Aedes aegypti Strain Subjected to Long-Term Exposure to Bacillus thuringiensis svar. israelensis Larvicides Displays an Altered Transcriptional Response to Zika Virus Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Aedes aegypti Strains
2.2. RNA Samples for the Transcription Profile of Immune Genes
2.3. RT-qPCR Assays
2.4. Bti Susceptibility Bioassays
2.5. RNA-seq Library Preparation
2.6. RNA-seq Data Analysis
3. Results
3.1. Profile of Immune Gene Transcripts in ZIKV-Challenged RecBti Females (F30)
3.2. Susceptibility of RecBti (F35) larvae to Bti and its Toxins
3.3. Transcriptomic Profile of RecBti Females (F35) by RNA-seq
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Messina, J.P.; Brady, O.J.; Golding, N.; Kraemer, M.U.G.; Wint, G.R.W.; Ray, S.E.; Pigott, D.M.; Shearer, F.M.; Johnson, K.; Earl, L.; et al. The current and future global distribution and population at risk of dengue. Nat. Microbiol. 2019, 4, 1508–1515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Achee, N.L.; Gould, F.; Perkins, T.A.; Reiner, R.C., Jr.; Morrison, A.C.; Ritchie, S.A.; Gubler, D.J.; Teyssou, R.; Scott, T.W. A critical assessment of vector control for dengue prevention. PLoS Negl. Trop. Dis. 2015, 9, e0003655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, A.L.; Courtenay, O.; Kelly-Hope, L.A.; Scott, T.W.; Takken, W.; Torr, S.J.; Lindsay, S.W. The importance of vector control for the control and elimination of vector-borne diseases. PLoS Negl. Trop. Dis. 2020, 14, e0007831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Global Vector Control Response 2017–2030; WHO: Geneve, Switzerland, 2017; p. 51. [Google Scholar]
- Becker, N.; Ludwig, M.; Su, T. Lack of Resistance in Aedes vexans Field Populations After 36 Years of Bacillus thuringiensis subsp. israelensis Applications in the Upper Rhine Valley, Germany. J. Am. Mosq. Control Assoc. 2018, 34, 154–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bravo, A.; Likitvivatanavong, S.; Gill, S.S.; Soberón, M. Bacillus thuringiensis: A story of a successful bioinsecticide. Insect Biochem. Mol. Biol. 2011, 41, 423–431. [Google Scholar] [CrossRef] [Green Version]
- Lacey, L.A. Bacillus thuringiensis serovariety israelensis and Bacillus sphaericus for mosquito control. J. Am. Mosq. Control Assoc. 2007, 23, 133–163. [Google Scholar] [CrossRef]
- Lacey, L.A.; Grzywacz, D.; Shapiro-Ilan, D.I.; Frutos, R.; Brownbridge, M.; Goettel, M.S. Insect pathogens as biological control agents: Back to the future. J. Invertebr Pathol. 2015, 132, 1–41. [Google Scholar] [CrossRef] [Green Version]
- Margalit, J.; Dean, D. The story of Bacillus thuringiensis var. israelensis (B.t.i.). J. Am. Mosq. Control. Assoc. 1985, 1, 1–7. [Google Scholar]
- Cantón, P.E.; Zanicthe Reyes, E.Z.; Ruiz de Escudero, I.; Bravo, A.; Soberón, M. Binding of Bacillus thuringiensis subsp. israelensis Cry4Ba to Cyt1Aa has an important role in synergism. Peptides 2011, 32, 595–600. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Molina, S.; do Nascimento, N.A.; Silva-Filha, M.; Guerrero, A.; Sanchez, J.; Pacheco, S.; Gill, S.S.; Soberon, M.; Bravo, A. In vivo nanoscale analysis of the dynamic synergistic interaction of Bacillus thuringiensis Cry11Aa and Cyt1Aa toxins in Aedes aegypti. PLoS Pathog. 2021, 17, e1009199. [Google Scholar] [CrossRef]
- Pérez, C.; Fernandez, L.E.; Sun, J.; Folch, J.L.; Gill, S.S.; Soberón, M.; Bravo, A. Bacillus thuringiensis subsp. israelensis Cyt1Aa synergizes Cry11Aa toxin by functioning as a membrane-bound receptor. Proc. Natl. Acad. Sci. USA 2005, 102, 18303–18308. [Google Scholar] [CrossRef] [PubMed]
- Pérez, C.; Muñoz-Garay, C.; Portugal, L.C.; Sánchez, J.; Gill, S.S.; Soberón, M.; Bravo, A. Bacillus thuringiensis ssp. israelensis Cyt1Aa enhances activity of Cry11Aa toxin by facilitating the formation of a pre-pore oligomeric structure. Cell Microbiol. 2007, 9, 2931–2937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bravo, A.; Gill, S.S.; Soberón, M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 2007, 49, 423–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soberón, M.; Fernández, L.E.; Pérez, C.; Gill, S.S.; Bravo, A. Mode of action of mosquitocidal Bacillus thuringiensis toxins. Toxicon 2007, 49, 597–600. [Google Scholar] [CrossRef] [PubMed]
- Araujo, A.P.; Araujo Diniz, D.F.; Helvecio, E.; de Barros, R.A.; de Oliveira, C.M.; Ayres, C.F.; de Melo-Santos, M.A.; Regis, L.N.; Silva-Filha, M.H. The susceptibility of Aedes aegypti populations displaying temephos resistance to Bacillus thuringiensis israelensis: A basis for management. Parasit. Vectors 2013, 6, 297. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, K.D.S.; Crespo, M.M.; Araujo, A.P.; da Silva, R.S.; de Melo-Santos, M.A.V.; de Oliveira, C.M.F.; Silva-Filha, M. Long-term exposure of Aedes aegypti to Bacillus thuringiensis svar. israelensis did not involve altered susceptibility to this microbial larvicide or to other control agents. Parasit. Vectors 2018, 11, 673. [Google Scholar] [CrossRef]
- Paris, M.; David, J.P.; Despres, L. Fitness costs of resistance to Bti toxins in the dengue vector Aedes aegypti. Ecotoxicology 2011, 20, 1184–1194. [Google Scholar] [CrossRef]
- Stalinski, R.; Laporte, F.; Tetreau, G.; Despres, L. Receptors are affected by selection with each Bacillus thuringiensis israelensis Cry toxin but not with the full Bti mixture in Aedes aegypti. Infect. Genet. Evol. 2016, 44, 218–227. [Google Scholar] [CrossRef]
- Bruhl, C.A.; Despres, L.; Fror, O.; Patil, C.D.; Poulin, B.; Tetreau, G.; Allgeier, S. Environmental and socioeconomic effects of mosquito control in Europe using the biocide Bacillus thuringiensis subsp. israelensis (Bti). Sci. Total Environ. 2020, 724, 137800. [Google Scholar] [CrossRef]
- Poulin, B.; Lefebvre, G. Perturbation and delayed recovery of the reed invertebrate assemblage in Camargue marshes sprayed with Bacillus thuringiensis israelensis. Insect Sci. 2018, 25, 542–548. [Google Scholar] [CrossRef]
- Barbosa, R.M.R.; Melo-Santos, M.A.V.; Silveira, J.C., Jr.; Silva-Filha, M.; Souza, W.V.; Oliveira, C.M.F.; Ayres, C.F.J.; Xavier, M.D.N.; Rodrigues, M.P.; Santos, S.A.D.; et al. Infestation of an endemic arbovirus area by sympatric populations of Aedes aegypti and Aedes albopictus in Brazil. Mem. Inst. Oswaldo Cruz 2020, 115, e190437. [Google Scholar] [CrossRef] [PubMed]
- Moyes, C.L.; Vontas, J.; Martins, A.J.; Ng, L.C.; Koou, S.Y.; Dusfour, I.; Raghavendra, K.; Pinto, J.; Corbel, V.; David, J.P.; et al. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Negl. Trop. Dis. 2017, 11, e0005625. [Google Scholar] [CrossRef] [PubMed]
- Vontas, J.; Katsavou, E.; Mavridis, K. Cytochrome P450-based metabolic insecticide resistance in Anopheles and Aedes mosquito vectors: Muddying the waters. Pestic Biochem. Physiol. 2020, 170, 104666. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, K.D.S.; Guedes, D.R.D.; Crespo, M.M.; de Melo-Santos, M.A.V.; Silva-Filha, M. Aedes aegypti continuously exposed to Bacillus thuringiensis svar. israelensis does not exhibit changes in life traits but displays increased susceptibility for Zika virus. Parasit Vectors 2021, 14, 379. [Google Scholar] [CrossRef]
- Melo-Santos, M.A.; Araújo, A.P.; Rios, E.M.; Regis, L. Long lasting persistence of Bacillus thuringiensis serovar. israelensis larvicidal activity in Aedes aegypti (Diptera: Culicidae) breeding places is associated to bacteria recycling. Biol. Control 2009, 49, 186–191. [Google Scholar] [CrossRef]
- Jupatanakul, N.; Sim, S.; Anglero-Rodriguez, Y.I.; Souza-Neto, J.; Das, S.; Poti, K.E.; Rossi, S.L.; Bergren, N.; Vasilakis, N.; Dimopoulos, G. Engineered Aedes aegypti JAK/STAT Pathway-Mediated Immunity to Dengue Virus. PLoS Negl. Trop. Dis. 2017, 11, e0005187. [Google Scholar] [CrossRef] [Green Version]
- Anglero-Rodriguez, Y.I.; MacLeod, H.J.; Kang, S.; Carlson, J.S.; Jupatanakul, N.; Dimopoulos, G. Aedes aegypti Molecular Responses to Zika Virus: Modulation of Infection by the Toll and Jak/Stat Immune Pathways and Virus Host Factors. Front. Microbiol. 2017, 8, 2050. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, A.; Modahl, C.M.; Tan, S.T.; Wong Wei Xiang, B.; Misse, D.; Vial, T.; Kini, R.M.; Pompon, J.F. JNK pathway restricts DENV2, ZIKV and CHIKV infection by activating complement and apoptosis in mosquito salivary glands. PLoS Pathog. 2020, 16, e1008754. [Google Scholar] [CrossRef]
- Zhao, L.; Alto, B.W.; Smartt, C.T.; Shin, D. Transcription Profiling for Defensins of Aedes aegypti (Diptera: Culicidae) During Development and in Response to Infection with Chikungunya and Zika Viruses. J. Med. Entomol. 2018, 55, 78–89. [Google Scholar] [CrossRef]
- Etebari, K.; Hegde, S.; Saldana, M.A.; Widen, S.G.; Wood, T.G.; Asgari, S.; Hughes, G.L. Global Transcriptome Analysis of Aedes aegypti Mosquitoes in Response to Zika Virus Infection. mSphere 2017, 2, e00456-17. [Google Scholar] [CrossRef] [Green Version]
- Dzaki, N.; Ramli, K.N.; Azlan, A.; Ishak, I.H.; Azzam, G. Evaluation of reference genes at different developmental stages for quantitative real-time PCR in Aedes aegypti. Sci. Rep. 2017, 7, 43618. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gotz, S.; Garcia-Gomez, J.M.; Terol, J.; Williams, T.D.; Nagaraj, S.H.; Nueda, M.J.; Robles, M.; Talon, M.; Dopazo, J.; Conesa, A. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008, 36, 3420–3435. [Google Scholar] [CrossRef]
- Morgan, M.; Sheperd, L. AnnotationHub: Client to access AnnotationHub resources R package version 3.2.2. 2022. [Google Scholar] [CrossRef]
- Wu, T.; Hu, E.; Xu, S.; Chen, M.; Guo, P.; Dai, Z.; Feng, T.; Zhou, L.; Tang, W.; Zhan, L.; et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation 2021, 2, 100141. [Google Scholar] [CrossRef]
- Zou, Z.; Souza-Neto, J.; Xi, Z.; Kokoza, V.; Shin, S.W.; Dimopoulos, G.; Raikhel, A. Transcriptome analysis of Aedes aegypti transgenic mosquitoes with altered immunity. PLoS Pathog. 2011, 7, e1002394. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Alto, B.W.; Shin, D.; Yu, F. The Effect of Permethrin Resistance on Aedes aegypti Transcriptome Following Ingestion of Zika Virus Infected Blood. Viruses 2018, 10, 470. [Google Scholar] [CrossRef] [Green Version]
- Souza-Neto, J.A.; Sim, S.; Dimopoulos, G. An evolutionary conserved function of the JAK-STAT pathway in anti-dengue defense. Proc. Natl. Acad. Sci. USA 2009, 106, 17841–17846. [Google Scholar] [CrossRef]
- Paradkar, P.N.; Trinidad, L.; Voysey, R.; Duchemin, J.B.; Walker, P.J. Secreted Vago restricts West Nile virus infection in Culex mosquito cells by activating the Jak-STAT pathway. Proc. Natl. Acad. Sci. USA 2012, 109, 18915–18920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xi, Z.; Ramirez, J.L.; Dimopoulos, G. The Aedes aegypti toll pathway controls dengue virus infection. PLoS Pathog. 2008, 4, e1000098. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.S.; Webster, J.A.; Madzokere, E.T.; Stephenson, E.B.; Herrero, L.J. Mosquito antiviral defense mechanisms: A delicate balance between innate immunity and persistent viral infection. Parasit Vectors 2019, 12, 165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, R.; Zhu, Y.; Pang, X.; Xiao, X.; Zhang, R.; Cheng, G. Regulation of Antimicrobial Peptides in Aedes aegypti Aag2 Cells. Front. Cell Infect Microbiol. 2017, 7, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chowdhury, A.; Modahl, C.M.; Misse, D.; Kini, R.M.; Pompon, J. High resolution proteomics of Aedes aegypti salivary glands infected with either dengue, Zika or chikungunya viruses identify new virus specific and broad antiviral factors. Sci. Rep. 2021, 11, 23696. [Google Scholar] [CrossRef]
- Hixson, B.; Bing, X.L.; Yang, X.; Bonfini, A.; Nagy, P.; Buchon, N. A transcriptomic atlas of Aedes aegypti reveals detailed functional organization of major body parts and gut regional specializations in sugar-fed and blood-fed adult females. elife 2022, 11, e76132. [Google Scholar] [CrossRef]
- Luplertlop, N.; Surasombatpattana, P.; Patramool, S.; Dumas, E.; Wasinpiyamongkol, L.; Saune, L.; Hamel, R.; Bernard, E.; Sereno, D.; Thomas, F.; et al. Induction of a peptide with activity against a broad spectrum of pathogens in the Aedes aegypti salivary gland, following Infection with Dengue Virus. PLoS Pathog. 2011, 7, e1001252. [Google Scholar] [CrossRef]
- Sim, S.; Ramirez, J.L.; Dimopoulos, G. Dengue virus infection of the Aedes aegypti salivary gland and chemosensory apparatus induces genes that modulate infection and blood-feeding behavior. PLoS Pathog. 2012, 8, e1002631. [Google Scholar] [CrossRef] [Green Version]
- Tikhe, C.V.; Dimopoulos, G. Mosquito antiviral immune pathways. Dev. Comp. Immunol. 2021, 116, 103964. [Google Scholar] [CrossRef]
- Tetreau, G.; Grizard, S.; Patil, C.D.; Tran, F.H.; Tran Van, V.; Stalinski, R.; Laporte, F.; Mavingui, P.; Despres, L.; Valiente Moro, C. Bacterial microbiota of Aedes aegypti mosquito larvae is altered by intoxication with Bacillus thuringiensis israelensis. Parasit. Vectors 2018, 11, 121. [Google Scholar] [CrossRef]
- Dickson, L.B.; Jiolle, D.; Minard, G.; Moltini-Conclois, I.; Volant, S.; Ghozlane, A.; Bouchier, C.; Ayala, D.; Paupy, C.; Moro, C.V.; et al. Carryover effects of larval exposure to different environmental bacteria drive adult trait variation in a mosquito vector. Sci. Adv. 2017, 3, e1700585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, Y.; Manfredini, F.; Dimopoulos, G. Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathog. 2009, 5, e1000423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guegan, M.; Zouache, K.; Demichel, C.; Minard, G.; Tran Van, V.; Potier, P.; Mavingui, P.; Valiente Moro, C. The mosquito holobiont: Fresh insight into mosquito-microbiota interactions. Microbiome 2018, 6, 49. [Google Scholar] [CrossRef] [PubMed]
- Muturi, E.J.; Dunlap, C.; Ramirez, J.L.; Rooney, A.P.; Kim, C.H. Host blood-meal source has a strong impact on gut microbiota of Aedes aegypti. FEMS Microbiol. Ecol. 2019, 95, fiy213. [Google Scholar] [CrossRef] [Green Version]
- Villegas, L.E.M.; Campolina, T.B.; Barnabe, N.R.; Orfano, A.S.; Chaves, B.A.; Norris, D.E.; Pimenta, P.F.P.; Secundino, N.F.C. Zika virus infection modulates the bacterial diversity associated with Aedes aegypti as revealed by metagenomic analysis. PLoS One 2018, 13, e0190352. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.; Sun, P.; Nie, K.; Zhu, Y.; Shi, M.; Xiao, C.; Liu, H.; Liu, Q.; Zhao, T.; Chen, X.; et al. A Gut Commensal Bacterium Promotes Mosquito Permissiveness to Arboviruses. Cell Host Microbe 2019, 25, 101–112.e105. [Google Scholar] [CrossRef] [Green Version]
- Batool, K.; Alam, I.; Wu, S.; Liu, W.; Zhao, G.; Chen, M.; Wang, J.; Xu, J.; Huang, T.; Pan, X.; et al. Transcriptomic Analysis of Aedes aegypti in Response to Mosquitocidal Bacillus thuringiensis LLP29 Toxin. Sci. Rep. 2018, 8, 12650. [Google Scholar] [CrossRef] [Green Version]
- Despres, L.; Stalinski, R.; Faucon, F.; Navratil, V.; Viari, A.; Paris, M.; Tetreau, G.; Poupardin, R.; Riaz, M.A.; Bonin, A.; et al. Chemical and biological insecticides select distinct gene expression patterns in Aedes aegypti mosquito. Biol. Lett. 2014, 10, 20140716. [Google Scholar] [CrossRef] [Green Version]
- Stalinski, R.; Laporte, F.; Despres, L.; Tetreau, G. Alkaline phosphatases are involved in the response of Aedes aegypti larvae to intoxication with Bacillus thuringiensis subsp. israelensis Cry toxins. Environ. Microbiol. 2016, 18, 1022–1036. [Google Scholar] [CrossRef]
- Despres, L.; Stalinski, R.; Tetreau, G.; Paris, M.; Bonin, A.; Navratil, V.; Reynaud, S.; David, J.P. Gene expression patterns and sequence polymorphisms associated with mosquito resistance to Bacillus thuringiensis israelensis toxins. BMC Genom. 2014, 15, 926. [Google Scholar] [CrossRef]
- Paris, M.; Melodelima, C.; Coissac, E.; Tetreau, G.; Reynaud, S.; David, J.P.; Despres, L. Transcription profiling of resistance to Bti toxins in the mosquito Aedes aegypti using next-generation sequencing. J. Invertebr Pathol. 2012, 109, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Rezende, T.M.T.; Rezende, A.M.; Luz Wallau, G.; Santos Vasconcelos, C.R.; de-Melo-Neto, O.P.; Silva-Filha, M.; Romao, T.P. A differential transcriptional profile by Culex quinquefasciatus larvae resistant to Lysinibacillus sphaericus IAB59 highlights genes and pathways associated with the resistance phenotype. Parasit. Vectors 2019, 12, 407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kodrik, D.; Ibrahim, E.; Gautam, U.K.; Capkova Frydrychova, R.; Bednarova, A.; Kristufek, V.; Jedlicka, P. Changes in vitellogenin expression caused by nematodal and fungal infections in insects. J. Exp. Biol. 2019, 222, jeb202853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, H.G.; Lee, K.S.; Kim, B.Y.; Yoon, H.J.; Choi, Y.S.; Lee, K.Y.; Wan, H.; Li, J.; Jin, B.R. Honeybee (Apis cerana) vitellogenin acts as an antimicrobial and antioxidant agent in the body and venom. Dev. Comp. Immunol. 2018, 85, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Salmela, H.; Amdam, G.V.; Freitak, D. Transfer of Immunity from Mother to Offspring Is Mediated via Egg-Yolk Protein Vitellogenin. PLoS Pathog. 2015, 11, e1005015. [Google Scholar] [CrossRef] [Green Version]
- Singh, N.K.; Pakkianathan, B.C.; Kumar, M.; Prasad, T.; Kannan, M.; Konig, S.; Krishnan, M. Vitellogenin from the silkworm, Bombyx mori: An effective anti-bacterial agent. PLoS One 2013, 8, e73005. [Google Scholar] [CrossRef] [Green Version]
- Shin, D.; Civana, A.; Acevedo, C.; Smartt, C.T. Transcriptomics of differential vector competence: West Nile virus infection in two populations of Culex pipiens quinquefasciatus linked to ovary development. BMC Genom. 2014, 15, 513. [Google Scholar] [CrossRef] [Green Version]
- Carvalho-Leandro, D.; Ayres, C.F.; Guedes, D.R.; Suesdek, L.; Melo-Santos, M.A.; Oliveira, C.F.; Cordeiro, M.T.; Regis, L.N.; Marques, E.T.; Gil, L.H.; et al. Immune transcript variations among Aedes aegypti populations with distinct susceptibility to dengue virus serotype 2. Acta Trop. 2012, 124, 113–119. [Google Scholar] [CrossRef]
- Chaves, B.A.; Godoy, R.S.M.; Campolina, T.B.; Junior, A.B.V.; Paz, A.D.C.; Vaz, E.; Silva, B.M.; Nascimento, R.M.; Guerra, M.; Lacerda, M.V.G.; et al. Dengue Infection Susceptibility of Five Aedes aegypti Populations from Manaus (Brazil) after Challenge with Virus Serotypes 1-4. Viruses 2021, 14, 20. [Google Scholar] [CrossRef]
- Gloria-Soria, A.; Payne, A.F.; Bialosuknia, S.M.; Stout, J.; Mathias, N.; Eastwood, G.; Ciota, A.T.; Kramer, L.D.; Armstrong, P.M. Vector Competence of Aedes albopictus Populations from the Northeastern United States for Chikungunya, Dengue, and Zika Viruses. Am. J. Trop. Med. Hyg. 2020, 104, 1123–1130. [Google Scholar] [CrossRef]
- Godoy, R.S.M.; Felix, L.D.S.; Orfano, A.D.S.; Chaves, B.A.; Nogueira, P.M.; Costa, B.D.A.; Soares, A.S.; Oliveira, C.C.A.; Nacif-Pimenta, R.; Silva, B.M.; et al. Dengue and Zika virus infection patterns vary among Aedes aegypti field populations from Belo Horizonte, a Brazilian endemic city. PLoS Negl. Trop. Dis. 2021, 15, e0009839. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.; Kang, S.; Smartt, C.T. Profiling Transcripts of Vector Competence between Two Different Aedes aegypti Populations in Florida. Viruses 2020, 12, 823. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.B.; Aimanova, K.G.; Gill, S.S. Alkaline phosphatases and aminopeptidases are altered in a Cry11Aa resistant strain of Aedes aegypti. Insect Biochem. Mol. Biol. 2014, 54, 112–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tetreau, G.; Bayyareddy, K.; Jones, C.M.; Stalinski, R.; Riaz, M.A.; Paris, M.; David, J.P.; Adang, M.J.; Despres, L. Larval midgut modifications associated with Bti resistance in the yellow fever mosquito using proteomic and transcriptomic approaches. BMC Genomics 2012, 13, 248. [Google Scholar] [CrossRef] [Green Version]
- Jimenez, A.I.; Reyes, E.Z.; Cancino-Rodezno, A.; Bedoya-Perez, L.P.; Caballero-Flores, G.G.; Muriel-Millan, L.F.; Likitvivatanavong, S.; Gill, S.S.; Bravo, A.; Soberón, M. Aedes aegypti alkaline phosphatase ALP1 is a functional receptor of Bacillus thuringiensis Cry4Ba and Cry11Aa toxins. Insect Biochem. Mol. Biol. 2012, 42, 683–689. [Google Scholar] [CrossRef]
Sample | N | LC50 (95% CI) a | R b | LC90 (95% CI) | R |
---|---|---|---|---|---|
Bti | |||||
Rocke c | 1620 | 0.008 (0.007–0.009) | 1.0 | 0.026 (0.021–0.036) | 1.0 |
RecL d | 1200 | 0.009 (0.007–0.010) | 1.1 | 0.027 (0.022–0.040) | 1.0 |
RecBti F35 | 1680 | 0.015 (0.012–0.013) | 1.9 | 0.030 (0.029–0.039) | 1.2 |
Cry11Aa | |||||
Rocke | 1260 | 0.436 (0.338–0.666) | 1.0 | ND e | ND |
RecBti F35 | 1680 | 0.717 (0.493–0.968) | 1.6 | ND | ND |
Cry4Ba | |||||
Rocke | 1080 | 0.331 (0.209–0.492) | 1.0 | ND | ND |
RecBti F35 | 1680 | 0.731 (0.6285–1.24) | 2.2 | ND | ND |
Identity | Description | LFC a | p-Value |
---|---|---|---|
Downregulated | |||
AAEL027968 | Hypothetical protein | −4.92 | 2.51 × 10−2 |
AAEL000566 | Methionine aminopeptidase 1b | −2.67 | 2.49 × 10−5 |
AAEL008259 | Kielin/chordin-like protein | −2.35 | 1.56 × 10−4 |
AAEL019709 | Diacylglycerol kinase 1 | −1.86 | 4.16 × 10−4 |
AAEL021557 | Poor Imd response | −1.80 | 5.99 × 10−7 |
AAEL026924 | lncRNA | −1.78 | 3.37 × 10−5 |
AAEL020401 | Endothelial PAS domain-containing protein 1 | −1.68 | 3.56 × 10−4 |
AAEL005790 | Malic enzyme | −1.54 | 2.14 × 10−9 |
AAEL006318 | Short-chain dehydrogenase | −1.52 | 4.08 × 10−4 |
AAEL015424 | Putative adult cuticle protein | −1.51 | 1.62 × 10−4 |
AAEL001902 | Glutamate decarboxylase | −1.47 | 6.65 × 10−4 |
AAEL019461 | Protein timeless | −1.41 | 2.34 × 10−7 |
AAEL013421 | Alpha-amylase | −1.41 | 5.53 × 10−5 |
AAEL003626 | Sodium dependent amino acid transporter | −1.39 | 5.06 × 10−7 |
AAEL009822 | GPCR Metabotropic glutamate | −1.37 | 1.17 × 10−3 |
AAEL012646 | Protein obstructor-E | −1.36 | 3.52 × 10−4 |
AAEL010150 | SH2 domain-containing protein 2A | −1.26 | 1.86 × 10−5 |
AAEL013432 | Serine protease | −1.26 | 7.07 × 10−8 |
AAEL020382 | Acetyl-coenzyme A synthetase | −1.26 | 1.94 × 10−6 |
AAEL010656 | Leucine-rich immune protein | −1.21 | 3.70 × 10−8 |
AAEL007884 | Conserved membrane protein 44E | −1.19 | 4.51 × 10−4 |
AAEL028013 | Alanine-glyoxylate aminotransferase | −1.16 | 1.42 × 10−4 |
AAEL006352 | Hybrid signal transduction histidine kinase B | −1.15 | 1.86 × 10−4 |
AAEL000006 | Phosphoenolpyruvate carboxykinase | −1.05 | 2.50 × 10−5 |
AAEL026008 | Biotin synthase | −1.04 | 5.27 × 10−7 |
AAEL020729 | Ribosomal protein VAR1, mitochondrial | −1.04 | 1.30 × 10−6 |
AAEL000670 | Methionine sulfoxide reductase | −1.03 | 1.28 × 10−5 |
AAEL014551 | Triacylglycerol lipase, pancreatic | −1.03 | 7.74 × 10−7 |
AAEL003405 | Regulator of microtubule dynamics protein 1 | −1.02 | 6.87 × 10−6 |
AAEL003203 | Fatty acid desaturase | −1.01 | 8.69 × 10−7 |
AAEL020470 | Serine protease snake | −1.00 | 5.02 × 10−4 |
AAEL026833 | ETS domain-containing transcription fact. ERF | −1.00 | 9.64 × 10−6 |
AAEL012423 | Cell wall integrity stress response component 1 | −1.00 | 2.73 × 10−4 |
AAEL027335 | Acyl-CoA Delta-9 desaturase | −1.00 | 5.63 × 10−4 |
Upregulated | |||
AAEL006563 | Vitellogenic carboxypeptidase precursor | 2.14 | 4.94 × 10−2 |
AAEL024334 | lnc_RNA | 1.92 | 5.09 × 10−3 |
AAEL021510 | Mucin-2 | 1.90 | 4.00 × 10−4 |
AAEL009642 | Cathepsin b | 1.89 | 6.55 × 10−4 |
AAEL001901 | MRAS2 | 1.83 | 3.32 × 10−2 |
AAEL005465 | Parkin coregulated gene protein homolog | 1.66 | 4.94 × 10−2 |
AAEL017514 | Histidine-rich glycoprotein-like | 1.59 | 3.37 × 10−11 |
AAEL027293 | CAAX prenyl protease 1 homolog | 1.58 | 2.70 × 10−4 |
AAEL022339 | lnc_RNA | 1.57 | 1,62 × 10−4 |
AAEL006376 | Trypsin | 1.45 | 7.61 × 10−4 |
AAEL005787 | Serine protease | 1.43 | 9.40 × 10−5 |
AAEL013857 | Serine protease Hayan-like, transcript v X2 | 1.38 | 1.63 × 10−6 |
AAEL010089 | Protein AAR2 homolog | 1.36 | 4.81 × 10−5 |
AAEL023769 | 40S ribosomal protein S21 | 1.26 | 4.86 × 10−4 |
AAEL026177 | Acyl-CoA-binding domain b | 1.18 | 1.72 × 10−4 |
AAEL025367 | lnc_RNA | 1.17 | 4.55 × 10−7 |
AAEL001833 | Juvenile hormone-inducible protein | 1.09 | 2.63 × 10−4 |
AAEL022334 | lnc_RNA | 1.08 | 2.10 × 10−7 |
AAEL007875 | Leucine-rich repeat c | 1.08 | 2.07 × 10−5 |
AAEL000396 | Calcium-dependent protein kinase 1 | 1.07 | 1.92 × 10−4 |
AAEL011126 | Alcohol dehydrogenase | 1.06 | 7.24 × 10−6 |
AAEL001016 | Zinc finger protein | 1.06 | 3.11 × 10−4 |
AAEL011463 | Cytochrome P450 | 1.05 | 9.04 × 10−4 |
AAEL026175 | Apolipophorins-like | 1.04 | 1.05 × 10−5 |
AAEL002453 | Zinc finger protein | 1.01 | 3.62 × 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carvalho, K.S.; Rezende, T.M.T.; Romão, T.P.; Rezende, A.M.; Chiñas, M.; Guedes, D.R.D.; Paiva-Cavalcanti, M.; Silva-Filha, M.H.N.L. Aedes aegypti Strain Subjected to Long-Term Exposure to Bacillus thuringiensis svar. israelensis Larvicides Displays an Altered Transcriptional Response to Zika Virus Infection. Viruses 2023, 15, 72. https://doi.org/10.3390/v15010072
Carvalho KS, Rezende TMT, Romão TP, Rezende AM, Chiñas M, Guedes DRD, Paiva-Cavalcanti M, Silva-Filha MHNL. Aedes aegypti Strain Subjected to Long-Term Exposure to Bacillus thuringiensis svar. israelensis Larvicides Displays an Altered Transcriptional Response to Zika Virus Infection. Viruses. 2023; 15(1):72. https://doi.org/10.3390/v15010072
Chicago/Turabian StyleCarvalho, Karine S., Tatiana M. T. Rezende, Tatiany P. Romão, Antônio M. Rezende, Marcos Chiñas, Duschinka R. D. Guedes, Milena Paiva-Cavalcanti, and Maria Helena N. L. Silva-Filha. 2023. "Aedes aegypti Strain Subjected to Long-Term Exposure to Bacillus thuringiensis svar. israelensis Larvicides Displays an Altered Transcriptional Response to Zika Virus Infection" Viruses 15, no. 1: 72. https://doi.org/10.3390/v15010072
APA StyleCarvalho, K. S., Rezende, T. M. T., Romão, T. P., Rezende, A. M., Chiñas, M., Guedes, D. R. D., Paiva-Cavalcanti, M., & Silva-Filha, M. H. N. L. (2023). Aedes aegypti Strain Subjected to Long-Term Exposure to Bacillus thuringiensis svar. israelensis Larvicides Displays an Altered Transcriptional Response to Zika Virus Infection. Viruses, 15(1), 72. https://doi.org/10.3390/v15010072