Disorders. Viruses. 2022; 14(9):1997. https://doi.org/10.3390/v14091997
Chicago/Turabian StyleByrnes, Sarah J., Thomas A. Angelovich, Kathleen Busman-Sahay, Catherine R. Cochrane, Michael Roche, Jacob D. Estes, and Melissa J. Churchill. 2022. "Non-Human Primate Models of HIV Brain Infection and Cognitive Disorders" Viruses 14, no. 9: 1997. https://doi.org/10.3390/v14091997
APA StyleByrnes, S. J., Angelovich, T. A., Busman-Sahay, K., Cochrane, C. R., Roche, M., Estes, J. D., & Churchill, M. J. (2022). Non-Human Primate Models of HIV Brain Infection and Cognitive Disorders. Viruses, 14(9), 1997. https://doi.org/10.3390/v14091997