Only Subclinical Alterations in the Haemostatic System of People with Diabetes after COVID-19 Vaccination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Experimental Design
2.2. Standard Coagulation Markers
2.3. Whole Blood Tissue Factor-Triggered TEM Assay
2.4. Impedance Aggregation Assay
2.5. Automated Fluorogenic Measurement of Thrombin Generation
2.6. Statistics
3. Results
3.1. Impact of COVID-19 Vaccination on the Haemostatic System of Participants with Type 1 Diabetes
3.2. Impact of COVID-19 Vaccination on the Haemostatic System of Participants with Type 2 Diabetes
3.3. Impact of COVID-19 Vaccination on the Haemostatic System with Respect to Glycemic Control
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Massetti, G.M.; Jackson, B.R.; Brooks, J.T.; Perrine, C.G.; Reott, E.; Hall, A.J.; Lubar, D.; Williams, I.T.; Ritchey, M.D.; Patel, P.; et al. Summary of Guidance for Minimizing the Impact of COVID-19 on Individual Persons, Communities, and Health Care Systems—United States, August 2022. MMWR Morb. Mortal Wkly. Rep. 2022, 71, 1057–1064. [Google Scholar] [CrossRef] [PubMed]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef]
- Ostrowski, S.R.; Sogaard, O.S.; Tolstrup, M.; Staerke, N.B.; Lundgren, J.; Ostergaard, L.; Hvas, A.M. Inflammation and Platelet Activation After COVID-19 Vaccines—Possible Mechanisms Behind Vaccine-Induced Immune Thrombocytopenia and Thrombosis. Front. Immunol. 2021, 12, 779453. [Google Scholar] [CrossRef] [PubMed]
- Sangli, S.; Virani, A.; Cheronis, N.; Vannatter, B.; Minich, C.; Noronha, S.; Bhagavatula, R.; Speredelozzi, D.; Sareen, M.; Kaplan, R.B. Thrombosis with Thrombocytopenia After the Messenger RNA-1273 Vaccine. Ann. Intern. Med. 2021, 174, 1480–1482. [Google Scholar] [CrossRef] [PubMed]
- Krzywicka, K.; Heldner, M.R.; Sanchez van Kammen, M.; van Haaps, T.; Hiltunen, S.; Silvis, S.M.; Levi, M.; Kremer Hovinga, J.A.; Jood, K.; Lindgren, E.; et al. Post-SARS-CoV-2-vaccination cerebral venous sinus thrombosis: An analysis of cases notified to the European Medicines Agency. Eur. J. Neurol. 2021, 28, 3656–3662. [Google Scholar] [CrossRef] [PubMed]
- Eichinger, S.; Warkentin, T.E.; Greinacher, A. Thrombotic Thrombocytopenia after ChAdOx1 nCoV-19 Vaccination. Reply. N. Engl. J. Med. 2021, 385, e11. [Google Scholar] [CrossRef] [PubMed]
- Camm, A.J.; Sabbour, H.; Schnell, O.; Summaria, F.; Verma, A. Managing thrombotic risk in patients with diabetes. Cardiovasc. Diabetol. 2022, 21, 160. [Google Scholar] [CrossRef]
- Sourij, C.; Tripolt, N.J.; Aziz, F.; Aberer, F.; Forstner, P.; Obermayer, A.M.; Kojzar, H.; Kleinhappl, B.; Pferschy, P.N.; Mader, J.K.; et al. Humoral immune response to COVID-19 vaccination in diabetes is age-dependent but independent of type of diabetes and glycaemic control: The prospective COVAC-DM cohort study. Diabetes Obes. Metab. 2022, 24, 849–858. [Google Scholar] [CrossRef]
- Sorensen, B.; Johansen, P.; Christiansen, K.; Woelke, M.; Ingerslev, J. Whole blood coagulation thrombelastographic profiles employing minimal tissue factor activation. J. Thromb. Haemost. 2003, 1, 551–558. [Google Scholar] [CrossRef]
- Morel-Kopp, M.C.; Tan, C.W.; Brighton, T.A.; McRae, S.; Baker, R.; Tran, H.; Mollee, P.; Kershaw, G.; Joseph, J.; Ward, C.; et al. Validation of whole blood impedance aggregometry as a new diagnostic tool for HIT: Results of a large Australian study. Thromb Haemost. 2012, 107, 575–583. [Google Scholar] [CrossRef]
- Cvirn, G.; Gallistl, S.; Koestenberger, M.; Kutschera, J.; Ferstl, U.; Kellner, J.; Jurgens, G.; Gries, A. Effects of beta2-glycoprotein-I on platelet aggregation in cord versus adult whole blood. Platelets 2007, 18, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Al Dieri, R.; de Laat, B.; Hemker, H.C. Thrombin generation: What have we learned? Blood Rev. 2012, 26, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Brummel-Ziedins, K.E.; Whelihan, M.F.; Gissel, M.; Mann, K.G.; Rivard, G.E. Thrombin generation and bleeding in haemophilia A. Haemophilia 2009, 15, 1118–1125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamprecht, M.; Moussalli, H.; Ledinski, G.; Leschnik, B.; Schlagenhauf, A.; Koestenberger, M.; Polt, G.; Cvirn, G. Effects of a single bout of walking exercise on blood coagulation parameters in obese women. J. Appl. Physiol. 2013, 115, 57–63. [Google Scholar] [CrossRef] [Green Version]
- Richardson, S.; Hirsch, J.S.; Narasimhan, M.; Crawford, J.M.; McGinn, T.; Davidson, K.W.; the Northwell, C.-R.C.; Barnaby, D.P.; Becker, L.B.; Chelico, J.D.; et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA 2020, 323, 2052–2059. [Google Scholar] [CrossRef]
- Wu, Z.; McGoogan, J.M. Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72,314 Cases from the Chinese Center for Disease Control and Prevention. JAMA 2020, 323, 1239–1242. [Google Scholar] [CrossRef]
- Sourij, H.; Aziz, F.; Brauer, A.; Ciardi, C.; Clodi, M.; Fasching, P.; Karolyi, M.; Kautzky-Willer, A.; Klammer, C.; Malle, O.; et al. COVID-19 fatality prediction in people with diabetes and prediabetes using a simple score upon hospital admission. Diabetes Obes. Metab. 2021, 23, 589–598. [Google Scholar] [CrossRef]
- Pottegard, A.; Lund, L.C.; Karlstad, O.; Dahl, J.; Andersen, M.; Hallas, J.; Lidegaard, O.; Tapia, G.; Gulseth, H.L.; Ruiz, P.L.; et al. Arterial events, venous thromboembolism, thrombocytopenia, and bleeding after vaccination with Oxford-AstraZeneca ChAdOx1-S in Denmark and Norway: Population based cohort study. BMJ 2021, 373, n1114. [Google Scholar] [CrossRef]
- Li, Y.; Fu, X.; Li, Y.; Liu, P.; Liu, S.; Pan, Y. Early prevention and risk factors analysis of portal vein system thrombosis after laparoscopic splenectomy and pericardial devascularization. Surg. Endosc. 2022, 36, 8918–8926. [Google Scholar] [CrossRef]
- Jasser-Nitsche, H.; Haidl, H.; Cvirn, G.; Pohl, S.; Gallistl, S.; Frohlich-Reiterer, E.; Schlagenhauf, A. Increased tissue factor activity promotes thrombin generation at type 1 diabetes onset in children. Pediatr. Diabetes 2020, 21, 1210–1217. [Google Scholar] [CrossRef]
- Wallen, T.E.; Youngs, J.; Baucom, M.R.; Turner, K.; Schuster, R.; England, L.; Pritts, T.A.; Goodman, M.D. Aspirin Administration Mitigates Platelet Hyperaggregability After Splenectomy in a Murine Model. J. Surg. Res. 2022, 279, 548–556. [Google Scholar] [CrossRef] [PubMed]
- Ivandic, B.T.; Giannitsis, E.; Schlick, P.; Staritz, P.; Katus, H.A.; Hohlfeld, T. Determination of aspirin responsiveness by use of whole blood platelet aggregometry. Clin. Chem. 2007, 53, 614–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilkerson, W.R.; Sane, D.C. Aging and thrombosis. Semin. Thromb. Hemost. 2002, 28, 555–568. [Google Scholar] [CrossRef] [PubMed]
- Blain, H.; Masud, T.; Dargent-Molina, P.; Martin, F.C.; Rosendahl, E.; van der Velde, N.; Bousquet, J.; Benetos, A.; Cooper, C.; Kanis, J.A.; et al. A Comprehensive Fracture Prevention Strategy in Older Adults: The European Union Geriatric Medicine Society (EUGMS) Statement. J. Nutr. Health Aging 2016, 20, 647–652. [Google Scholar] [CrossRef] [Green Version]
- Joseph, J.J.; Deedwania, P.; Acharya, T.; Aguilar, D.; Bhatt, D.L.; Chyun, D.A.; Di Palo, K.E.; Golden, S.H.; Sperling, L.S.; American Heart Association Diabetes Committee of the Council on Lifestyle and Cardiometabolic Health; et al. Comprehensive Management of Cardiovascular Risk Factors for Adults with Type 2 Diabetes: A Scientific Statement from the American Heart Association. Circulation 2022, 145, e722–e759. [Google Scholar] [CrossRef]
- Emerging Risk Factors Collaboration; Sarwar, N.; Gao, P.; Seshasai, S.R.; Gobin, R.; Kaptoge, S.; Di Angelantonio, E.; Ingelsson, E.; Lawlor, D.A.; Selvin, E.; et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: A collaborative meta-analysis of 102 prospective studies. Lancet 2010, 375, 2215–2222. [Google Scholar] [CrossRef] [Green Version]
- Paar, M.; Rossmann, C.; Nusshold, C.; Wagner, T.; Schlagenhauf, A.; Leschnik, B.; Oettl, K.; Koestenberger, M.; Cvirn, G.; Hallstrom, S. Anticoagulant action of low, physiologic, and high albumin levels in whole blood. PLoS ONE 2017, 12, e0182997. [Google Scholar] [CrossRef] [Green Version]
- Barocci, S.; Orlandi, C.; Diotallevi, A.; Buffi, G.; Ceccarelli, M.; Vandini, D.; Carlotti, E.; Galluzzi, L.; Rocchi, M.B.L.; Magnani, M.; et al. Evaluation of Two-Month Antibody Levels after Heterologous ChAdOx1-S/BNT162b2 Vaccination Compared to Homologous ChAdOx1-S or BNT162b2 Vaccination. Vaccines 2022, 10, 491. [Google Scholar] [CrossRef]
- Dix, C.; McFadyen, J.; Huang, A.; Chunilal, S.; Chen, V.; Tran, H. Understanding vaccine-induced thrombotic thrombocytopenia (VITT). Intern. Med. J. 2022, 52, 717–723. [Google Scholar] [CrossRef]
- Trabucco Aurilio, M.; Mennini, F.S.; Gazzillo, S.; Massini, L.; Bolcato, M.; Feola, A.; Ferrari, C.; Coppeta, L. Intention to Be Vaccinated for COVID-19 among Italian Nurses during the Pandemic. Vaccines 2021, 9, 500. [Google Scholar] [CrossRef]
Variables | All (n = 78) | T1DM (n = 41) | T2DM (n = 37) | T1DM vs. T2DM p Value |
---|---|---|---|---|
Age, years | 50.5 (12.5) | 44.6 (13.7) | 57.1 (6.5) | <0.001 |
Female sex, n (%) | 30 (38.5) | 19 (46.3) | 11 (29.7) | 0.170 |
BMI, kg/m2 | 28.3 (5.6) | 25.3 (4.7) | 31.6 (4.4) | <0.001 |
Smokers, n (%) | 35 (44.9) | 22 (53.7) | 13 (35.1) | 0.270 |
Vaccine, n (%) BioNTech Pfizer Moderna AstraZeneca | 68 (87.2) 5 (6.4) 5 (6.4) | 36 (87.8) 3 (7.3) 2 (4.9) | 32 (86.5) 2 (5.4) 3 (8.1) | 1.000 |
Duration of diabetes, years | 17.9 (13.7) | 22.9 (15.4) | 12.3 (8.9) | <0.001 |
HbA1c > 58 mmol/mol | 30 (38.5) | 13 (31.7) | 17 (45.9) | 0.176 |
Comorbidity Hypertension, n (%) Coronary heart disease, n (%) Myocardial infarction, n (%) TIA, n (%) Heart failure, n (%) PTCA/CABG, n (%) Stroke, n (%) Liver disease, n (%) History of cancer, n (%) Microvascular complications Retinopathy, n (%) Polyneuropathy, n (%) Concomitant therapy ASA, n (%) ADP, n (%) | 35 (44.9) 4 (5.1) 1 (1.2) 3 (3.8) 0 (0.0) 4 (5.0) 1 (1.3) 11 (14.1) 4 (5.0) 14 (17.9) 17 (21.8) 14 (17.9) 1 (1.3) | 10 (24.4) 1 (2.4) 0 (0.0) 0 (0.0) 0 [0.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (2.4) 9 (22.0) 4 (9.8) 3 (7.3) 0 (0.0) | 25 (67.6) 3 (8.1) 1 (2.5) 3 (8.1) 0 (0.0) 4 (10) 1 (2.7) 11 (29.7) 3 (8.1) 5 (13.5) 13 (35.1) 11 (29.7) 1 (2.7) | <0.001 0.057 0.160 0.055 0.120 0.230 0.240 <0.001 0.360 0.570 0.004 0.020 0.490 |
Baseline Median [IQR] | Visit 1 Median [IQR] | Visit 2 Median [IQR] | p Value (Friedman) | Reference Values a | |
---|---|---|---|---|---|
CRP [mg/L] Standard coagulation markers APTT [s] PT [%] D-Dimer [µg/mL] Fibrinogen [mg/dL] Haemoglobin [g/dL] Platelets [106/µL] | 2 [1–4] 32 [30–34] 111 [102–120] 0.36 [0.25–0.57] 265 [231–321] 14 [13–15] 264 [204–296] | 1 [1–2] 32 [30–34] 116 [104–120] 0.40 [0.26–0.56] 270 [231–312] 14 [13–15] 261 [223–310] | 1.5 [1–3] 32 [30–34] 116 [105–120] 0.51 [0.28–0.58] 264 [244–299] 14 [13–15] 263 [216–303] | 0.134 0.177 0.020 0.052 0.601 0.166 0.495 | <3 30–40 70–130 0–0.5 180–350 13 [12–15] 250 [125–318] |
Thrombelastometry Coagulation time [s] Clot formation time [s] Maximum clot firmness [mm] Alpha angle [°] | 227 [196–258] 193 [152–242] 55 [50–61] 57 [52–62] | 214 [189–239] 130 [107–157] 61 [57–65] 64 [58–69] | 223 [210–248] 145 [116–175] 61 [56–64] 62 [57–67] | 0.104 <0.001 <0.001 <0.001 | 256 ± 25 139 ± 40 58 ± 5 64 ± 7 |
Platelet aggregation Amplitude [Ohm] Slope [Ohm/min] Lag time [s] | 12 [11–14] 7 [6–9] 81 [63–103] | 11 [10–12] 7 [5–9] 89 [70–110] | 13 [10–14] 8 [6–10] 70 [57–84] | <0.001 0.019 <0.001 | 13.6 ± 1.4 8.4 ± 2.0 58.6 ± 9.7 |
Thrombin generation Lag time [min] Thrombin potential [nM·min] Peak [nM] Time to Peak [min] VelIndex [nM/min] StartTail [min] | 2.7 [2.3–2.9] 1449 [1180–1573] 192 [157–233] 7.3 [6.2–8.0] 42 [32–60] 25 [23–27] | 2.7 [2.5–3.1] 1446 [1302–1690] 199 [131–231] 7.9 [6.7–9.1] 41 [22–56] 25 [24–30] | 2.7 [2.3–3.0] 1407 [1310–1640] 178 [159–231] 7.3 [6.7–8.6] 39 [29–56] 25 [23–27] | 0.161 0.779 0.558 0.098 0.205 0.205 | - b - b - b - b - b - b |
Baseline Median [IQR] | Visit 1 Median [IQR] | Visit 2 Median [IQR] | p Value (Friedman) | Reference Values a | |
---|---|---|---|---|---|
CRP [mg/L] Standard coagulation markers APTT [s] PT [%] D-Dimer [µg/mL] Fibrinogen [mg/dL] Haemoglobin [g/dL] Platelets [106/µL] | 2 [1–4] 31 [29–34] 120 [112–120] 0.32 [0.26–0.41] 288 [264–338] 15 [14–16] 238 [207–284] | 2 [1–3] 32 [29–34] 120 [113–120] 0.32 [0.27–0.46] 295 [270–340] 15 [14–16] 257 [215–309] | 2 [1–3] 31 [29–34] 120 [116–120] 0.40 [0.29–0.56] 304 [270–337] 15 [14–16] 243 [208–283] | 0.824 0.530 0.100 0.001 0.342 0.766 0.061 | <3 30–40 70–130 0–0.5 180–350 13 [12–15] 250 [125–318] |
Thrombelastometry Coagulation time [s] Clot formation time [s] Maximum clot firmness [mm] Alpha angle [°] | 240 [220–285] 181 [134–252] 56 [51–61] 58 [50–64] | 240 [211–263] 148 [128–181] 61 [58–65] 61 [58–64] | 247 [223–293] 154 [135–193] 60 [56–64] 60 [56–65] | 0.241 0.034 0.001 0.049 | 256 ± 25 139 ± 40 58 ± 5 64 ± 7 |
Platelet aggregation Amplitude [Ohm] Slope [Ohm/min] Lag time [s] | 11 [9–14] 6 [4–8] 91 [76–119] | 12 [9–14] 7 [5–8] 93 [83–130] | 12 [9–13] 7 [5–9] 90 [71–115] | 0.593 0.433 0.206 | 13.6 ± 1.4 8.4 ± 2.0 58.6 ± 9.7 |
Thrombin generation Lag time [min] Thrombin potential [nM·min] Peak [nM] Time to Peak [min] VelIndex [nM/min] StartTail [min] | 3.1 [2.9–4.0] 1388 [1303–1553] 182 [156–229] 8.2 [6.6–9.0] 40 [29–62] 25 [23–28] | 3.2 [3.0–3.6] 1567 [1292–1664] 190 [172–225] 8.1 [6.8–8.5] 44 [32–56] 25 [24–26] | 3.1 [2.8–3.6] 1381 [1173–1502] 182 [144–221] 7.7 [7.2–8.2] 40 [28–56] 25 [23–26] | 0.223 0.067 0.316 0.974 0.601 0.368 | - b - b - b - b - b - b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paar, M.; Aziz, F.; Sourij, C.; Tripolt, N.J.; Kojzar, H.; Müller, A.; Pferschy, P.; Obermayer, A.; Banfic, T.; Di Geronimo Quintero, B.; et al. Only Subclinical Alterations in the Haemostatic System of People with Diabetes after COVID-19 Vaccination. Viruses 2023, 15, 10. https://doi.org/10.3390/v15010010
Paar M, Aziz F, Sourij C, Tripolt NJ, Kojzar H, Müller A, Pferschy P, Obermayer A, Banfic T, Di Geronimo Quintero B, et al. Only Subclinical Alterations in the Haemostatic System of People with Diabetes after COVID-19 Vaccination. Viruses. 2023; 15(1):10. https://doi.org/10.3390/v15010010
Chicago/Turabian StylePaar, Margret, Faisal Aziz, Caren Sourij, Norbert J. Tripolt, Harald Kojzar, Alexander Müller, Peter Pferschy, Anna Obermayer, Tamara Banfic, Bruno Di Geronimo Quintero, and et al. 2023. "Only Subclinical Alterations in the Haemostatic System of People with Diabetes after COVID-19 Vaccination" Viruses 15, no. 1: 10. https://doi.org/10.3390/v15010010
APA StylePaar, M., Aziz, F., Sourij, C., Tripolt, N. J., Kojzar, H., Müller, A., Pferschy, P., Obermayer, A., Banfic, T., Di Geronimo Quintero, B., Goswami, N., Schlagenhauf, A., Köstenberger, M., Bärnthaler, T., Wagner, T., Hrzenjak, A., Wonisch, W., Reibnegger, G., Raggam, R. B., ... Cvirn, G. (2023). Only Subclinical Alterations in the Haemostatic System of People with Diabetes after COVID-19 Vaccination. Viruses, 15(1), 10. https://doi.org/10.3390/v15010010