Which Virus Will Cause the Next Pandemic?
Abstract
:1. Past Pandemics
2. Public Health Emergencies of International Concern (PHEIC) and WHO Priority Diseases
- (i)
- 2009 H1N1 pandemic (see Past Pandemics);
- (ii)
- Ebola virus disease outbreak in Western Africa, 2013–2016: This outbreak claimed more than 11,000 lives (Table 1) and caused tremendous socioeconomical disruption in Western Africa;
- (iii)
- Poliomyelitis (since 2014): With extensive vaccination campaigns over the last decades, many countries have been declared polio virus-free. Although only a few cases had been reported in previous years, the international spread of wild-type polio virus by adult travelers prompted the IHR Emergence Committee to declare poliomyelitis a PHEIC in 2014 (Table 1);
- (iv)
- Zika virus disease outbreak in South America (2016): About 600 cases of microcephaly in newborns were linked to maternal Zika virus infections (Table 1), causing international concerns over Zika virus infections in South America;
- (v)
- Ebola virus disease outbreak in the Democratic Republic of The Congo (2018–2020): This outbreak claimed about 2300 lives (Table 1). A vaccine not yet available in 2013–2015 helped control the outbreak.
- (vi)
- SARS-CoV-2 pandemic (see Past Pandemics).
- (vii)
- Mpox outbreak: On 23 July 2022, the Mpox outbreak was declared a PHEIC based on more than 16,000 reported cases from 75 countries and territories.
3. What Are the Characteristics of Pandemic Viruses, PHEIC Agents, and Viruses Causing WHO Priority Diseases?
4. What Will Cause the Next Pandemic?
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reid, A.H.; Fanning, T.G.; Hultin, J.V.; Taubenberger, J.K. Origin and evolution of the 1918 “Spanish” influenza virus hemagglutinin gene. Proc. Natl. Acad. Sci. USA 1999, 96, 1651–1656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taubenberger, J.K.; Reid, A.H.; Krafft, A.E.; Bijwaard, K.E.; Fanning, T.G. Initial genetic characterization of the 1918 “Spanish” influenza virus. Science 1997, 275, 1793–1796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobasa, D.; Takada, A.; Shinya, K.; Hatta, M.; Halfmann, P.; Theriault, S.; Suzuki, H.; Nishimura, H.; Mitamura, K.; Sugaya, N.; et al. Enhanced virulence of influenza A viruses with the haemagglutinin of the 1918 pandemic virus. Nature 2004, 431, 703–707. [Google Scholar] [CrossRef] [PubMed]
- Pappas, C.; Aguilar, P.V.; Basler, C.F.; Solórzano, A.; Zeng, H.; Perrone, L.A.; Palese, P.; García-Sastre, A.; Katz, J.M.; Tumpey, T.M. Single gene reassortants identify a critical role for PB1, HA, and NA in the high virulence of the 1918 pandemic influenza virus. Proc. Natl. Acad. Sci. USA 2008, 105, 3064–3069. [Google Scholar] [CrossRef] [Green Version]
- Tumpey, T.M.; García-Sastre, A.; Mikulasova, A.; Taubenberger, J.K.; Swayne, D.E.; Palese, P.; Basler, C.F. Existing antivirals are effective against influenza viruses with genes from the 1918 pandemic virus. Proc. Natl. Acad. Sci. USA 2002, 99, 13849–13854. [Google Scholar] [CrossRef] [Green Version]
- Tumpey, T.M.; García-Sastre, A.; Taubenberger, J.K.; Palese, P.; Swayne, D.E.; Basler, C.F. Pathogenicity and immunogenicity of influenza viruses with genes from the 1918 pandemic virus. Proc. Natl. Acad. Sci. USA 2004, 101, 3166–3171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kash, J.C.; Basler, C.F.; Garcia-Sastre, A.; Carter, V.; Billharz, R.; Swayne, D.; Przygodzki, R.; Taubenberger, J.K.; Katze, M.G.; Tumpey, T.M. Global Host Immune Response: Pathogenesis and Transcriptional Profiling of Type A Influenza Viruses Expressing the Hemagglutinin and Neuraminidase Genes from the 1918 Pandemic Virus. J. Virol. 2004, 78, 9499–9511. [Google Scholar] [CrossRef] [Green Version]
- Tumpey, T.M.; Garcia-Sastre, A.; Taubenberger, J.K.; Palese, P.; Swayne, D.; Pantin-Jackwood, M.J.; Schultz-Cherry, S.; Solórzano, A.; Van Rooijen, N.; Katz, J.M.; et al. Pathogenicity of Influenza Viruses with Genes from the 1918 Pandemic Virus: Functional Roles of Alveolar Macrophages and Neutrophils in Limiting Virus Replication and Mortality in Mice. J. Virol. 2005, 79, 14933–14944. [Google Scholar] [CrossRef] [Green Version]
- Tumpey, T.M.; Basler, C.F.; Aguilar, P.V.; Zeng, H.; Solórzano, A.; Swayne, D.E.; Cox, N.J.; Katz, J.M.; Taubenberger, J.K.; Palese, P.; et al. Characterization of the Reconstructed 1918 Spanish Influenza Pandemic Virus. Science 2005, 310, 77–80. [Google Scholar] [CrossRef] [Green Version]
- Van Hoeven, N.; Pappas, C.; Belserm, J.A.; Maines, T.R.; Zeng, H.; García-Sastre, A.; Sasisekharan, R.; Katz, J.M.; Tumpey, T.M. Human HA and polymerase subunit PB2 proteins confer transmission of an avian influenza virus through the air. Proc. Natl. Acad. Sci. USA 2009, 106, 3366–3371. [Google Scholar] [CrossRef]
- Watanabe, T.; Watanabe, S.; Shinya, K.; Kim, J.H.; Hatta, M.; Kawaoka, Y. Viral RNA polymerase complex promotes optimal growth of 1918 virus in the lower respiratory tract of ferrets. Proc. Natl. Acad. Sci. USA 2009, 106, 588–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geiss, G.K.; Salvatore, M.; Tumpey, T.M.; Carter, V.S.; Wang, X.; Basler, C.F.; Taubenberger, J.K.; Bumgarner, R.E.; Palese, P.; Katze, M.G.; et al. Cellular transcriptional profiling in influenza A virus-infected lung epithelial cells: The role of the nonstructural NS1 protein in the evasion of the host innate defense and its potential contribution to pandemic influenza. Proc. Natl. Acad. Sci. USA 2002, 99, 10736–10741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Billharz, R.; Zeng, H.; Proll, S.C.; Korth, M.J.; Lederer, S.; Albrecht, R.; Goodman, A.G.; Rosenzweig, E.; Tumpey, T.M.; Garcia-Sastre, A.; et al. The NS1 Protein of the 1918 Pandemic Influenza Virus Blocks Host Interferon and Lipid Metabolism Pathways. J. Virol. 2009, 83, 10557–10570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McAuley, J.L.; Hornung, F.; Boyd, K.L.; Smith, A.M.; McKeon, R.; Bennink, J.; Yewdell, J.W.; McCullers, J.A. Expression of the 1918 Influenza A Virus PB1-F2 Enhances the Pathogenesis of Viral and Secondary Bacterial Pneumonia. Cell Host Microbe 2007, 2, 240–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scholtissek, C.; Rohde, W.; Von Hoyningen, V.; Rott, R. On the origin of the human influenza virus subtypes H2N2 and H3N2. Virology 1978, 87, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Schafer, J.R.; Kawaoka, Y.; Bean, W.J.; Suss, J.; Senne, D.; Webster, R.G. Origin of the pandemic 1957 H2 influenza A virus and the persistence of its possible progenitors in the avian reservoir. Virology 1993, 194, 781–788. [Google Scholar] [CrossRef]
- Kawaoka, Y.; Krauss, S.; Webster, R.G. Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics. J. Virol. 1989, 63, 4603–4608. [Google Scholar] [CrossRef] [Green Version]
- Novel Swine-Origin Influenza A (H1N1) Virus Investigation Team. Emergence of a Novel Swine-Origin Influenza A (H1N1) Virus in Humans. N. Engl. J. Med. 2009, 360, 2605–2615. [Google Scholar] [CrossRef] [Green Version]
- Smith, G.J.D.; Vijaykrishna, D.; Bahl, J.; Lycett, S.J.; Worobey, M.; Pybus, O.G.; Ma, S.K.; Cheung, C.L.; Raghwani, J.; Bhatt, S.; et al. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 2009, 459, 1122–1125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trifonov, V.; Khiabanian, H.; Greenbaum, B.; Rabadan, R. The origin of the recent swine influenza A(H1N1) virus infecting humans. Euro Surveill. 2009, 14, 19193. [Google Scholar] [CrossRef]
- Garten, R.J.; Davis, C.T.; Russell, C.A.; Shu, B.; Lindstrom, S.; Balish, A.; Sessions, W.M.; Xu, X.; Skepner, E.; Deyde, V.; et al. Antigenic and Genetic Characteristics of Swine-Origin 2009 A(H1N1) Influenza Viruses Circulating in Humans. Science 2009, 325, 197–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- pAN. Undiagnosed Pneumonia—China (Hubei): Request for Information. 2019. Available online: https://promedmail.org/promed-post/?id=6864153 (accessed on 31 August 2022).
- WHO. Novel Coronavirus (2019-nCoV) Situation Reports. 2020. Available online: https://wwwwhoint/emergencies/diseases/novel-coronavirus-2019/situation-reports/ (accessed on 31 August 2022).
- Wilder-Smith, A.; Osman, S. Public health emergencies of international concern: A historic overview. J. Travel Med. 2020, 27, taaa227. [Google Scholar] [CrossRef] [PubMed]
- WHO. Available online: https://www.who.int/activities/prioritizing-diseases-for-research-and-development-in-emergency-contexts (accessed on 31 August 2022).
- Letko, M.; Seifert, S.N.; Olival, K.J.; Plowright, R.K.; Munster, V.J. Bat-borne virus diversity, spillover and emergence. Nat. Rev. Microbiol. 2020, 18, 461–471. [Google Scholar] [CrossRef] [PubMed]
- Whitehouse.gov. American Pandemic Preparedness: Transforming Our Capabilities. 2021. Available online: https://wwwwhitehousegov/wp-content/uploads/2021/09/American-Pandemic-Preparedness-Transforming-Our-Capabilities-Final-For-Webpdf?page=29 (accessed on 31 August 2022).
- Olival, K.J.; Hosseini, P.R.; Zambrana-Torrelio, C.; Ross, N.; Bogich, T.L.; Daszak, P. Erratum: Host and viral traits predict zoonotic spillover from mammals. Nature 2017, 546, 646–650, Erratum in Nature 2017, 548, 612. [Google Scholar] [CrossRef] [PubMed]
- Cristina Cassetti, M.; Pierson, T.C.; Jean Patterson, L.; Bok, K.; DeRocco, A.J.; Deschamps, A.M.; Graham, B.S.; Erbelding, E.J.; Fauci, A.S. Prototype Pathogen Approach for Vaccine and Monoclonal Antibody Development: A Critical Component of the NIAID Plan for Pandemic Preparedness. J. Infect. Dis. 2022. [Google Scholar]
Pandemic | PHEIC (Since 2005) | WHO Priority Diseases | Virus | Virus Family | Reservoir | Mode of Human Infection from Animal Reservoir | Mode of Human-to-Human Transmission | Approved Human Vaccine |
---|---|---|---|---|---|---|---|---|
Yes | Pandemic 1918 A/H1N1 influenza virus | Orthomyxoviridae | Wild waterfowl | Airborne or close contact with infected animals | Airborne | No | ||
Yes | Pandemic 1957 A/H2N2 influenza virus | Orthomyxoviridae | Wild waterfowl | Airborne or close contact with infected animals | Airborne | Yes | ||
Yes | Pandemic 1968 A/H3N2 influenza virus | Orthomyxoviridae | Wild waterfowl | Airborne or close contact with infected animals | Airborne | Yes | ||
Yes | Pandemic 1977 A/H1N1 influenza virus | Orthomyxoviridae | Re-introduction of previously circulating strain | Re-introduction of previously circulating strain | Airborne | Yes | ||
Yes | Yes | Pandemic 2009 A/H1N1 influenza virus | Orthomyxoviridae | Wild waterfowl/swine | Airborne or close contact with infected animals | Airborne | Yes | |
Yes | Yes | Yes | SARS-CoV-2 | Coronaviridae | Bats | Airborne or close contact with infected animals | Airborne | Yes |
Yes | Yes | Ebola virus | Filoviridae | Bats | Contact/consumption of infected bats or intermediary hosts (such as nonhuman primates) | Direct contact with body fluids | Yes | |
Yes | Yes | Zika virus | Flaviviridae | Arthropods | Arthropod-borne | Perinatal, sexual | No | |
Yes | Polio virus | Picornaviridae | None | N/A | Fecal-oral | Yes | ||
Yes | Smallpox (variola) virus | Poxviridae | None | N/A | Droplets | Yes | ||
Yes | Monkeypox virus | Poxviridae | Most likely, small mammals | Direct contact with infected animals | Close, personal contact; fomites; contact with respiratory secretions | Yes | ||
Yes | Crimean-Congo hemorrhagic fever virus | Nairoviridae | Arthropods | Arthropod-borne | Direct contact with body fluids | No | ||
Yes | Marburg virus | Filoviridae | Bats | Contact/consumption of infected bats or intermediary hosts (such as nonhuman primates) | Direct contact with body fluids | No | ||
Yes | Lassa virus | Arenaviridae | Rodents | Contact with rodent urine or feces | Direct contact with body fluids | No | ||
Yes | MERS | Coronaviridae | Bats | Contact with intermediary hosts such as camels | Direct contact, airborne? | No | ||
Yes | Yes | SARS | Coronaviridae | Bats | Unknown (close contact with intermediary hosts?) | Airborne (inefficient) | No | |
Yes | Nipah virus | Paramyxoviridae | Bats | Consumption of infected bats or pigs or virus-contaminated fruits | Respiratory secretions | No | ||
Yes | Rift Valley fever virus | Phenuiviridae | Arthropods | Close contact with infected livestock | No | No | ||
Yes | A virus responsible for ‘Disease X’ | ??? | ??? | ??? | ??? | N/A |
Virus Family | Genus | Representative Human Virus(es) | Representative Non-human Virus(es) | Human Vaccines | Antiviral Treatments |
---|---|---|---|---|---|
Orthomyxoviridae | Alphainfluenzavirus | Human influenza A viruses | Avian influenza A viruses Swine influenza A viruses Horse influenza A viruses | Yes | Neuraminidase and polymerase inhibitors |
Betainfluenzavirus | Human influenza B viruses | ||||
Paramyxoviridae | Orthopneumovirus | Human respiratory syncytial virus | Bovine respiratory syncytial virus | None | Ribavirin, monoclonal antibody |
Respirovirus | Human parainfluenza viruses 1 & 3 | Bovine respirovirus Murine respirovirus Porcine respirovirus | None | None | |
Rubulavirus | Human parainfluenza viruses 2 & 4 | Newcastle disease virus | None | None | |
Metapneumovirus | Human metapneumovirus | Avian metapneumovirus | None | None | |
Morbillivirus | Measles virus (Measles morbillivirus) | Canine distemper virus | Yes | None | |
Orthorubulavirus | Mumps virus (Mumps orthorubulavirus) | Simian orthorubulavirus Porcine orthorubulavirus | Yes | None | |
Picornaviridae | Enterovirus | Human rhinovirus | None | None | |
Aphtovirus | Bovine rhinitis A virus Equine rhinitis A virus Foot-and-mouth disease virus | None | None | ||
Coronaviridae | Alphacoronavirus | Human coronavirus 229E, NL63 | Bat coronaviruses | None | None |
Betacoronavirus | SARS-CoV SARS-CoV-2 Human coronavirus OC43, HKU1 | Bat coronaviruses Murine coronaviruses | None Yes None | None Remdesivir, Paxlovid, Molnupiravir None | |
Adenoviridae | Mastadenovirus | Human adenovirus | Bat mastadenovirus Murine mastadenovirus Simian mastadenovirus Porcine mastadenovirus | None | None |
Parvoviridae | Erythroparvovirus | Human parvovirus B18 | Primate erythroparvovirus Rodent eryhtroparvovirus Ungulate eryhtroparvovirus | None | None |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neumann, G.; Kawaoka, Y. Which Virus Will Cause the Next Pandemic? Viruses 2023, 15, 199. https://doi.org/10.3390/v15010199
Neumann G, Kawaoka Y. Which Virus Will Cause the Next Pandemic? Viruses. 2023; 15(1):199. https://doi.org/10.3390/v15010199
Chicago/Turabian StyleNeumann, Gabriele, and Yoshihiro Kawaoka. 2023. "Which Virus Will Cause the Next Pandemic?" Viruses 15, no. 1: 199. https://doi.org/10.3390/v15010199
APA StyleNeumann, G., & Kawaoka, Y. (2023). Which Virus Will Cause the Next Pandemic? Viruses, 15(1), 199. https://doi.org/10.3390/v15010199