Next Article in Journal
Exploring the Expression and Function of cTyro3, a Candidate Zika Virus Receptor, in the Embryonic Chicken Brain and Inner Ear
Next Article in Special Issue
Bayesian Spatio-Temporal Prediction and Counterfactual Generation: An Application in Non-Pharmaceutical Interventions in COVID-19
Previous Article in Journal
Detection and Molecular Characterization of the SARS-CoV-2 Delta Variant and the Specific Immune Response in Companion Animals in Switzerland
Previous Article in Special Issue
The Structural Identifiability of a Humidity-Driven Epidemiological Model of Influenza Transmission
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Editorial

Editorial: Infectious Disease Epidemiology and Transmission Dynamics

1
WHO Collaborating Center for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
2
Laboratory of Data Discovery for Health Limited, Hong Kong Science Park, Hong Kong SAR, China
3
Department of Geography, National University of Singapore, Singapore 117570, Singapore
4
Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117570, Singapore
5
Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
*
Author to whom correspondence should be addressed.
Viruses 2023, 15(1), 246; https://doi.org/10.3390/v15010246
Submission received: 11 January 2023 / Accepted: 13 January 2023 / Published: 15 January 2023
(This article belongs to the Special Issue Infectious Disease Epidemiology and Transmission Dynamics)
Infectious diseases, such as COVID-19 [1], influenza [2], dengue [3], and monkeypox [4], have caused significant burdens to population health and socioeconomic development in the world. Scientists have unraveled many aspects as to the transmission dynamics and population health strategies to mitigate the spread of epidemics [5,6,7,8,9,10,11,12,13,14,15]. This Special Issue contains eleven original articles and two commentaries for scientific endeavors that bring together expertise and efforts toward this common goal.
The research includes studies on the reproduction number of SARS-CoV-2 variants, vaccine efficacy, antiviral efficacy, and the epidemiological impact of nonpharmaceutical interventions. Our research mainly focuses on COVID-19, an urgent problem to solve in 2022 with the emergence of multiple SARS-CoV-2 variants that can escape human immunity elicited by previous infection or vaccination [16,17]. Du et al. and Jin et al. reviewed and estimated the reproduction number of SARS-CoV-2 variants (e.g., Omicron, Delta) to evaluate their transmission advantages [16,18] and found that asymptomatic spreaders could be identified from the transmission network [19]. Mass vaccination, treatment, and mass testing can help reduce the overall population-level attack rate and prove critical to early pandemic mitigation. Wang et al. assessed the epidemiological impact of vaccination on COVID-19 in Hong Kong for the ancestral, Delta, and Omicron strains [20]. The mRNA vaccines are useful for reducing the risk of death for moderate cases but are not significant for severe cases [21]. Koo et al. estimated that fortnightly and weekly mass routine rapid antigen testing would reduce overall infections by 12.8% and 25.2%, respectively [22]. The 2021-22 cross-sectional study using a self-administered questionnaire in Algeria suggested that the impact of preventive measures and vaccination against SARS-CoV-2 is statistically significant in reducing the risk of infection, treatment, and hospitalization [23].
Alongside the studies on COVID-19, several papers also analyzed other pathogens. Zhang et al. tested the structural identifiability of four humidity-driven epidemiology models of influenza transmission [24]. Espitia et al. analyzed the mathematical model of HIV/AIDS presented by Espitia to reveal that reducing homosexual partners can reduce contagion and consequently reach a DFE [25]. Ito et al. and Loi et al. learned about the transmission dynamics of African swine fever in wild boars in South Korea and Italy [26,27]. Soh et al. also proposed a mechanistic model to study the epidemiological impact of fertile Wolbachia-infected female mosquitoes from being released into the environment [28].

Funding

Financial support was provided by the Health and Medical Research Fund, Food and Health Bureau, Government of the Hong Kong Special Administrative Region (grant No. COVID190118), National Natural Science Foundation of China (grant No. 72104208).

Acknowledgments

We acknowledge all authors for their contributions to our Special Issue. We expect that this Special Issue will inspire more studies on the mathematical modeling of infectious disease epidemiology and transmission dynamics. More studies are needed to develop more realistic mechanistic models and better inferential approaches to analyze real-world data.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Du, Z.; Wang, L.; Cauchemez, S.; Xu, X.; Wang, X.; Cowling, B.J.; Meyers, L.A. Risk for Transportation of Coronavirus Disease from Wuhan to Other Cities in China. Emerg. Infect. Dis. 2020, 26, 1049–1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  2. Du, Z.; Nugent, C.; Galvani, A.P.; Krug, R.M.; Meyers, L.A. Modeling Mitigation of Influenza Epidemics by Baloxavir. Nat. Commun. 2020, 11, 2750. [Google Scholar] [CrossRef] [PubMed]
  3. Chen, Y.; Li, N.; Lourenço, J.; Wang, L.; Cazelles, B.; Dong, L.; Li, B.; Liu, Y.; Jit, M.; Bosse, N.I.; et al. Measuring the Effects of COVID-19-Related Disruption on Dengue Transmission in Southeast Asia and Latin America: A Statistical Modelling Study. Lancet Infect. Dis. 2022, 22, 657–667. [Google Scholar] [CrossRef]
  4. Du, Z.; Shao, Z.; Bai, Y.; Wang, L.; Herrera-Diestra, J.L.; Fox, S.J.; Ertem, Z.; Lau, E.H.Y.; Cowling, B.J. Reproduction Number of Monkeypox in the Early Stage of the 2022 Multi-Country Outbreak. J. Travel Med. 2022, 29, taac099. [Google Scholar] [CrossRef] [PubMed]
  5. Du, Z.; Pandey, A.; Bai, Y.; Fitzpatrick, M.C.; Chinazzi, M.; Pastore, Y.; Piontti, A.; Lachmann, M.; Vespignani, A.; Cowling, B.J.; et al. Comparative Cost-Effectiveness of SARS-CoV-2 Testing Strategies in the USA: A Modelling Study. Lancet Public Health 2021, 6, e184–e191. [Google Scholar] [CrossRef]
  6. Du, Z.; Wang, L.; Bai, Y.; Wang, X.; Pandey, A.; Fitzpatrick, M.C.; Chinazzi, M.; Pastore, Y.; Piontti, A.; Hupert, N.; et al. Cost-Effective Proactive Testing Strategies during COVID-19 Mass Vaccination: A Modelling Study. Lancet Reg. Health Am. 2022, 8, 100182. [Google Scholar] [CrossRef] [PubMed]
  7. Du, Z.; Wang, L.; Pandey, A.; Lim, W.W.; Chinazzi, M.; Piontti, A.P.Y.; Lau, E.H.Y.; Wu, P.; Malani, A.; Cobey, S.; et al. Modeling Comparative Cost-Effectiveness of SARS-CoV-2 Vaccine Dose Fractionation in India. Nat. Med. 2022, 28, 934–938. [Google Scholar] [CrossRef]
  8. Ali, S.T.; Wang, L.; Lau, E.H.Y.; Xu, X.-K.; Du, Z.; Wu, Y.; Leung, G.M.; Cowling, B.J. Serial Interval of SARS-CoV-2 Was Shortened over Time by Nonpharmaceutical Interventions. Science 2020, 369, 1106–1109. [Google Scholar] [CrossRef]
  9. Du, Z.; Xu, X.; Wang, L.; Fox, S.J.; Cowling, B.J.; Galvani, A.P.; Meyers, L.A. Effects of Proactive Social Distancing on COVID-19 Outbreaks in 58 Cities, China. Emerg. Infect. Dis. 2020, 26, 2267–2269. [Google Scholar] [CrossRef]
  10. Kraemer, M.U.G.; Yang, C.-H.; Gutierrez, B.; Wu, C.-H.; Klein, B.; Pigott, D.M.; Open COVID-19 Data Working Group; du Plessis, L.; Faria, N.R.; Li, R.; et al. The Effect of Human Mobility and Control Measures on the COVID-19 Epidemic in China. Science 2020, 368, 493–497. [Google Scholar] [CrossRef]
  11. Shao, Z.; Ma, L.; Bai, Y.; Tan, Q.; Liu, X.F.; Liu, S.; Ali, S.T.; Wang, L.; Lau, E.H.Y.; Cowling, B.J.; et al. Impact of Mass Rapid Antigen Testing for SARS-CoV-2 to Mitigate Omicron Outbreaks in China. J. Travel Med. 2022, 29, taac110. [Google Scholar] [CrossRef] [PubMed]
  12. Ali, S.T.; Lau, Y.C.; Shan, S.; Ryu, S.; Du, Z.; Wang, L.; Xu, X.-K.; Chen, D.; Xiong, J.; Tae, J.; et al. Prediction of Upcoming Global Infection Burden of Influenza Seasons after Relaxation of Public Health and Social Measures during the COVID-19 Pandemic: A Modelling Study. Lancet Glob Health 2022, 10, e1612–e1622. [Google Scholar] [CrossRef] [PubMed]
  13. Du, Z.; Wang, L.; Shan, S.; Lam, D.; Tsang, T.K.; Xiao, J.; Gao, H.; Yang, B.; Ali, S.T.; Pei, S.; et al. Pandemic Fatigue Impedes Mitigation of COVID-19 in Hong Kong. Proc. Natl. Acad. Sci. USA 2022, 119, e2213313119. [Google Scholar] [CrossRef] [PubMed]
  14. Wang, X.; Du, Z.; James, E.; Fox, S.J.; Lachmann, M.; Meyers, L.A.; Bhavnani, D. The Effectiveness of COVID-19 Testing and Contact Tracing in a US City. Proc. Natl. Acad. Sci. USA 2022, 119, e2200652119. [Google Scholar] [CrossRef] [PubMed]
  15. Endo, A.; Murayama, H.; Abbott, S.; Ratnayake, R.; Pearson, C.A.B.; Edmunds, W.J.; Fearon, E.; Funk, S. Heavy-Tailed Sexual Contact Networks and Monkeypox Epidemiology in the Global Outbreak, 2022. Science 2022, 378, 90–94. [Google Scholar] [CrossRef]
  16. Du, Z.; Hong, H.; Wang, S.; Ma, L.; Liu, C.; Bai, Y.; Adam, D.C.; Tian, L.; Wang, L.; Lau, E.H.Y.; et al. Reproduction Number of the Omicron Variant Triples That of the Delta Variant. Viruses 2022, 14, 821. [Google Scholar] [CrossRef]
  17. Du, Z.; Liu, C.; Wang, C.; Xu, L.; Xu, M.; Wang, L.; Bai, Y.; Xu, X.; Lau, E.H.Y.; Wu, P.; et al. Reproduction Numbers of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Variants: A Systematic Review and Meta-Analysis. Clin. Infect. Dis. 2022, 75, e293–e295. [Google Scholar] [CrossRef]
  18. Jin, S.; Dickens, B.L.; Lim, J.T.; Cook, A.R. EpiRegress: A Method to Estimate and Predict the Time-Varying Effective Reproduction Number. Viruses 2022, 14, 1576. [Google Scholar] [CrossRef]
  19. Liu, Z.; Ma, Y.; Cheng, Q.; Liu, Z. Finding Asymptomatic Spreaders in a COVID-19 Transmission Network by Graph Attention Networks. Viruses 2022, 14, 1659. [Google Scholar] [CrossRef]
  20. Wang, J.; Chan, Y.-C.; Niu, R.; Wong, E.W.M.; van Wyk, M.A. Modeling the Impact of Vaccination on COVID-19 and Its Delta and Omicron Variants. Viruses 2022, 14, 1482. [Google Scholar] [CrossRef]
  21. Yen, A.M.-F.; Chen, S.L.-S.; Hsu, C.-Y.; Chen, T.H.-H. The Preventive Role of mRNA Vaccines in Reducing Death among Moderate Omicron-Infected Patients: A Follow-Up Study. Viruses 2022, 14, 2622. [Google Scholar] [CrossRef] [PubMed]
  22. Koo, J.R.; Cook, A.R.; Lim, J.T.; Tan, K.W.; Dickens, B.L. Modelling the Impact of Mass Testing to Transition from Pandemic Mitigation to Endemic COVID-19. Viruses 2022, 14, 967. [Google Scholar] [CrossRef] [PubMed]
  23. Hamimes, A.; Aouissi, H.A.; Ababsa, M.; Lounis, M.; Jayarajah, U.; Napoli, C.; Kasemy, Z.A. The Effect of Preventive Measures and Vaccination against SARS-CoV-2 on the Infection Risk, Treatment, and Hospitalization: A Cross-Sectional Study of Algeria. Viruses 2022, 14, 2771. [Google Scholar] [CrossRef] [PubMed]
  24. Zhang, C.; Zhang, X.; Bai, Y.; Lau, E.H.Y.; Pei, S. The Structural Identifiability of a Humidity-Driven Epidemiological Model of Influenza Transmission. Viruses 2022, 14, 2795. [Google Scholar] [CrossRef] [PubMed]
  25. Espitia Morillo, C.C.; Meyer, J.F.D.C.A. HIV/AIDS Mathematical Model of Triangle Transmission. Viruses 2022, 14, 2749. [Google Scholar] [CrossRef]
  26. Ito, S.; Bosch, J.; Jeong, H.; Aguilar-Vega, C.; Park, J.; Martínez-Avilés, M.; Sánchez-Vizcaíno, J.M. Spatio-Temporal Epidemiology of the Spread of African Swine Fever in Wild Boar and the Role of Environmental Factors in South Korea. Viruses 2022, 14, 2779. [Google Scholar] [CrossRef]
  27. Loi, F.; Di Sabatino, D.; Baldi, I.; Rolesu, S.; Gervasi, V.; Guberti, V.; Cappai, S. Estimation of R0 for the Spread of the First ASF Epidemic in Italy from Fresh Carcasses. Viruses 2022, 14, 2240. [Google Scholar] [CrossRef]
  28. Soh, S.; Ho, S.H.; Ong, J.; Seah, A.; Dickens, B.S.; Tan, K.W.; Koo, J.R.; Cook, A.R.; Sim, S.; Tan, C.H.; et al. Strategies to Mitigate Establishment under the Wolbachia Incompatible Insect Technique. Viruses 2022, 14, 1132. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Du, Z.; Luo, W.; Sippy, R.; Wang, L. Editorial: Infectious Disease Epidemiology and Transmission Dynamics. Viruses 2023, 15, 246. https://doi.org/10.3390/v15010246

AMA Style

Du Z, Luo W, Sippy R, Wang L. Editorial: Infectious Disease Epidemiology and Transmission Dynamics. Viruses. 2023; 15(1):246. https://doi.org/10.3390/v15010246

Chicago/Turabian Style

Du, Zhanwei, Wei Luo, Rachel Sippy, and Lin Wang. 2023. "Editorial: Infectious Disease Epidemiology and Transmission Dynamics" Viruses 15, no. 1: 246. https://doi.org/10.3390/v15010246

APA Style

Du, Z., Luo, W., Sippy, R., & Wang, L. (2023). Editorial: Infectious Disease Epidemiology and Transmission Dynamics. Viruses, 15(1), 246. https://doi.org/10.3390/v15010246

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop