Characterization and Genomic Analysis of a Bacteriophage with Potential in Lysing Vibrio alginolyticus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Identification of V. alginolyticus Strains
2.2. Detection of Virulence Genes of the V. alginolyticus Isolates
2.3. Isolation, Purification and Propagation of Bacteriophages
2.4. Screening of Lytic Bacteriophages
2.5. Determination of Host Ranges of Phage PVA23
2.6. Transmission Electron Microscopy of Phage PVA23
2.7. Determination of Optimal Multiplicity of Infection (MOI) and One-Step Growth Curve of Phage PVA23
2.8. Determination of Thermal and pH Stability of Phage PVA23
2.9. Determination of Chloroform and Ultraviolet (UV) Sensitivity of Phage PVA23
2.10. Assay of Lysis Activity In Vitro of Phage PVA23
2.11. Assay of Bacterial Phage-Insensitive Mutation Frequency (BIMF) of Phage PVA23
2.12. DNA Extraction, Genome Sequencing and Assembly of Phage PVA23
2.13. Genome Analysis and Phylogenetic Analysis of Phage PVA23
2.14. Application Evaluation of Phage PVA23 for Vibrio Control in Laboratory Shrimp Culture Trials
2.15. Application Evaluation of Phage PVA23 for Vibrio Control in Shrimp Farming Plant
2.16. Nucleotide Sequence Accession Number and Phage Preservation
2.17. Statistical Analyses
3. Results
3.1. Profile of Virulent Genes of V. alginolyticus Isolates
3.2. Isolation and Screening of Lytic Bacteriophages using V. alginolyticus VA15 and VA17 as Hosts
3.3. Host Ranges of Phage PVA23
3.4. Morphology and Identification of Phage PVA23
3.5. Biological Characteristics of Phage PVA23
3.6. Lysis Activity in vitro of Phage PVA23
3.7. Bacterial Phage-Insensitive Mutation Frequency (BIMF) of V. alginolyticus VA15 to Phage PVA23
3.8. Genome Sequencing, Characterization and Analysis of Phage PVA23
3.9. Phylogenetic Analysis and Comparative Genomic Analysis of Phage PVA23
3.10. Application Evaluation of Phage PVA23 for Vibrio Control in Laboratory Shrimp Culture Trials
3.11. Application Evaluation of Phage PVA23 for Vibrio Control in Shrimp Farming Plants
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baffone, W.; Citterio, B.; Vittoria, E.; Casaroli, A.; Pianetti, A.; Campana, R.; Bruscolini, F. Determination of several potential virulence factors in Vibrio spp. isolated from sea water. Food Microbiol. 2001, 1, 479–488. [Google Scholar] [CrossRef]
- Kahla-Nakbi, A.B.; Chaieb, K.; Besbes, A.; Zmantar, T.; Bakhrouf, A. Virulence and enterobacterial repetitive intergenic consensus PCR of Vibrio alginolyticus strains isolated from Tunisian cultured gilthead sea bream and sea bass outbreaks. Vet. Microbiol. 2006, 117, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Jun, J.W.; Kim, H.J.; Yun, S.K.; Chai, J.Y.; Park, S.C. Eating oysters without risk of vibriosis: Application of a bacteriophage against Vibrio parahaemolyticus in oysters. Int. J. Food Microbiol. 2014, 188, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Letchumanan, V.; Yin, W.F.; Lee, L.H.; Chan, K.G. Prevalence and antimicrobial susceptibility of Vibrio parahaemolyticus isolated from retail shrimps in Malaysia. Front. Microbiol. 2015, 6, 33–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, H.A.; El Bayomi, R.M.; Hussein, M.A.; Khedr, M.H.E.; Abo Remela, E.M.; El-Ashram, A.M.M. Molecular characterization, antibiotic resistance pattern and biofilm formation of Vibrio parahaemolyticus and V. cholerae isolated from crustaceans and humans. Int. J. Food Microbiol. 2018, 274, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Boonyawiwat, V.; Patanasatienkul, T.; Kasornchandra, J.; Poolkhet, C.; Yaemkasem, S.; Hammell, L.; Davidson, J. Impact of farm management on expression of early mortality syndrome/acute hepatopancreatic necrosis disease (EMS/AHPND) on penaeid shrimp farms in Thailand. J. Fish Dis. 2017, 40, 649–659. [Google Scholar] [CrossRef]
- Lu, H.; Han, W.; Lei, L. Research progress of therapeutic bacteriophage preparations. Chin. J. Vet. Drug 2002, 36, 39–41. [Google Scholar]
- Oliveira, J.; Castilho, F.; Cunha, A.; Pereira, M.J. Bacteriophage therapy as a bacterial control strategy in aquaculture. Aquac. Int. 2012, 20, 879–910. [Google Scholar] [CrossRef]
- Letchumanan, V.; Chan, K.G.; Pusparajah, P.; Saokaew, S.; Duangjai, A.; Goh, B.H.; Ab Mutalib, N.S.; Lee, L.H. Insights into Bacteriophage Application in Controlling Vibrio Species. Front. Microbiol. 2016, 7, 1114. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Tian, Y.; Pang, M.; Yang, Z.; Bao, H.; Zhou, Y.; Sun, L.; Wang, R.; Zhang, H. A novel vibriophage vB_VhaS_PcB-1G capable of inhibiting virulent Vibrio harveyi pathogen. Aquaculture 2021, 542, 736854. [Google Scholar] [CrossRef]
- Kalatzis, P.G.; Castillo, D.; Katharios, P.; Middelboe, M. Bacteriophage Interactions with Marine Pathogenic Vibrios: Implications for Phage Therapy. Antibiotics 2018, 7, 15. [Google Scholar] [CrossRef] [PubMed]
- Doss, J.; Culbertson, K.; Hahn, D.; Camacho, J.; Barekzi, N. A Review of Phage Therapy against Bacterial Pathogens of Aquatic and Terrestrial Organisms. Viruses 2017, 9, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Fan, J.; Yan, T.; Liu, Q.; Yuan, S.; Zhang, H.; Yang, J.; Deng, D.; Huang, S.; Ma, Y. Isolation and Characterization of Specific Phages to Prepare a Cocktail Preventing Vibrio sp. Va-F3 Infections in Shrimp (Litopenaeus vannamei). Front. Microbiol. 2019, 10, 2337–2347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lomeli-Ortega, C.O.; Martinez-Sandez, A.J.; Barajas-Sandoval, D.R.; Reyes, A.G.; Magallon-Barajas, F.; Veyrand-Quiros, B.; Gannon, L.; Harrison, C.; Michniewski, S.; Millard, A.; et al. Isolation and characterization of vibriophage vB_Vc_SrVc9: An effective agent in preventing Vibrio campbellii infections in brine shrimp nauplii (Artemia franciscana). J. Appl. Microbiol. 2021, 131, 36–49. [Google Scholar] [CrossRef] [PubMed]
- Stalin, N.; Srinivasan, P. Efficacy of potential phage cocktails against Vibrio harveyi and closely related Vibrio species isolated from shrimp aquaculture environment in the south east coast of India. Vet. Microbiol. 2017, 207, 83–96. [Google Scholar] [CrossRef]
- Kalatzis, P.G.; Rorbo, N.I.; Castillo, D.; Mauritzen, J.J.; Jorgensen, J.; Kokkari, C.; Zhang, F.; Katharios, P.; Middelboe, M. Stumbling across the Same Phage: Comparative Genomics of Widespread Temperate Phages Infecting the Fish Pathogen Vibrio anguillarum. Viruses 2017, 9, 122. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Ren, H.; Li, Q.; Murtaza, B.; Li, X.; Zhang, J.; Xu, Y. Exploring the effects of phage cocktails in preventing Vibrio infections in juvenile sea cucumber (Apostichopus japonicus) farming. Aquaculture 2020, 515, 734599. [Google Scholar] [CrossRef]
- Yang, M.; Chen, H.; Guo, S.; Tan, S.; Xie, Z.; Zhang, J.; Wu, Q.; Tan, Z. Characterization and genome analysis of a novel Vibrio parahaemolyticus phage vB_VpP_DE17. Virus Res. 2022, 307, 198580. [Google Scholar] [CrossRef]
- George, M.R.; John, K.R.; Iyappan, T.; Jeyaseelan, M.J. Genetic heterogeneity among Vibrio alginolyticus isolated from shrimp farms by PCR fingerprinting. Lett. Appl. Microbiol. 2005, 40, 369–372. [Google Scholar] [CrossRef]
- Fethi, B.A.; Ali, E.; Rihab, L.; Heacute la, K.; Amina, B. Virulence gene expression, proteins secreted and morphological alterations of Vibrio parahaemolyticus and Vibrio alginolyticus in response to long-term starvation in seawater. Afr. J. Microbiol. Res. 2011, 5, 792–801. [Google Scholar] [CrossRef]
- Xiong, P.; Peng, X.; Wei, S.; Chen, Y.; Zhao, H.; Tang, S.; Wu, X. Virulence-related genes of Vibrio alginolyticus and its virulence in mice. Acta Microbiol. Sin. 2014, 54, 80–88. [Google Scholar]
- Feng, T.; Leptihn, S.; Dong, K.; Loh, B.; Zhang, Y.; Stefan, M.I.; Li, M.; Guo, X.; Cui, Z. JD419, a Staphylococcus aureus Phage with a Unique Morphology and Broad Host Range. Front. Microbiol. 2021, 12, 602902. [Google Scholar] [CrossRef] [PubMed]
- Moodley, A.; Kot, W.; Nalgard, S.; Jakociune, D.; Neve, H.; Hansen, L.H.; Guardabassi, L.; Vogensen, F.K. Isolation and characterization of bacteriophages active against methicillin-resistant Staphylococcus pseudintermedius. Res. Vet. Sci. 2019, 122, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Khan Mirzaei, M.; Nilsson, A.S. Isolation of phages for phage therapy: A comparison of spot tests and efficiency of plating analyses for determination of host range and efficacy. PLoS ONE 2015, 10, e0118557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.; Ku, H.J.; Lee, D.H.; Kim, Y.T.; Shin, H.; Ryu, S.; Lee, J.H. Characterization and Genomic Study of the Novel Bacteriophage HY01 Infecting Both Escherichia coli O157:H7 and Shigella flexneri: Potential as a Biocontrol Agent in Food. PLoS ONE 2016, 11, e0168985. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.; Breidt, F.; Fleming, H.P.; Altermann, E.; Klaenhammer, T.R. Isolation and characterization of a Lactobacillus plantarum bacteriophage, ΦJL-1, from a cucumber fermentation. Int. J. Food Microbiol. 2003, 84, 225–235. [Google Scholar] [CrossRef]
- Gutierrez, D.; Vandenheuvel, D.; Martinez, B.; Rodriguez, A.; Lavigne, R.; Garcia, P. Two Phages, phiIPLA-RODI and phiIPLA-C1C, Lyse Mono- and Dual-Species Staphylococcal Biofilms. Appl. Environ. Microbiol. 2015, 81, 3336–3348. [Google Scholar] [CrossRef] [Green Version]
- Besemer, J.; Borodovsky, M. GeneMark: Web software for gene finding in prokaryotes, eukaryotes and viruses. Nucleic Acids Res. 2005, 33, 451–454. [Google Scholar] [CrossRef] [Green Version]
- Song, D.; Yang, Y.; Yu, B.; Zheng, B.; Deng, Z.; Lu, B.L.; Chen, X.; Jiang, T. Computational prediction of novel non-coding RNAs in Arabidopsis thaliana. BMC Bioinform. 2009, 10, S36. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, L.; Glover, R.H.; Humphris, S.; Elphinstone, J.G.; Toth, I.K. Genomics and taxonomy in diagnostics for food security: Soft-rotting enterobacterial plant pathogens. Anal. Methods 2016, 8, 12–24. [Google Scholar] [CrossRef]
- Schattner, P.; Brooks, A.N.; Lowe, T.M. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res. 2005, 33, 686–689. [Google Scholar] [CrossRef] [PubMed]
- Underwood, A.P.; Mulder, A.; Gharbia, S.; Green, J. Virulence Searcher: A tool for searching raw genome sequences from bacterial genomes for putative virulence factors. Clin. Microbiol. Infect. 2005, 11, 770–772. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, M.J.; Petty, N.K.; Beatson, S.A. Easyfig: A genome comparison visualizer. Bioinformatics 2011, 27, 1009–1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamad, N.; Amal, M.N.A.; Saad, M.Z.; Yasin, I.S.M.; Zulkiply, N.A.; Mustafa, M.; Nasruddin, N.S. Virulence-associated genes and antibiotic resistance patterns of Vibrio spp. isolated from cultured marine fishes in Malaysia. BMC Vet. Res. 2019, 15, 176. [Google Scholar] [CrossRef]
- Ding, T.; Sun, H.; Pan, Q.; Zhao, F.; Zhang, Z.; Ren, H. Isolation and characterization of Vibrio parahaemolyticus bacteriophage vB_VpaS_PG07. Virus Res. 2020, 286, 198080. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, Y.T.; Kim, H.B.; Choi, S.H.; Lee, J.H. Characterization of bacteriophage VVP001 and its application for the inhibition of Vibrio vulnificus causing seafood-borne diseases. Food Microbiol. 2021, 94, 103630. [Google Scholar] [CrossRef]
- Ninawe, A.S.; Sivasankari, S.; Ramasamy, P.; Kiran, G.S.; Selvin, J. Bacteriophages for aquaculture disease control. Aquac. Int. 2020, 28, 1925–1938. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, F.; Sun, H.; Wang, Q.; Zhang, C.; Liu, W.; Zou, L.; Pan, Q.; Ren, H. Isolation and characterization of the Staphylococcus aureus bacteriophage vB_SauS_SA2. AIMS Microbiol. 2019, 5, 285–307. [Google Scholar] [CrossRef]
- Huang, L.; Xiang, Y. Structures of the tailed bacteriophages that infect Gram-positive bacteria. Curr. Opin. Virol. 2020, 45, 65–74. [Google Scholar] [CrossRef]
- Moussa, S.H.; Lawler, J.L.; Young, R. Genetic dissection of T4 lysis. J. Bacteriol. 2014, 196, 2201–2209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O'Flaherty, S.; Ross, R.P.; Coffey, A. Bacteriophage and their lysins for elimination of infectious bacteria. FEMS Microbiol. Rev. 2009, 33, 801–819. [Google Scholar] [CrossRef] [PubMed]
- Matamp, N.; Bhat, S.G. Phage Endolysins as Potential Antimicrobials against Multidrug Resistant Vibrio alginolyticus and Vibrio parahaemolyticus: Current Status of Research and Challenges Ahead. Microorganisms 2019, 7, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mei, S.; Zhu, H. Multi-label multi-instance transfer learning for simultaneous reconstruction and cross-talk modeling of multiple human signaling pathways. BMC Bioinform. 2015, 16, 417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, P.; Chen, B.; Song, Z.; Song, Y.; Yang, Y.; Ma, P.; Wang, H.; Ying, J.; Ren, P.; Yang, L.; et al. Bioinformatic analysis of the Acinetobacter baumannii phage AB1 genome. Gene 2012, 507, 125–134. [Google Scholar] [CrossRef]
- Lu, H.; Yan, P.; Xiong, W.; Wang, J.; Liu, X. Genomic characterization of a novel virulent phage infecting Shigella fiexneri and isolated from sewage. Virus Res. 2020, 283, 197983. [Google Scholar] [CrossRef]
- Duarte, J.; Pereira, C.; Moreirinha, C.; Salvio, R.; Lopes, A.; Wang, D.; Almeida, A. New insights on phage efficacy to control Aeromonas salmonicida in aquaculture systems: An in vitro preliminary study. Aquaculture 2018, 495, 970–982. [Google Scholar] [CrossRef]
- Duarte, J.; Pereira, C.; Costa, P.; Almeida, A. Bacteriophages with Potential to Inactivate Aeromonas hydrophila in Cockles: In Vitro and In Vivo Preliminary Studies. Antibiotics 2021, 10, 710. [Google Scholar] [CrossRef]
Gene | Primer | Size (bp) | Reference |
---|---|---|---|
Col | F: GTACTACGACATTGGCGAAGG R: CCCGACCATACATTTCATACTG | 591 | [21] |
AspA | F: GCATGGTACTCACGTAGCGG R: CTTTCACAAGACCAGAAGAGTAACC | 146 | [21] |
tlh | F: CGAACGAGAACGCAGACATT R: CTTTGTTGATTTGATCTGGCTG | 108 | [21] |
tdh | F: ATAAAGACTATACAATGGCAGCGG R: GAATAGAACCTTCATCTTCACCAAC | 138 | [21] |
trh | F: GCCTTTCAACGGTCTTCACAA R: TAACAAACATATGCCCATTTCCG | 179 | [21] |
FlaA | F: AATCAATGGAGCGTTTGTCTTC R: GCTACACGTTCTGCTTTTGAGTTAG | 253 | [21] |
ompW | F: TCGTGTCACCAAGTGTTTTCG R: CGTGGCTGAATGGTGTTGC | 213 | [21] |
ompK | F: ACAGGATCCATGCGTAAATCACTTTT R: ACTCTCGAGTTAGAATTTGTA | 800 | Gen Bank FJ176400.1 |
fur | F: ATTAACCCTTTGAAGTTCGTGG R: TGACATATACTTTCCCGTTGGATC | 111 | [21] |
gyrB | F: ATTGAGAACCCGACAGAAGCGAAG R: CCTAATGCGGTGATCAGTGTTACT | 340 | [21] |
toxR | F: GGATTCAACCAAATCTCCAGAGT R: GCTCAATAGAAGGCAACCAGTT | 434 | [21] |
toxS | F: GCCGTATCTATCCTTTTCAGTGG R: GCCTTGTGCGAACAGTTTG | 228 | [21] |
Strains | Isolation Source | PVA21 | PVA22 | PVA23 | PVA24 | PVA25 | PVA26 |
---|---|---|---|---|---|---|---|
17749 | ATCC | + | − | − | − | + | − |
VA0 | Ningbo, Zhejiang | − | − | ++ | − | +++ | − |
VA1 | Ningbo, Zhejiang | ++ | − | +++ | − | + | +++ |
VA3 | Nantong, Jiangsu | − | − | + | +++ | − | − |
VA5 | Rudong, Jiangsu | − | +++ | + | ++ | − | − |
VA6 | Rudong, Jiangsu | − | − | +++ | + | − | − |
VA7 | Rudong, Jiangsu | +++ | − | +++ | +++ | − | − |
VA8 | Ningbo, Zhejiang | − | ++ | − | − | ++ | − |
VA9 | Ningbo, Zhejiang | − | − | +++ | − | − | |
VA10 | Ningbo, Zhejiang | ++ | − | +++ | ++ | − | |
VA11 | Ningbo, Zhejiang | − | − | +++ | − | − | |
VA12 | Ningbo, Zhejiang | − | ++ | − | − | +++ | |
VA13 | Nantong, Jiangsu | + | + | − | − | ++ | |
VA14 | Nantong, Jiangsu | − | +++ | − | − | ||
VA15 | Nantong, Jiangsu | − | +++ | +++ | +++ | +++ | − |
VA16 | Ningbo, Zhejiang | − | − | + | ++ | − | |
VA17 | Ningbo, Zhejiang | +++ | − | ++ | ++ | +++ | +++ |
VA18 | Ningbo, Zhejiang | − | − | ++ | + | ++ | |
VA19 | Nantong, Jiangsu | +++ | − | − | − | ++ | |
VA20 | Nantong, Jiangsu | − | − | − | ++ | − | |
VA21 | Nantong, Jiangsu | − | ++ | + | ++ | ||
VA22 | Nantong, Jiangsu | − | − | ++ | − | ++ | |
VA23 | Qingdao, Shandong | ++ | − | − | +++ | ++ | |
VA24 | Qingdao, Shandong | − | − | ++ | + | ||
VA25 | Qingdao, Shandong | − | ++ | +++ | − | ||
VA26 | Qingdao, Shandong | +++ | − | − | ++ | − | |
VA27 | Qingdao, Shandong | − | − | +++ | − | ||
VA28 | Qingdao, Shandong | − | + | − | ++ | − | |
VA29 | Qingdao, Shandong | − | − | ++ | ++ | ||
VA30 | Qingdao, Shandong | + | − | + | − | + | |
VA31 | Rizhao, Shandong | − | +++ | − | + | − | |
VA32 | Rizhao, Shandong | − | − | − | +++ | + | |
VA33 | Rizhao, Shandong | − | − | − | ++ | ||
VA34 | Rizhao, Shandong | − | − | ++ | − | ||
VA35 | Rizhao, Shandong | − | ++ | − | ++ | − | |
VA36 | Rizhao, Shandong | − | − | ++ | − | ||
VA37 | Rizhao, Shandong | ++ | − | − | + | − | |
VA38 | Nanning, Guangxi | − | − | + | ++ | ||
VA39 | Nanning, Guangxi | ++ | − | − | − | +++ | |
VA40 | Nanning, Guangxi | − | ++ | − | − | +++ | |
VA41 | Nanning, Guangxi | + | +++ |
Strains | Isolation Source | Lysis | EOP |
---|---|---|---|
17749 | ATCC | − | − |
VA0 | Ningbo, Zhejiang | ++ | 0.345 ± 0.03 |
VA1 | Ningbo, Zhejiang | +++ | 0.887 ± 0.04 |
VA3 | Nantong, Jiangsu | + | − |
VA5 | Rudong, Jiangsu | + | 0.012 ± 0.02 |
VA6 | Rudong, Jiangsu | +++ | 0.906 ± 0.04 |
VA7 | Rudong, Jiangsu | +++ | 0.912 ± 0.05 |
VA8 | Ningbo, Zhejiang | − | − |
VA9 | Ningbo, Zhejiang | +++ | 1.078 ± 0.07 |
VA10 | Ningbo, Zhejiang | +++ | 0.975 ± 0.06 |
VA11 | Ningbo, Zhejiang | +++ | 1.033 ± 0.09 |
VA12 | Ningbo, Zhejiang | − | − |
VA13 | Nantong, Jiangsu | + | − |
VA14 | Nantong, Jiangsu | +++ | 0.865 ± 0.03 |
VA15 | Nantong, Jiangsu | +++ | 1 |
VA16 | Ningbo, Zhejiang | + | 0.112 ± 0.01 |
VA17 | Ningbo, Zhejiang | ++ | 0.294 ± 0.02 |
VA18 | Ningbo, Zhejiang | + | 0.178 ± 0.01 |
VA19 | Nantong, Jiangsu | − | − |
VA20 | Nantong, Jiangsu | − | − |
VA21 | Nantong, Jiangsu | + | 0.049 ± 0.01 |
VA22 | Nantong, Jiangsu | ++ | 0.543 ± 0.03 |
VA23 | Qingdao, Shandong | − | − |
VA24 | Qingdao, Shandong | ++ | 0.613 ± 0.02 |
VA25 | Qingdao, Shandong | +++ | 0.847 ± 0.05 |
VA26 | Qingdao, Shandong | − | − |
VA27 | Qingdao, Shandong | +++ | 0.931 ± 0.04 |
VA28 | Qingdao, Shandong | − | − |
VA29 | Qingdao, Shandong | ++ | 0.710 ± 0.03 |
VA30 | Qingdao, Shandong | + | 0.211 ± 0.02 |
VA31 | Rizhao, Shandong | − | − |
VA32 | Rizhao, Shandong | − | − |
VA33 | Rizhao, Shandong | − | − |
VA34 | Rizhao, Shandong | ++ | 0.435 ±0.03 |
VA35 | Rizhao, Shandong | − | − |
VA36 | Rizhao, Shandong | ++ | 0.236 ± 0.04 |
VA37 | Rizhao, Shandong | − | − |
VA38 | Nanning, Guangxi | − | − |
VA39 | Nanning, Guangxi | − | − |
VA40 | Nanning, Guangxi | + | 0.077 ± 0.01 |
VA41 | Nanning, Guangxi | + | − |
Bacterial Species | Medium | Total Number of Strains | Lysis Number of Strains |
---|---|---|---|
Vibrio parahaemolyticus | 2216E | 28 | 2 |
Vibrio. spp. | 2216E | 42 | 3 |
Bacillus subtilis | LB | 2 | 0 |
Bacillus licheniformis | LB | 2 | 0 |
Lactic acid bacteria | MRS | 2 | 0 |
Photosynthetic bacteria | Photosynthetic bacteria medium | 2 | 0 |
Saccharomyces bacteria | PDA | 2 | 0 |
Assumed Insensitive Colonies in Plates | Determined Insensitive Colonies by Standard Spot Test | Total Colonies without Phage | The BIMF | |
---|---|---|---|---|
Phage group | 10 ± 1 | 9 ± 1 | (8.48 ± 0.63) × 10−7 | |
Control group | (1.06 ± 0.04) × 107 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, J.; Li, Y.; Zhao, L.; Wu, C.; He, Z. Characterization and Genomic Analysis of a Bacteriophage with Potential in Lysing Vibrio alginolyticus. Viruses 2023, 15, 135. https://doi.org/10.3390/v15010135
Fu J, Li Y, Zhao L, Wu C, He Z. Characterization and Genomic Analysis of a Bacteriophage with Potential in Lysing Vibrio alginolyticus. Viruses. 2023; 15(1):135. https://doi.org/10.3390/v15010135
Chicago/Turabian StyleFu, Jingyun, Ying Li, Lihong Zhao, Chunguang Wu, and Zengguo He. 2023. "Characterization and Genomic Analysis of a Bacteriophage with Potential in Lysing Vibrio alginolyticus" Viruses 15, no. 1: 135. https://doi.org/10.3390/v15010135
APA StyleFu, J., Li, Y., Zhao, L., Wu, C., & He, Z. (2023). Characterization and Genomic Analysis of a Bacteriophage with Potential in Lysing Vibrio alginolyticus. Viruses, 15(1), 135. https://doi.org/10.3390/v15010135