Effects of Poty-Potexvirus Synergism on Growth, Photosynthesis and Metabolite Status of Nicotiana benthamiana
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plants and Growth Conditions
2.2. Virus Constructs and Agroinfiltration
2.3. Measurement of Viral Gene Expression
2.4. Image-Based Plant Phenotyping
2.5. Chlorophyll Fluorescence Image and Data Analysis
2.6. Metabolite Extraction
2.7. UPLC-QTRAP/MS Analysis of Methionine Cycle Metabolites
2.8. Metabolite Profiling with UPLC-QTOF
2.9. Statistical Analysis of the Metabolite Data
3. Results
3.1. PVX-Derived Gene Expression Benefited Synergistically from a Mixed PVA-PVX Infection
3.2. Effect of Single and Mixed Infections on Plant Growth, Morphology and Leaf Temperature
3.3. The Synergistic PVA + PVX Infection Reduced Photosynthetic Performance
3.4. Metabolite Profiles Differ between Single and Mixed Infections
3.5. Induction of Pathogen-Responsive and Defense-Related Metabolite Markers
3.6. The Methionine Cycle and Glutathione Metabolism Are Imbalanced in the Synergistic Infection
4. Discussions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Xu, Y.; Ghanim, M.; Liu, Y. Editorial: Mixed Infections of Plant Viruses in Nature and the Impact on Agriculture. Front. Microbiol. 2022, 13, 922607. [Google Scholar] [CrossRef]
- Jones, R.A.C. Global Plant Virus Disease Pandemics and Epidemics. Plants Basel Switz. 2021, 10, 233. [Google Scholar] [CrossRef] [PubMed]
- Hameed, A.; Iqbal, Z.; Asad, S.; Mansoor, S. Detection of Multiple Potato Viruses in the Field Suggests Synergistic Interactions among Potato Viruses in Pakistan. Plant Pathol. J. 2014, 30, 407–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Marcos, A.; Pacheco, R.; Martiáñez, J.; González-Jara, P.; Díaz-Ruíz, J.R.; Tenllado, F. Transcriptional Changes and Oxidative Stress Associated with the Synergistic Interaction between Potato Virus X and Potato Virus Y and Their Relationship with Symptom Expression. Mol. Plant-Microbe Interact. 2009, 22, 1431–1444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pacheco, R.; García-Marcos, A.; Barajas, D.; Martiáñez, J.; Tenllado, F. PVX-Potyvirus Synergistic Infections Differentially Alter MicroRNA Accumulation in Nicotiana Benthamiana. Virus Res. 2012, 165, 231–235. [Google Scholar] [CrossRef]
- Aguilar, E.; Del Toro, F.J.; Brosseau, C.; Moffett, P.; Canto, T.; Tenllado, F. Cell Death Triggered by the P25 Protein in Potato Virus X-Associated Synergisms Results from Endoplasmic Reticulum Stress in Nicotiana Benthamiana. Mol. Plant Pathol. 2019, 20, 194–210. [Google Scholar] [CrossRef] [Green Version]
- Kogovšek, P.; Pompe-Novak, M.; Petek, M.; Fragner, L.; Weckwerth, W.; Gruden, K. Primary Metabolism, Phenylpropanoids and Antioxidant Pathways Are Regulated in Potato as a Response to Potato Virus Y Infection. PLoS ONE 2016, 11, e0146135. [Google Scholar] [CrossRef]
- Ivanov, K.I.; Eskelin, K.; Bašic, M.; De, S.; Lõhmus, A.; Varjosalo, M.; Mäkinen, K. Molecular Insights into the Function of the Viral RNA Silencing Suppressor HCPro. Plant J. 2016, 85, 30–45. [Google Scholar] [CrossRef] [Green Version]
- Mäkinen, K.; De, S. The Significance of Methionine Cycle Enzymes in Plant Virus Infections. Curr. Opin. Plant Biol. 2019, 50, 67–75. [Google Scholar] [CrossRef]
- Fesenko, I.; Spechenkova, N.; Mamaeva, A.; Makhotenko, A.V.; Love, A.J.; Kalinina, N.O.; Taliansky, M. Role of the Methionine Cycle in the Temperature-sensitive Responses of Potato Plants to Potato Virus Y. Mol. Plant Pathol. 2020, 22, 77–91. [Google Scholar] [CrossRef]
- Spechenkova, N.; Fesenko, I.A.; Mamaeva, A.; Suprunova, T.P.; Kalinina, N.O.; Love, A.J.; Taliansky, M. The Resistance Responses of Potato Plants to Potato Virus y Are Associated with an Increased Cellular Methionine Content and an Altered Sam:Sah Methylation Index. Viruses 2021, 13, 955. [Google Scholar] [CrossRef] [PubMed]
- De, S.; Chavez-Calvillo, G.; Wahlsten, M.; Mäkinen, K. Disruption of the Methionine Cycle and Reduced Cellular Gluthathione Levels Underlie Potex–Potyvirus Synergism in Nicotiana Benthamiana. Mol. Plant Pathol. 2018, 19, 1820–1835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zechmann, B. Subcellular Roles of Glutathione in Mediating Plant Defense during Biotic Stress. Plants 2020, 9, 1067. [Google Scholar] [CrossRef]
- Inoue-Nagata, A.K.; Jordan, R.; Kreuze, J.; Li, F.; López-Moya, J.J.; Mäkinen, K.; Ohshima, K.; Wylie, S.J. ICTV Report ConsortiumYR 2022. ICTV Virus Taxonomy Profile: Potyviridae 2022. J. Gen. Virol. 2022, 103, 001738. [Google Scholar] [CrossRef]
- Kreuze, J.F.; Vaira, A.M.; Menzel, W.; Candresse, T.; Zavriev, S.K.; Hammond, J.; Hyun Ryu, K.; Report Consortium, I. ICTV Virus Taxonomy Profile: Alphaflexiviridae. J. Gen. Virol. 2020, 101, 699–700. [Google Scholar] [CrossRef]
- Eskelin, K.; Hafren, A.; Rantalainen, K.I.; Makinen, K. Potyviral VPg Enhances Viral RNA Translation and Inhibits Reporter MRNA Translation In Planta. J. Virol. 2011, 85, 9210–9221. [Google Scholar] [CrossRef] [Green Version]
- Eskelin, K.; Suntio, T.; Hyvärinen, S.; Hafren, A.; Mäkinen, K. Renilla Luciferase-Based Quantitation of Potato Virus A Infection Initiated with Agrobacterium Infiltration of N. Benthamiana Leaves. J. Virol. Methods 2010, 164, 101–110. [Google Scholar] [CrossRef]
- Tschiersch, H.; Junker, A.; Meyer, R.C.; Altmann, T. Establishment of Integrated Protocols for Automated High Throughput Kinetic Chlorophyll Fluorescence Analyses. Plant Methods 2017, 13, 54. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Buschmann, C.; Rinderle, U.; Schmuck, G. Application of Chlorophyll Fluorescence in Ecophysiology. Radiat. Environ. Biophys. 1986, 25, 297–308. [Google Scholar] [CrossRef]
- Berger, S.; Benediktyová, Z.; Matous, K.; Bonfig, K.; Mueller, M.J.; Nedbal, L.; Roitsch, T. Visualization of Dynamics of Plant-Pathogen Interaction by Novel Combination of Chlorophyll Fluorescence Imaging and Statistical Analysis: Differential Effects of Virulent and Avirulent Strains of P. Syringae and of Oxylipins on A. Thaliana. J. Exp. Bot. 2007, 58, 797–806. [Google Scholar] [CrossRef]
- Pavicic, M.; Overmyer, K.; Rehman, A.U.; Jones, P.; Jacobson, D.; Himanen, K. Image-Based Methods to Score Fungal Pathogen Symptom Progression and Severity in Excised Arabidopsis Leaves. Plants 2021, 10, 158. [Google Scholar] [CrossRef] [PubMed]
- Bradski, G. The OpenCV Library. Dr. Dobb’s J. Softw. Tools 2000, 120, 122–125. [Google Scholar]
- Gehan, M.A.; Fahlgren, N.; Abbasi, A.; Berry, J.C.; Callen, S.T.; Chavez, L.; Doust, A.N.; Feldman, M.J.; Gilbert, K.B.; Hodge, J.G.; et al. PlantCV v2: Image Analysis Software for High-Throughput Plant Phenotyping. PeerJ 2017, 5, e4088. [Google Scholar] [CrossRef]
- Waskom, M. Seaborn: Statistical Data Visualization. J. Open Source Softw. 2021, 6, 3021. [Google Scholar] [CrossRef]
- Xia, J.; Psychogios, N.; Young, N.; Wishart, D.S. MetaboAnalyst: A Web Server for Metabolomic Data Analysis and Interpretation. Nucleic Acids Res. 2009, 37 (Suppl. 2), W652–W660. [Google Scholar] [CrossRef] [Green Version]
- Heberle, H.; Meirelles, G.V.; da Silva, F.R.; Telles, G.P.; Minghim, R. InteractiVenn: A Web-Based Tool for the Analysis of Sets through Venn Diagrams. BMC Bioinform. 2015, 16, 169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potters, G.; Pasternak, T.P.; Guisez, Y.; Palme, K.J.; Jansen, M.A.K. Stress-Induced Morphogenic Responses: Growing out of Trouble? Trends Plant Sci. 2007, 12, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Potters, G.; Pasternak, T.P.; Guisez, Y.; Jansen, M.A.K. Different Stresses, Similar Morphogenic Responses: Integrating a Plethora of Pathways. Plant Cell Environ. 2009, 32, 158–169. [Google Scholar] [CrossRef]
- Prashar, A.; Jones, H.G. Infra-Red Thermography as a High-Throughput Tool for Field Phenotyping. Agronomy 2014, 4, 397–417. [Google Scholar] [CrossRef]
- Seaton, G.G.R.; Walker, D.A. Chlorophyll Fluorescence as a Measure of Photosynthetic Carbon Assimilation. Proc. Biol. Sci. 1990, 242, 29–35. [Google Scholar]
- Rolfe, S.A.; Scholes, J.D. Chlorophyll Fluorescence Imaging of Plant–Pathogen Interactions. Protoplasma 2010, 247, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Mishra, J.; Srivastava, R.; Trivedi, P.K.; Verma, P.C. Effect of Virus Infection on the Secondary Metabolite Production and Phytohormone Biosynthesis in Plants. 3 Biotech 2020, 10, 547. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.; Strebl, M.; Merz, M.; Blamberg, R.; Huang, F.C.; McGraphery, K.; Hoffmann, T.; Schwab, W. Glucosylation of the Phytoalexin N-Feruloyl Tyramine Modulates the Levels of Pathogen-Responsive Metabolites in Nicotiana Benthamiana. Plant J. 2019, 100, 20–37. [Google Scholar] [CrossRef] [PubMed]
- Zeiss, D.R.; Piater, L.A.; Dubery, I.A. Hydroxycinnamate Amides: Intriguing Conjugates of Plant Protective Metabolites. Trends Plant Sci. 2021, 26, 184–195. [Google Scholar] [CrossRef] [PubMed]
- Torras-Claveria, L.; Jáuregui, O.; Codina, C.; Tiburcio, A.F.; Bastida, J.; Viladomat, F. Analysis of Phenolic Compounds by High-Performance Liquid Chromatography Coupled to Electrospray Ionization Tandem Mass Spectrometry in Senescent and Water-Stressed Tobacco. Plant Sci. Int. J. Exp. Plant Biol. 2012, 182, 71–78. [Google Scholar] [CrossRef]
- Engqvist, M.K.M.; Kuhn, A.; Wienstroer, J.; Weber, K.; Jansen, E.E.W.; Jakobs, C.; Weber, A.P.M.; Maurino, V.G. Plant D-2-Hydroxyglutarate Dehydrogenase Participates in the Catabolism of Lysine Especially during Senescence. J. Biol. Chem. 2011, 286, 11382–11390. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, M.; Balazadeh, S.; Tohge, T.; Erban, A.; Giavalisco, P.; Kopka, J.; Mueller-Roeber, B.; Fernie, A.R.; Hoefgen, R. Comprehensive Dissection of Spatiotemporal Metabolic Shifts in Primary, Secondary, and Lipid Metabolism during Developmental Senescence in Arabidopsis. Plant Physiol. 2013, 162, 1290–1310. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Liu, R.; Lim, G.-H.; de Lorenzo, L.; Yu, K.; Zhang, K.; Hunt, A.G.; Kachroo, A.; Kachroo, P. Pipecolic Acid Confers Systemic Immunity by Regulating Free Radicals. Sci. Adv. 2018, 4, eaar4509. [Google Scholar] [CrossRef] [Green Version]
- Návarová, H.; Bernsdorff, F.; Döring, A.-C.; Zeier, J. Pipecolic Acid, an Endogenous Mediator of Defense Amplification and Priming, Is a Critical Regulator of Inducible Plant Immunity. Plant Cell 2012, 24, 5123–5141. [Google Scholar] [CrossRef] [Green Version]
- Hesse, H.; Hoefgen, R. Molecular Aspects of Methionine Biosynthesis. Trends Plant Sci. 2003, 8, 259–262. [Google Scholar] [CrossRef]
- Abdelraheem, E.; Thair, B.; Varela, R.F.; Jockmann, E.; Popadić, D.; Hailes, H.C.; Ward, J.M.; Iribarren, A.M.; Lewkowicz, E.S.; Andexer, J.N.; et al. Methyltransferases: Functions and Applications. ChemBioChem 2022, 23, e202200212. [Google Scholar] [CrossRef] [PubMed]
- Moffatt, B.A.; Weretilnyk, E.A. Sustaining S-Adenosyl-l-Methionine-Dependent Methyltransferase Activity in Plant Cells. Physiol. Plant. 2001, 113, 435–442. [Google Scholar] [CrossRef]
- Szalai, G.; Kellős, T.; Galiba, G.; Kocsy, G. Glutathione as an Antioxidant and Regulatory Molecule in Plants Under Abiotic Stress Conditions. J. Plant Growth Regul. 2009, 28, 66–80. [Google Scholar] [CrossRef]
- Dorion, S.; Ouellet, J.C.; Rivoal, J. Glutathione Metabolism in Plants under Stress: Beyond Reactive Oxygen Species Detoxification. Metabolites 2021, 11, 641. [Google Scholar] [CrossRef] [PubMed]
- Mahuku, G.; Lockhart, B.E.; Wanjala, B.; Jones, M.W.; Kimunye, J.N.; Stewart, L.R.; Cassone, B.J.; Sevgan, S.; Nyasani, J.O.; Kusia, E.; et al. Maize Lethal Necrosis (MLN), an Emerging Threat to Maize-Based Food Security in Sub-Saharan Africa. Phytopathology 2015, 105, 956–965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boddupalli, P.; Suresh, L.M.; Mwatuni, F.; Beyene, Y.; Makumbi, D.; Gowda, M.; Olsen, M.; Hodson, D.; Worku, M.; Mezzalama, M.; et al. Maize Lethal Necrosis (MLN): Efforts toward Containing the Spread and Impact of a Devastating Transboundary Disease in Sub-Saharan Africa. Virus Res. 2020, 282, 197943. [Google Scholar] [CrossRef]
- Kreuze, J.F.; Souza-Dias, J.A.C.; Jeevalatha, A.; Figueira, A.R.; Valkonen, J.P.T.; Jones, R.A.C. Viral Diseases in Potato. In The Potato Crop; Campos, H., Ortiz, O., Eds.; Springer: Cham, Switzerland, 2020; pp. 389–430. [Google Scholar] [CrossRef]
- Scholthof, K.B.G.; Adkins, S.; Czosnek, H.; Palukaitis, P.; Jacquot, E.; Hohn, T.; Hohn, B.; Saunders, K.; Candresse, T.; Ahlquist, P.; et al. Top 10 Plant Viruses in Molecular Plant Pathology. Mol. Plant Pathol. 2011, 12, 938–954. [Google Scholar] [CrossRef]
- Yang, X.; Li, Y.; Wang, A. Research Advances in Potyviruses: From the Laboratory Bench to the Field. Annu. Rev. Phytopathol. 2021, 59, 1–29. [Google Scholar] [CrossRef]
- Wu, Y.; Li, J.; Liu, H.; Qiao, G.; Huang, X. Investigating the Impact of Climate Warming on Phenology of Aphid Pests in China Using Long-Term Historical Data. Insects 2020, 11, 167. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Castroverde, C.D.M.; Huang, S.; Li, C.; Hilleary, R.; Seroka, A.; Sohrabi, R.; Medina-Yerena, D.; Huot, B.; Wang, J.; et al. Increasing the Resilience of Plant Immunity to a Warming Climate. Nature 2022, 607, 339–344. [Google Scholar] [CrossRef]
- Tsai, W.-A.; Brosnan, C.A.; Mitter, N.; Dietzgen, R.G. Perspectives on Plant Virus Diseases in a Climate Change Scenario of Elevated Temperatures. Stress Biol. 2022, 2, 37. [Google Scholar] [CrossRef]
- Castro-Moretti, F.R.; Gentzel, I.N.; Mackey, D.; Alonso, A.P. Metabolomics as an Emerging Tool for the Study of Plant–Pathogen Interactions. Metabolites 2020, 10, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavill, R.; Jennen, D.; Kleinjans, J.; Briedé, J.J. Transcriptomic and Metabolomic Data Integration. Brief. Bioinform. 2016, 17, 891–901. [Google Scholar] [CrossRef] [Green Version]
- Hall, R.D.; D’Auria, J.C.; Silva Ferreira, A.C.; Gibon, Y.; Kruszka, D.; Mishra, P.; van de Zedde, R. High-Throughput Plant Phenotyping: A Role for Metabolomics? Trends Plant Sci. 2022, 27, 549–563. [Google Scholar] [CrossRef]
- Jamil, I.N.; Remali, J.; Azizan, K.A.; Nor Muhammad, N.A.; Arita, M.; Goh, H.-H.; Aizat, W.M. Systematic Multi-Omics Integration (MOI) Approach in Plant Systems Biology. Front. Plant Sci. 2020, 11, 944. [Google Scholar] [CrossRef]
- Lin, P.-C.; Hu, W.-C.; Lee, S.-C.; Chen, Y.-L.; Lee, C.-Y.; Chen, Y.-R.; Liu, L.-Y.D.; Chen, P.-Y.; Lin, S.-S.; Chang, Y.-C. Application of an Integrated Omics Approach for Identifying Host Proteins That Interact With Odontoglossum Ringspot Virus Capsid Protein. Mol. Plant-Microbe Interact. 2015, 28, 711–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, F.; Wu, C.; Zhu, G.; Yang, Q.; Wang, K.; Li, Y. An Integrated Transcriptomic and Metabolomic Analysis for Changes in Rose Plant Induced by Rose Powdery Mildew and Exogenous Salicylic Acid. Genomics 2022, 114, 110516. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Li, Q.; Zhao, Y.; Wei, H.; Wang, J.; Baker, C.J.; Liu, Q.; Wei, W. Integration of Metabolomics and Existing Omics Data Reveals New Insights into Phytoplasma-Induced Metabolic Reprogramming in Host Plants. PLoS ONE 2021, 16, e0246203. [Google Scholar] [CrossRef] [PubMed]
- Rumbaugh, A.C.; Durbin-Johnson, B.; Padhi, E.; Lerno, L.; Cauduro Girardello, R.; Britton, M.; Slupsky, C.; Sudarshana, M.R.; Oberholster, A. Investigating Grapevine Red Blotch Virus Infection in Vitis Vinifera L. Cv. Cabernet Sauvignon Grapes: A Multi-Omics Approach. Int. J. Mol. Sci. 2022, 23, 13248. [Google Scholar] [CrossRef]
- Bazzini, A.A.; Manacorda, C.A.; Tohge, T.; Conti, G.; Rodriguez, M.C.; Nunes-Nesi, A.; Villanueva, S.; Fernie, A.R.; Carrari, F.; Asurmendi, S. Metabolic and MiRNA Profiling of TMV Infected Plants Reveals Biphasic Temporal Changes. PLoS ONE 2011, 6, e28466. [Google Scholar] [CrossRef]
- Senanayake, D.M.J.B.; Mandal, B. Expression of Symptoms, Viral Coat Protein and Silencing Suppressor Gene during Mixed Infection of a N–Wi Strain of Potato Virus Y and an Asymptomatic Strain of Potato Virus X. Virusdisease 2014, 25, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Chávez-Calvillo, G.; Contreras-Paredes, C.A.; Mora-Macias, J.; Noa-Carrazana, J.C.; Serrano-Rubio, A.A.; Dinkova, T.D.; Carrillo-Tripp, M.; Silva-Rosales, L. Antagonism or Synergism between Papaya Ringspot Virus and Papaya Mosaic Virus in Carica Papaya Is Determined by Their Order of Infection. Virology 2016, 489, 179–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orzechowska, A.; Trtílek, M.; Tokarz, K.; Rozpądek, P. A Study of Light-Induced Stomatal Response in Arabidopsis Using Thermal Imaging. Biochem. Biophys. Res. Commun. 2020, 533, 1129–1134. [Google Scholar] [CrossRef] [PubMed]
- Chater, C.C.C.; Oliver, J.; Casson, S.; Gray, J.E. Putting the Brakes on: Abscisic Acid as a Central Environmental Regulator of Stomatal Development. New Phytol. 2014, 202, 376–391. [Google Scholar] [CrossRef]
- Ehonen, S.; Yarmolinsky, D.; Kollist, H.; Kangasjärvi, J. Reactive Oxygen Species, Photosynthesis, and Environment in the Regulation of Stomata. Antioxid. Redox Signal. 2019, 30, 1220–1237. [Google Scholar] [CrossRef]
- Murray, R.R.; Emblow, M.S.M.; Hetherington, A.M.; Foster, G.D. Plant Virus Infections Control Stomatal Development. Sci. Rep. 2016, 6, 34507. [Google Scholar] [CrossRef] [Green Version]
- Manacorda, C.A.; Gudesblat, G.; Sutka, M.; Alemano, S.; Peluso, F.; Oricchio, P.; Baroli, I.; Asurmendi, S. TuMV Triggers Stomatal Closure but Reduces Drought Tolerance in Arabidopsis. Plant Cell Environ. 2021, 44, 1399–1416. [Google Scholar] [CrossRef]
- Li, L.; Dou, N.; Zhang, H.; Wu, C. The Versatile GABA in Plants. Plant Signal. Behav. 2021, 16, 1862565. [Google Scholar] [CrossRef]
- Liu, C.; Wang, H.; Zhang, X.; Ma, F.; Guo, T.; Li, C. Activation of the ABA Signal Pathway Mediated by GABA Improves the Drought Resistance of Apple Seedlings. Int. J. Mol. Sci. 2021, 22, 12676. [Google Scholar] [CrossRef]
- Bao, H.; Chen, X.; Lv, S.; Jiang, P.; Feng, J.; Fan, P.; Nie, L.; Li, Y. Virus-Induced Gene Silencing Reveals Control of Reactive Oxygen Species Accumulation and Salt Tolerance in Tomato by γ-Aminobutyric Acid Metabolic Pathway. Plant Cell Environ. 2015, 38, 600–613. [Google Scholar] [CrossRef]
- Xu, B.; Long, Y.; Feng, X.; Zhu, X.; Sai, N.; Chirkova, L.; Betts, A.; Herrmann, J.; Edwards, E.J.; Okamoto, M.; et al. GABA Signalling Modulates Stomatal Opening to Enhance Plant Water Use Efficiency and Drought Resilience. Nat. Commun. 2021, 12, 1952. [Google Scholar] [CrossRef] [PubMed]
- Pasin, F.; Shan, H.; García, B.; Müller, M.; San León, D.; Ludman, M.; Fresno, D.H.; Fátyol, K.; Munné-Bosch, S.; Rodrigo, G.; et al. Abscisic Acid Connects Phytohormone Signaling with RNA Metabolic Pathways and Promotes an Antiviral Response That Is Evaded by a Self-Controlled RNA Virus. Plant Commun. 2020, 1, 100099. [Google Scholar] [CrossRef] [PubMed]
- Foyer, C.H.; Noctor, G. Redox Sensing and Signalling Associated with Reactive Oxygen in Chloroplasts, Peroxisomes and Mitochondria. Physiol. Plant. 2003, 119, 355–364. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Ren, D.; Pike, S.; Pallardy, S.; Gassmann, W.; Zhang, S. Chloroplast-Generated Reactive Oxygen Species Are Involved in Hypersensitive Response-like Cell Death Mediated by a Mitogen-Activated Protein Kinase Cascade. Plant J. Cell Mol. Biol. 2007, 51, 941–954. [Google Scholar] [CrossRef]
- Doyle, S.M.; Diamond, M.; McCabe, P.F. Chloroplast and Reactive Oxygen Species Involvement in Apoptotic-like Programmed Cell Death in Arabidopsis Suspension Cultures. J. Exp. Bot. 2010, 61, 473–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lukan, T.; Županič, A.; Mahkovec Povalej, T.; Brunkard, J.O.; Kmetič, M.; Juteršek, M.; Baebler, Š.; Gruden, K. Chloroplast Redox State Changes Mark Cell-to-Cell Signaling in the Hypersensitive Response. New Phytol. 2022, 237, 548–562. [Google Scholar] [CrossRef]
- Casteel, C.L.; De Alwis, M.; Bak, A.; Dong, H.; Whitham, S.A.; Jander, G. Disruption of Ethylene Responses by Turnip Mosaic Virus Mediates Suppression of Plant Defense against the Green Peach Aphid Vector. Plant Physiol. 2015, 169, 209–218. [Google Scholar] [CrossRef] [Green Version]
- Balfagón, D.; Zandalinas, S.I.; Dos Reis de Oliveira, T.; Santa-Catarina, C.; Gómez-Cadenas, A. Reduction of Heat Stress Pressure and Activation of PSII Repairing System Are Crucial for Citrus Tolerance to Multiple Abiotic Stress Combination. Physiol. Plant. 2022, 174, e13809. [Google Scholar] [CrossRef]
- Rahoutei, J.; García-Luque, I.; Barón, M. Inhibition of Photosynthesis by Viral Infection: Effect on PSII Structure and Function. Physiol. Plant. 2000, 110, 286–292. [Google Scholar] [CrossRef]
- Balachandran, S.; Osmond, C.B.; Daley, P.F. Diagnosis of the Earliest Strain-Specific Interactions between Tobacco Mosaic Virus and Chloroplasts of Tobacco Leaves in Vivo by Means of Chlorophyll Fluorescence Imaging. Plant Physiol. 1994, 104, 1059–1065. [Google Scholar] [CrossRef] [Green Version]
- Pineda, M.; Soukupová, J.; Matouš, K.; Nedbal, L.; Barón, M. Conventional and Combinatorial Chlorophyll Fluorescence Imaging of Tobamovirus-Infected Plants. Photosynthetica 2008, 46, 441–451. [Google Scholar] [CrossRef]
- Wrzesińska, B.; Zmienko, A.; Vu, L.D.; De Smet, I.; Obrępalska-Stęplowska, A. Multiple Cellular Compartments Engagement in Nicotiana Benthamiana-Peanut Stunt Virus-SatRNA Interactions Revealed by Systems Biology Approach. Plant Cell Rep. 2021, 40, 1247–1267. [Google Scholar] [CrossRef] [PubMed]
- Das, P.P.; Lin, Q.; Wong, S.-M. Comparative Proteomics of Tobacco Mosaic Virus-Infected Nicotiana Tabacum Plants Identified Major Host Proteins Involved in Photosystems and Plant Defence. J. Proteomics 2019, 194, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Poque, S.; Valkonen, J.P.T. Phenotyping Viral Infection in Sweetpotato Using a High-Throughput Chlorophyll Fluorescence and Thermal Imaging Platform. Plant Methods 2019, 15, 116. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.; Domrachev, M.; Lash, A.E. Gene Expression Omnibus: NCBI Gene Expression and Hybridization Array Data Repository. Nucleic Acids Res. 2002, 30, 207–210. [Google Scholar] [CrossRef] [Green Version]
- Bittner, A.; Cieśla, A.; Gruden, K.; Lukan, T.; Mahmud, S.; Teige, M.; Vothknecht, U.C.; Wurzinger, B. Organelles and Phytohormones: A Network of Interactions in Plant Stress Responses. J. Exp. Bot. 2022, 73, 7165–7181. [Google Scholar] [CrossRef]
- Lauinger, L.; Kaiser, P. Sensing and Signaling of Methionine Metabolism. Metabolites 2021, 11, 83. [Google Scholar] [CrossRef]
- Daumann, M.; Fischer, M.; Niopek-Witz, S.; Girke, C.; Möhlmann, T. Apoplastic Nucleoside Accumulation in Arabidopsis Leads to Reduced Photosynthetic Performance and Increased Susceptibility Against Botrytis Cinerea. Front. Plant Sci. 2015, 6, 1158. [Google Scholar] [CrossRef] [Green Version]
- Rabie, A.M. Potent Inhibitory Activities of the Adenosine Analogue Cordycepin on SARS-CoV-2 Replication. ACS Omega 2022, 7, 2960–2969. [Google Scholar] [CrossRef]
- Torrigiani, P.; Rabiti, A.L.; Bortolotti, C.; Betti, L.; Marani, F.; Canova, A.; Bagni, N. Polyamine Synthesis and Accumulation in the Hypersensitive Response to TMV in Nicotiana Tabacum. New Phytol. 1997, 135, 467–473. [Google Scholar] [CrossRef]
- Rabiti, A.L.; Betti, L.; Bortolotti, C.; Marini, F.; Canova, A.; Bagni, N.; Torrigiani, P. Short-Term Polyamine Response in TMV-Inoculated Hypersensitive and Susceptible Tobacco Plants. New Phytol. 1998, 139, 549–553. [Google Scholar] [CrossRef]
- Sade, D.; Shriki, O.; Cuadros-Inostroza, A.; Tohge, T.; Semel, Y.; Haviv, Y.; Willmitzer, L.; Fernie, A.R.; Czosnek, H.; Brotman, Y. Comparative Metabolomics and Transcriptomics of Plant Response to Tomato Yellow Leaf Curl Virus Infection in Resistant and Susceptible Tomato Cultivars. Metabolomics 2015, 11, 81–97. [Google Scholar] [CrossRef]
- Choi, Y.H.; Kim, H.K.; Linthorst, H.J.M.; Hollander, J.G.; Lefeber, A.W.M.; Erkelens, C.; Nuzillard, J.-M.; Verpoorte, R. NMR Metabolomics to Revisit the Tobacco Mosaic Virus Infection in Nicotiana Tabacum Leaves. J. Nat. Prod. 2006, 69, 742–748. [Google Scholar] [CrossRef] [PubMed]
- Bellés, J.M.; López-Gresa, M.P.; Fayos, J.; Pallás, V.; Rodrigo, I.; Conejero, V. Induction of Cinnamate 4-Hydroxylase and Phenylpropanoids in Virus-Infected Cucumber and Melon Plants. Plant Sci. 2008, 174, 524–533. [Google Scholar] [CrossRef]
- Chaman, M.E.; Copaja, S.V.; Argandoña, V.H. Relationships between Salicylic Acid Content, Phenylalanine Ammonia-Lyase (PAL) Activity, and Resistance of Barley to Aphid Infestation. J. Agric. Food Chem. 2003, 51, 2227–2231. [Google Scholar] [CrossRef]
- Van Eck, L.; Schultz, T.; Leach, J.E.; Scofield, S.R.; Peairs, F.B.; Botha, A.-M.; Lapitan, N.L.V. Virus-Induced Gene Silencing of WRKY53 and an Inducible Phenylalanine Ammonia-Lyase in Wheat Reduces Aphid Resistance. Plant Biotechnol. J. 2010, 8, 1023–1032. [Google Scholar] [CrossRef]
- Clemente-Moreno, M.J.; Díaz-Vivancos, P.; Rubio, M.; Fernández-García, N.; Hernández, J.A. Chloroplast Protection in Plum Pox Virus-Infected Peach Plants by L-2-Oxo-4-Thiazolidine-Carboxylic Acid Treatments: Effect in the Proteome. Plant Cell Environ. 2013, 36, 640–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Hao, K.; Yu, F.; Shen, L.; Wang, F.; Yang, J.; Su, C. Field Application of Nanoliposomes Delivered Quercetin by Inhibiting Specific Hsp70 Gene Expression against Plant Virus Disease. J. Nanobiotechnology 2022, 20, 16. [Google Scholar] [CrossRef]
- Selma, S.; Sanmartín, N.; Espinosa-Ruiz, A.; Gianoglio, S.; Lopez-Gresa, M.P.; Vázquez-Vilar, M.; Flors, V.; Granell, A.; Orzaez, D. Custom-Made Design of Metabolite Composition in N. Benthamiana Leaves Using CRISPR Activators. Plant Biotechnol. J. 2022, 20, 1578–1590. [Google Scholar] [CrossRef]
- Zeier, J. New Insights into the Regulation of Plant Immunity by Amino Acid Metabolic Pathways. Plant Cell Environ. 2013, 36, 2085–2103. [Google Scholar] [CrossRef]
- Bolt, A.J.N. 1′-Hexanoylnornicotine and 1′-Octanoylnornicotine from Tobacco. Phytochemistry 1972, 11, 2341–2343. [Google Scholar] [CrossRef]
- Negrel, J.; Jeandet, P. Metabolism of Tyramine and Feruloyltyramine in TMV Inoculated Leaves of Nicotiana Tabacum. Phytochemistry 1987, 26, 2185–2190. [Google Scholar] [CrossRef]
- Kaminski, K.P.; Bovet, L.; Laparra, H.; Lang, G.; De Palo, D.; Sierro, N.; Goepfert, S.; Ivanov, N.V. Alkaloid Chemophenetics and Transcriptomics of the Nicotiana Genus. Phytochemistry 2020, 177, 112424. [Google Scholar] [CrossRef] [PubMed]
- Drapal, M.; Enfissi, E.M.A.; Fraser, P.D. Metabolic Changes in Leaves of N. Tabacum and N. Benthamiana during Plant Development. J. Plant Physiol. 2021, 265, 153486. [Google Scholar] [CrossRef]
- Outchkourov, N.S.; Carollo, C.A.; Gomez-Roldan, V.; de Vos, R.C.H.; Bosch, D.; Hall, R.D.; Beekwilder, J. Control of Anthocyanin and Non-Flavonoid Compounds by Anthocyanin-Regulating MYB and BHLH Transcription Factors in Nicotiana Benthamiana Leaves. Front. Plant Sci. 2014, 5, 519. [Google Scholar] [CrossRef] [Green Version]
- Roumani, M.; Duval, R.E.; Ropars, A.; Risler, A.; Robin, C.; Larbat, R. Phenolamides: Plant Specialized Metabolites with a Wide Range of Promising Pharmacological and Health-Promoting Interests. Biomed. Pharmacother. 2020, 131, 110762. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pollari, M.; Sipari, N.; Poque, S.; Himanen, K.; Mäkinen, K. Effects of Poty-Potexvirus Synergism on Growth, Photosynthesis and Metabolite Status of Nicotiana benthamiana. Viruses 2023, 15, 121. https://doi.org/10.3390/v15010121
Pollari M, Sipari N, Poque S, Himanen K, Mäkinen K. Effects of Poty-Potexvirus Synergism on Growth, Photosynthesis and Metabolite Status of Nicotiana benthamiana. Viruses. 2023; 15(1):121. https://doi.org/10.3390/v15010121
Chicago/Turabian StylePollari, Maija, Nina Sipari, Sylvain Poque, Kristiina Himanen, and Kristiina Mäkinen. 2023. "Effects of Poty-Potexvirus Synergism on Growth, Photosynthesis and Metabolite Status of Nicotiana benthamiana" Viruses 15, no. 1: 121. https://doi.org/10.3390/v15010121
APA StylePollari, M., Sipari, N., Poque, S., Himanen, K., & Mäkinen, K. (2023). Effects of Poty-Potexvirus Synergism on Growth, Photosynthesis and Metabolite Status of Nicotiana benthamiana. Viruses, 15(1), 121. https://doi.org/10.3390/v15010121