Before Direct-Acting Antivirals for Hepatitis C Virus: Evaluation of Core Protein R70Q and L/C91M Substitutions in Chronically Infected Brazilian Patients Unresponsive to IFN and/or RBV
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Study Participants and Procedures
2.3. RNA Extraction and Amplification
2.4. Sequencing and Molecular Analysis of the HCV Core
2.5. Pyrosequencing
2.6. Statistical Analysis
3. Results
3.1. Characteristics of the Study Population
3.2. Frequency of Substitutions R70Q and L91M
3.3. Pyrosequencing Assays
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Progress Report on HIV, Viral Hepatitis and Sexually Transmitted Infections, 2021; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- Ministério da Saúde. Boletim Epidemiológico de Hepatites Virais, 2021; Secretaria de Vigilância em Saúde: Itapecuru Mirim, Brazil, 2021. [Google Scholar]
- Hanafiah, K.M.; Groeger, J.; Flaxman, A.D.; Wiersma, S.T. Global epidemiology of hepatitis C virus infection: New estimates of age-specific antibody to HCV seroprevalence. Hepatology 2013, 57, 1333–1342. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.D.; Hainaut, P.; Gores, G.J.; Amadou, A.; Plymoth, A.; Roberts, L.R. A global view of hepatocellular carcinoma: Trends, risk, prevention and management. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 589–604. [Google Scholar] [CrossRef] [PubMed]
- Petruzziello, A.; Marigliano, S.; Loquercio, G.; Cozzolino, A.; Cacciapuoti, C. Global epidemiology of hepatitis C virus infection: An up-date of the distribution and circulation of hepatitis C virus genotypes. World J. Gastroenterol. 2016, 22, 7824–7840. [Google Scholar] [CrossRef] [PubMed]
- Zein, N.N. Clinical significance of hepatitis C virus genotypes. Clin. Microbiol. Rev. 2000, 13, 223–235. [Google Scholar] [CrossRef] [PubMed]
- Kichatova, V.S.; Kyuregyan, K.K.; Soboleva, N.V.; Karlsen, A.A.; Isaeva, O.V.; Isaguliants, M.G.; Mikhailov, M.I. Frequency of Interferon-Resistance Conferring Substitutions in Amino Acid Positions 70 and 91 of Core Protein of the Russian HCV 1b Isolates Analyzed in the T-Cell Epitopic Context. J. Immunol. Res. 2018, 2018, 7685371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kittlesen, D.J.; Chianese-Bullock, K.A.; Yao, Z.Q.; Braciale, T.J.; Hahn, Y.S. Interaction between complement receptor gC1qR and hepatitis C virus core protein inhibits T-lymphocyte proliferation. J. Clin. Investig. 2000, 106, 1239–1249. [Google Scholar] [CrossRef]
- Yoshida, H.; Kato, N.; Shiratori, Y.; Otsuka, M.; Maeda, S.; Kato, J.; Omata, M. Hepatitis C virus core protein activates nuclear factor kappa B-dependent signaling through tumor necrosis factor receptor-associated factor. J. Biol. Chem. 2001, 276, 16399–16405. [Google Scholar] [CrossRef] [Green Version]
- Nakamoto, S.; Imazeki, F.; Fukai, K.; Fujiwara, K.; Arai, M.; Kanda, T.; Yonemitsu, Y.; Yokosuka, O. Association between mutations in the core region of hepatitis C virus genotype 1 and hepatocellular carcinoma development. J. Hepatol. 2010, 52, 72–78. [Google Scholar] [CrossRef]
- El-Shamy, A.; Eng, F.J.; Doyle, E.H.; Klepper, A.L.; Sun, X.; Sangiovanni, A.; Iavarone, M.; Colombo, M.; Schwartz, R.E.; Hoshida, Y.; et al. A cell culture system for distinguishing hepatitis C viruses with and without liver cancer-related mutations in the viral core gene. J. Hepatol. 2015, 63, 1323–1333. [Google Scholar] [CrossRef] [Green Version]
- Akuta, N.; Suzuki, F.; Hirakawa, M.; Kawamura, Y.; Yatsuji, H.; Sezaki, H.; Suzuki, Y.; Hosaka, T.; Kobayashi, M.; Kobayashi, M.; et al. Amino acid substitutions in the hepatitis C virus core region of genotype 1b are the important predictor of severe insulin resistance in patients without cirrhosis and diabetes mellitus. J. Med. Virol. 2009, 81, 1032–1039. [Google Scholar] [CrossRef]
- Akuta, N.; Suzuki, F.; Sezaki, H.; Suzuki, Y.; Hosaka, T.; Someya, T.; Kobayashi, M.; Saitoh, S.; Watahiki, S.; Sato, J.; et al. Association of amino acid substitution pattern in core protein of hepatitis C virus genotype 1b high viral load and non-virological response to interferon-ribavirin combination therapy. Intervirology 2005, 48, 372–380. [Google Scholar] [CrossRef]
- Alhamlan, F.S.; Al-Ahdal, M.N.; Khalaf, N.Z.; Abdo, A.A.; Sanai, F.M.; Al-Ashgar, H.I.; Elhefnawi, M.; Zaid, A.; Al-Qahtani, A.A. Hepatitis C virus genotype 1: How genetic variability of the core protein affects the response to pegylated-interferon and ribavirin therapy. J. Med. Virol. 2014, 86, 224–234. [Google Scholar] [CrossRef]
- Sultana, C.; Oprişan, G.; Teleman, M.D.; Dinu, S.; HepGen 88/2012 Project Team; Oprea, C.; Voiculescu, M.; Ruta, S. Impact of hepatitis C virus core mutations on the response to interferon-based treatment in chronic hepatitis C. World J. Gastroenterol. 2016, 22, 8406–8413. [Google Scholar] [CrossRef]
- Hayashi, K.; Katano, Y.; Honda, T.; Ishigami, M.; Itoh, A.; Hirooka, Y.; Ishikawa, T.; Nakano, I.; Yoshioka, K.; Toyoda, H.; et al. Association of Interleukin 28B and Mutations in the Core and NS5A Region of Hepatitis C Virus with Response to Peg-Interferon and Ribavirin Therapy. Liver Int. 2011, 31, 1359–1365. [Google Scholar] [CrossRef]
- Araujo, O.C.; Barros, J.J.; do Ó, K.M.; Nabuco, L.C.; Luz, C.A.; Perez, R.M.; Niel, C.; Villela-Nogueira, C.A.; Araujo, N.M. Genetic variability of hepatitis B and C viruses in Brazilian patients with and without hepatocellular carcinoma. J. Med. Virol. 2014, 86, 217–223. [Google Scholar] [CrossRef] [Green Version]
- Spengler, U. Direct antiviral agents (DAAs)—A new age in the treatment of hepatitis C virus infection. Pharmacol. Ther. 2018, 183, 118–126. [Google Scholar] [CrossRef]
- Wahid, B.; Rafique, S.; Saleem, K.; Ali, A.; Idrees, M. An Increase in Expression of SOCS1 Gene with Increase in Hepatitis C Virus Viral Load. J. Interferon. Cytokine Res. 2018, 38, 122–128. [Google Scholar] [CrossRef]
- De Mendonça, M.C.; de Amorim Ferreira, A.M.; dos Santos, M.G.; de Barros, J.J.; von Hubinger, M.G.; dos Santos Silva Couceiro, J.N. Heteroduplex mobility assay and single-stranded conformation polymorphism analysis as methodologies for detecting variants of human erythroviruses. J. Virol. Methods 2008, 148, 40–47. [Google Scholar] [CrossRef]
- Ohno, O.; Mizokami, M.; Wu, R.R.; Saleh, M.G.; Ohba, K.; Orito, E.; Mukaide, M.; Williams, R.; Lau, J.Y. New hepatitis C virus (HCV) genotyping system that allows for identification of HCV genotypes 1a, 1b, 2a, 2b, 3a, 3b, 4, 5a, and 6a. J. Clin. Microbiol. 1997, 35, 201–207. [Google Scholar] [CrossRef] [Green Version]
- Tamura, K.; Dudley, J.; Nei, M.; Kumar, S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 2007, 24, 1596–1599. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- De Barros, J.J.; Peres, L.R.; de Sousa, P.S.; do Amaral Mello, F.C.; de Araujo, N.M.; de Andrade Gomes, S.; Niel, C.; Lewis-Ximenez, L.L. Occult infection with HBV intergenotypic A2/G recombinant following acute hepatitis B caused by an HBV/A2 isolate. J. Clin. Virol. 2015, 67, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, L.G.; Malta, D.C.; Szwarcwald, C.L.; Bacal, N.S.; Cuder, M.A.M.; Pereira, C.A.; Figueiredo, A.W.; da Silva, A.G.; Machado, I.E.; da Silva, W.A.; et al. Valores de referência para exames laboratoriais de hemograma da população adulta brasileira: Pesquisa Nacional de Saúde. Rev. Bras. Epidemiol. 2019, 22, E190003. [Google Scholar] [CrossRef] [PubMed]
- Lala, V.; Zubair, M.; Minter, D.A. Liver Function Tests. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK482489/ (accessed on 26 November 2022).
- Korba, B.; Shetty, K.; Medvedev, A.; Viswanathan, P.; Varghese, R.; Zhou, B.; Roy, R.; Makambi, K.; Ressom, H.; Loffredo, C.A. Hepatitis C virus Genotype 1a core genenucleotide patterns associated with hepatocellularcarcinoma risk. J. Gen. Virol. 2015, 96, 2928–2937. [Google Scholar] [CrossRef] [PubMed]
- Alestig, E.; Arnholm, B.; Eilard, A.; Lagging, M.; Nilsson, S.; Norkrans, G.; Wahlberg, T.; Wejstål, R.; Westin, J.; Lindh, M. Core mutations, IL28B polymorphisms and response to peginterferon/ribavirin treatment in Swedish patients with hepatitis C virus genotype 1 infection. BMC Infect. Dis. 2011, 11, 124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lerat, H.; Imache, M.R.; Polyte, J.; Gaudin, A.; Mercey, M.; Donati, F.; Baudesson, C.; Higgs, M.R.; Picard, A.; Magnan, C.; et al. Hepatitis C virus induces a prediabetic state by directly impairing hepatic glucose metabolism in mice. J. Biol. Chem. 2017, 292, 12860–12873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sumida, Y.; Kanemasa, K.; Hara, T.; Inada, Y.; Sakai, K.; Imai, S.; Yoshida, N.; Yasui, K.; Itoh, Y.; Okanoue, T.; et al. Impact of amino acid substitutions in hepatitis C virus genotype 1b core region on liver steatosis and glucose tolerance in non-cirrhotic patients without overt diabetes. J. Gastroenterol. Hepatol. 2011, 26, 836–842. [Google Scholar] [CrossRef]
- Scalioni, L.P.; da Silva, A.P.; Miguel, J.C.; Espírito Santo, M.; Marques, V.A.; Brandão-Mello, C.E.; Villela-Nogueira, C.A.; Lewis-Ximenez, L.L.; Lampe, E.; Villar, L.M. Lack of Association between Hepatitis C Virus core Gene Variation 70/91aa and Insulin Resistance. Int. J. Mol. Sci. 2017, 18, 1444. [Google Scholar] [CrossRef] [Green Version]
- Hung, C.H.; Hu, T.H.; Lee, C.M.; Huang, C.M.; Chen, C.H.; Wang, J.H.; Lu, S.N. Amino acid substitutions in the core region associate with insulin resistance in chronic hepatitis C. Intervirology 2013, 56, 166–171. [Google Scholar] [CrossRef]
- Parra, M.; Laufer, N.; Manrique, J.M.; Jones, L.R.; Quarleri, J. Phylogenetic Diversity in Core Region of Hepatitis C Virus Genotype 1a as a Factor Associated with Fibrosis Severity in HIV-1-Coinfected Patients. Biomed. Res. Int. 2017, 2017, 1728456. [Google Scholar] [CrossRef] [Green Version]
- Bruno, S.; Crosignani, A.; Maisonneuve, P.; Rossi, S.; Silini, E.; Mondelli, M.U. Hepatitis C virus genotype 1b as a major risk factor associated with hepatocellular carcinoma in patients with cirrhosis: A seventeen-year prospective cohort study. Hepatology 2007, 46, 1350–1556. [Google Scholar] [CrossRef]
- Raimondi, S.; Bruno, S.; Mondelli, M.U.; Maisonneuve, P. Hepatitis C virus genotype 1b as a risk factor for hepatocellular carcinoma development: A meta-analysis. J. Hepatol. 2009, 50, 1142–1154. [Google Scholar] [CrossRef]
- Lee, M.H.; Yang, H.I.; Lu, S.N.; Jen, C.L.; You, S.L.; Wang, L.Y.; L’Italien, G.; Chen, C.J.; Yuan, Y.; REVEAL-HCV Study Group. Hepatitis C virus genotype 1b increases cumulative lifetime risk of hepatocellular carcinoma. Int. J. Cancer 2014, 135, 1119–1126. [Google Scholar] [CrossRef]
- Uraki, S.; Tameda, M.; Sugimoto, K.; Shiraki, K.; Takei, Y.; Nobori, T.; Ito, M. Substitution in Amino Acid 70 of Hepatitis C Virus Core Protein Changes the Adipokine Profile via Toll-Like Receptor 2/4 Signaling. PLoS ONE 2015, 10, e0131346. [Google Scholar] [CrossRef]
- Miura, M.; Maekawa, S.; Takano, S.; Komatsu, N.; Tatsumi, A.; Asakawa, Y.; Shindo, K.; Amemiya, F.; Nakayama, Y.; Inoue, T.; et al. Deep-Sequencing Analysis of the Association between the Quasispecies Nature of the Hepatitis C Virus Core Region and Disease Progression. J. Virol. 2013, 87, 12541–12551. [Google Scholar] [CrossRef] [Green Version]
- Grandhe, S.; Frenette, C.T. Occurrence and Recurrence of Hepatocellular Carcinoma After Successful Direct-Acting Antiviral Therapy for Patients with Chronic Hepatitis C Virus Infection. Gastroenterol. Hepatol. 2017, 13, 421–425. [Google Scholar]
- El Kassas, M.; Funk, A.L.; Salaheldin, M.; Shimakawa, Y.; Eltabbakh, M.; Jean, K.; El Tahan, A.; Sweedy, A.T.; Afify, S.; Youssef, N.F.; et al. Increased Recurrence Rates of Hepatocellular Carcinoma After DAA Therapy in a Hepatitis C-infected Egyptian Cohort: A Comparative Analysis. J. Viral. Hepat. 2018, 25, 623–630. [Google Scholar] [CrossRef]
- Sasaki, R.; Kanda, T.; Kato, N.; Yokosuka, O.; Moriyama, M. Hepatitis C virus-associated hepatocellular carcinoma after sustained virologic response. World J. Hepatol. 2018, 10, 898–906. [Google Scholar] [CrossRef]
- Hayes, C.N.; Zhang, P.; Zhang, Y.; Chayama, K. Molecular Mechanisms of Hepatocarcinogenesis Following Sustained Virological Response in Patients with Chronic Hepatitis C Virus Infection. Viruses 2018, 10, 531. [Google Scholar] [CrossRef]
- Ministério da Saúde, Secretaria de Ciência, Tecnologia e Insumos Estratégico. Portaria n° 29, de 22 de Julho de 2015. 2015. Available online: https://saude.campinas.sp.gov.br/saude/lista_legislacoes/legis_2015/U_PT-MS-SCTIE-29_220615.pdf (accessed on 26 November 2022).
Variable | Treated (n = 171) | Untreated (n = 115) | p-Value |
---|---|---|---|
Age, years | 60.6 ± 9.0 | 61.0 ± 11.7 | 0.13 |
Female sex | 90 (52.6%) | 69 (60%) | 0.11 |
Body weight, kg | 71.9 ± 13.1 | 69.7 ± 13.7 | 0.19 |
BMI, kg/m2 | 26.4 ± 4.3 | 26.0 ± 4.9 | 0.24 |
Albumin, mg/dL | 4.04 ± 0.63 | 4.04 ± 0.76 | 0.09 |
Fasting blood glucose, mg/dL | 107.2 ± 31.6 | 106.6 ± 35.1 | 0.80 |
Triglyceride, mg/dL | 111.8 ± 60.1 | 106.8 ± 48.3 | 0.36 |
Total cholesterol, mg/dL | 159.6 ± 32.9 | 159.9 ± 33.4 | 0.98 |
LDL, mg/dL | 87.2 ± 28.7 | 89.7 ± 56.45 | 0.51 |
HDL, mg/dL | 51.3 ± 28.7 | 63.4 ± 65.9 | 0.34 |
AST, U/L | 60.7 ± 43.4 | 67.9 ± 56.6 | 0.03 |
AST/ALT ratio | 1.1 ± 0.5 | 1.8 ± 0.6 | 0.02 |
Platelet count/L | 128 × 109 ± 110 × 109 | 139 × 109 ± 92 × 109 | 0.38 |
GGT, U/L | 100.2 ± 96.9 | 103.03 ± 106.2 | 0.58 |
Total bilirubin, mg/dL | 0.86 ± 0.62 | 0.88 ± 0.58 | 0.24 |
Unconjugated bilirubin, mg/dL | 0.51 ± 0.40 | 0.52 ± 0.31 | 0.78 |
Hemoglobin, g/L | 13.41 ± 2.60 | 13.08± 2.09 | 0.32 |
Leukocytes, cells/mm³ | 4.2 × 103 ± 2.8 × 103 | 5.3 × 103 ± 3.6 × 103 | 0.01 |
Hematocrit | 40.0% ± 5.0% | 39.0% ± 5.0% | 0.39 |
ALT, U/L | 62.43 ± 58.46 | 65.0 ± 47.15 | 0.74 |
AFP, ng/mL | 16.28 ± 24.12 | 14.32 ± 23.18 | 0.63 |
Elastography, kPa | 18.43 ± 12.34 | 18.15 ± 12.57 | 0.89 |
Steatosis | 75/130 (57.6%) | 55/130 (42.3%) | 0.96 |
HCC | 3/6 (50%) | 3/6 (50%) | 0.79 |
Fibrosis Degree | 0.004 | ||
F1 | 10/15 (66.6%) | 5/15 (33.4%) | |
F2 | 19/23 (82.6%) | 4/23 (19.4%) | |
F3 | 42/78 (53.8%) | 36/78 (46.2%) | |
F4 | 101/170 (59.4%) | 69/170 (40.6%) | |
Subgenotype | 0.92 | ||
1a | 95/151 (62.9%) | 56/151 (37.1%) | |
1b | 76/135 (56.2%) | 59/135 (43.8%) | |
Only amino acid 70 mutant | 16/24 (66.7%) | 8/24 (33.3%) | 0.12 |
Only amino acid 91 mutant | 26/41 (63.4%) | 15/41 (36.6%) | 0.13 |
Amino acid 70 and 91 mutant | 29/41 (70.7%) | 12/41 (29.3%) | 1.0 |
Variable | aa70 (n = 24) | aa91 (n = 41) | aa70 and 91 (n = 41) | Wild (n = 102) |
---|---|---|---|---|
Age, Years | 64.09 ± 8.5 | 62.05 ± 8.5 | 64.9 ± 6.9 | 58.8 ± 10.3 |
Male sex, n (%) | 9/24 (37.5) | 21/41 (51.2) | 11/41 (26.8) | 56/102 (54.9) |
BMI, kg/m2 | 27.02 ± 4.8 | 26.0 ± 4.7 | 25.6 ± 3.6 | 26.1 ± 4.8 |
Albumin, mg/dL | 3.98 ± 0.8 | 4.26 ± 0.9 | 3.96 ± 0.7 | 4.87 ± 5.7 |
Fasting blood glucose, mg/dL | 123.9 ± 44.3 | 95.14 ± 19.1 | 111.16 ± 33.6 | 104.14 ± 25.43 |
Triglyceride, mg/dL | 111.0 ± 48.0 | 102.46 ± 43.9 | 108.75 ± 88.1 | 108.69 ± 47.7 |
Total cholesterol, mg/dL | 163.27 ± 27.1 | 168.5 ± 34.8 | 158.85 ± 33.1 | 159.15 ± 33.8 |
LDL, mg/dL | 93.17 ± 29.8 | 94.11 ± 28.9 | 79.26 ± 33.3 | 87.33 ± 30.1 |
HDL, mg/dL | 46.55 ± 11.9 | 55.09 ± 16.7 | 51.71 ± 12.6 | 54.10 ± 32.3 |
AST, U/L | 83.9 ± 95.2 | 55.95 ± 45.3 | 54.9 ± 34.5 | 60.83 ± 40.4 |
Platelet count, /L | 139 × 109 ± 80×109 | 187 × 109 ± 129 × 109 | 149 × 109 ± 69 × 109 | 155 × 109 ± 780 × 109 |
GGT, U/L | 133.74 ± 167.6 | 164.3 ± 521.7 | 99.1 ± 104.6 | 109.82 ± 132.5 |
Total bilirubin, mg/dL | 0.92 ± 0.47 | 0.74 ± 0.49 | 0.74 ± 0.44 | 0.92 ± 0.64 |
Conjugated bilirubin, mg/dL | 0.37 ± 0.23 | 0.31 ± 0.25 | 0.38 ± 0.28 | 0.39 ± 0.32 |
Unconjugated bilirubin, mg/dL | 0.48 ± 0.25 | 0.53 ± 0.39 | 0.51 ± 0.45 | 0.50 ± 0.37 |
Hemoglobin, g/L | 12.9 ± 1.8 | 13.3 ± 2.0 | 12.6 ± 2.2 | 13.7 ± 2.6 |
Leukocytes, cells/mm³ | 5.0 × 103 ± 1.9 × 103 | 5.7 × 103 ± 2.0 × 103 | 5.2 × 103 ± 1.6 × 103 | 5.8 × 103 ± 2.9 × 103 |
Hematocrit, % | 40.0 ± 6.0 | 41.0 ± 5.0 | 40.0 ± 4.0 | 40.0 ± 5.0 |
ALT, U/L | 88.7 ± 95.7 | 58.7 ± 54.2 | 47.1 ± 32.3 | 60.6 ± 42.1 |
AFP, ng/mL | 21.7 ± 23.6 | 6.5 ± 7.6 | 20.7 ± 39.5 | 17.4 ± 27.7 |
Elastography, kPa | 17.4 ± 7.9 | 16.3 ± 9.8 | 20.6 ± 16.3 | 18.4 ± 11.5 |
Steatosis, n (%) | 13/24 (54.2) | 17/41 (41.5) | 19/41 (46.3) | 46/102 (45.1) |
HCC | 0/24 (0.0) | 0/41 (0.0) | 1/41 (2.4) | 5/102 (4.9) |
Fibrosis Degree, n (%) | ||||
F1 | 0/24 (0.0) | 4/41 (9.8) | 1/41 (2.4) | 8/102 (7.8) |
F2 | 2/24 (8.3) | 6/41 (14.6) | 5/41 (12.2) | 7/102 (6.9) |
F3 | 8/24 (33.3) | 10/41 (24.4) | 9/41 (21.9) | 27/102 (26.5) |
F4 | 14/24 (58.3) | 21/41 (51.2) | 26/41 (63.4) | 60/102 (58.8) |
Subgenotype, n (%) | ||||
1a | 14/24 (58.3) | 0/41 (0.0) | 0/41 (0.0) | 92/102 (90.2) |
1b | 10/24 (41.7) | 41/41 (100.0) | 41/41 (100.0) | 10/102 (9.8) |
Treatment, n (%) | ||||
Yes | 16/24 (66.7) | 26/41 (63.4) | 29/41 (70.7) | 66/102 (64.7) |
No | 8/24 (33.3) | 15/41 (36.6) | 12/41 (29.3) | 36/102 (35.3) |
Subpopulations by Pyrosequencing | Rating by Sanger Sequencing | |
---|---|---|
Wild Type Group (91L) n = 16 | Mutant Group (91M) n = 57 | |
Wild population (91L) | 11/16 (68.75%) | 20/57 (35.1%) |
Mutant population (91M) | 7/16 (43.75%) | 37/57 (64.9%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campos, L.B.; de Almeida, N.A.A.; de Santana, C.G.; Barbosa, E.N.P.; Horta, M.A.P.; Amendola Pires, M.; Brandão Mello, C.E.; de Paula, V.S.; de Barros, J.J.F. Before Direct-Acting Antivirals for Hepatitis C Virus: Evaluation of Core Protein R70Q and L/C91M Substitutions in Chronically Infected Brazilian Patients Unresponsive to IFN and/or RBV. Viruses 2023, 15, 187. https://doi.org/10.3390/v15010187
Campos LB, de Almeida NAA, de Santana CG, Barbosa ENP, Horta MAP, Amendola Pires M, Brandão Mello CE, de Paula VS, de Barros JJF. Before Direct-Acting Antivirals for Hepatitis C Virus: Evaluation of Core Protein R70Q and L/C91M Substitutions in Chronically Infected Brazilian Patients Unresponsive to IFN and/or RBV. Viruses. 2023; 15(1):187. https://doi.org/10.3390/v15010187
Chicago/Turabian StyleCampos, Letícia Bomfim, Nathália Alves Araújo de Almeida, Catarina Góis de Santana, Evorah Nascimento Pereira Barbosa, Marco Aurelio Pereira Horta, Márcia Amendola Pires, Carlos Eduardo Brandão Mello, Vanessa Salete de Paula, and José Júnior França de Barros. 2023. "Before Direct-Acting Antivirals for Hepatitis C Virus: Evaluation of Core Protein R70Q and L/C91M Substitutions in Chronically Infected Brazilian Patients Unresponsive to IFN and/or RBV" Viruses 15, no. 1: 187. https://doi.org/10.3390/v15010187
APA StyleCampos, L. B., de Almeida, N. A. A., de Santana, C. G., Barbosa, E. N. P., Horta, M. A. P., Amendola Pires, M., Brandão Mello, C. E., de Paula, V. S., & de Barros, J. J. F. (2023). Before Direct-Acting Antivirals for Hepatitis C Virus: Evaluation of Core Protein R70Q and L/C91M Substitutions in Chronically Infected Brazilian Patients Unresponsive to IFN and/or RBV. Viruses, 15(1), 187. https://doi.org/10.3390/v15010187