PluriBAC: A Versatile Baculovirus-Based Modular System to Express Heterologous Genes in Different Biotechnological Platforms
Abstract
:1. Introduction
2. Materials and Methods
2.1. PluriBAC System Design and Vector Building
2.2. Golden Gate Assembly Protocol
2.3. Insect Cells
2.4. RecAcMNPV Generation
2.5. BV Titration
2.6. RecAcMNPV Per Os Infection
2.6.1. RecAcMNPV Occlusion Bodies Extraction
2.6.2. Spodoptera Frugiperda Larvae Per Os Infection
2.7. Mammalian Cells
2.8. Baculovirus-Mediated Transduction In Vitro
2.9. Animals
2.10. Baculovirus-Mediated Transduction In Vivo
2.11. Cisplatin pMDR1 Induction
2.12. Epifluorescence Microscopy
3. Results
3.1. PluriBAC as a Versatile Multi Entry Level System
3.2. PluriBAC-Derived recAcMNPV Could Carry on Larvae Per Os Infection
3.3. PluriBAC-Derived recAcMNPV Efficiently Transduce CNS Cells In Vitro and In Vivo
3.4. Chemotherapy-Inducible Promoters Can Also Be Chosen to Generate recAcMNPV for Gene Therapy
3.5. Multiple Insert Assembly in Bac-to-BacTM Expression System
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harrison, R.L.; Herniou, E.A.; Jehle, J.A.; Theilmann, D.A.; Burand, J.P.; Becnel, J.J.; Krell, P.J.; Van Oers, M.M.; Mowery, J.D.; Bauchan, G.R.; et al. ICTV Virus Taxonomy Profile: Baculoviridae. J. Gen. Virol. 2018, 99, 1185–1186. [Google Scholar] [CrossRef] [PubMed]
- Pidre, M.L.; Arrías, P.N.; Amorós Morales, L.C.; Romanowski, V. The Magic Staff: A Comprehensive Overview of Baculovirus-Based Technologies Applied to Human and Animal Health. Viruses 2022, 15, 80. [Google Scholar] [CrossRef]
- Rohrmann, G.F. Baculovirus Molecular Biology, 4th ed.; National Center for Biotechnology Information (US): Bethesda, MD, USA, 2019. [Google Scholar]
- Geisler, C.; Mabashi-Asazuma, H.; Jarvis, D.L. An Overview and History of Glyco-Engineering in Insect Expression Systems. In Glyco-Engineering; Castilho, A., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2015; Volume 1321, pp. 131–152. ISBN 978-1-4939-2759-3. [Google Scholar]
- Haase, S.; Ferrelli, L.; Pidre, M.L.; Romanowski, V. Genetic Engineering of Baculoviruses. In Current Issues in Molecular Virology—Viral Genetics and Biotechnological Applications; Romanowski, V., Ed.; InTech: Houston, TX, USA, 2013; ISBN 978-953-51-1207-5. [Google Scholar]
- Grabherr, R.; Ernst, W. Baculovirus for Eukaryotic Protein Display. CGT 2010, 10, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.E.; Summers, M.D.; Fraser, M.J. Production of Human Beta Interferon in Insect Cells Infected with a Baculovirus Expression Vector. Mol. Cell. Biol. 1983, 3, 2156–2165. [Google Scholar] [CrossRef]
- Targovnik, A.M.; Simonin, J.A.; Mc Callum, G.J.; Smith, I.; Cuccovia Warlet, F.U.; Nugnes, M.V.; Miranda, M.V.; Belaich, M.N. Solutions against Emerging Infectious and Noninfectious Human Diseases through the Application of Baculovirus Technologies. Appl. Microbiol. Biotechnol. 2021, 105, 8195–8226. [Google Scholar] [CrossRef]
- Pidre, M.L.; Ferrelli, M.L.; Haase, S.; Romanowski, V. Baculovirus Display: A Novel Tool for Vaccination. In Current Issues in Molecular Virology—Viral Genetics and Biotechnological Applications; Romanowski, V., Ed.; InTech: Houston, TX, USA, 2013; ISBN 978-953-51-1207-5. [Google Scholar]
- Madhan, S.; Prabakaran, M.; Kwang, J. Baculovirus as Vaccine Vectors. CGT 2010, 10, 201–213. [Google Scholar] [CrossRef]
- Je, Y.H.; Chang, J.H.; Choi, J.Y.; Roh, J.Y.; Jin, B.R.; O’Reilly, D.R.; Kang, S.K. A Defective Viral Genome Maintained in Escherichia Coli for the Generation of Baculovirus Expression Vectors. Biotechnol. Lett. 2001, 23, 575–582. [Google Scholar] [CrossRef]
- Je, Y.H.; Chang, J.H.; Roh, J.; Jin, B.R. Generation of Baculovirus Expression Vector Using Defective Autographa Californica Nuclear Polyhedrosis Virus Genome Maintained in Escherichia Coli for Occ+ Virus Production. Int. J. Indust. Entomol. 2001, 2, 155–160. [Google Scholar]
- Luckow, V.A.; Lee, S.C.; Barry, G.F.; Olins, P.O. Efficient Generation of Infectious Recombinant Baculoviruses by Site-Specific Transposon-Mediated Insertion of Foreign Genes into a Baculovirus Genome Propagated in Escherichia coli. J. Virol. 1993, 67, 4566–4579. [Google Scholar] [CrossRef]
- Engler, C.; Marillonnet, S. Combinatorial DNA Assembly Using Golden Gate Cloning. In Synthetic Biology; Polizzi, K.M., Kontoravdi, C., Eds.; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2013; Volume 1073, pp. 141–156. ISBN 978-1-62703-624-5. [Google Scholar]
- Engler, C.; Youles, M.; Gruetzner, R.; Ehnert, T.-M.; Werner, S.; Jones, J.D.G.; Patron, N.J.; Marillonnet, S. A Golden Gate Modular Cloning Toolbox for Plants. ACS Synth. Biol. 2014, 3, 839–843. [Google Scholar] [CrossRef]
- Lee, J.H.; Won, H.J.; Oh, E.-S.; Oh, M.-H.; Jung, J.H. Golden Gate Cloning-Compatible DNA Replicon/2A-Mediated Polycistronic Vectors for Plants. Front. Plant Sci. 2020, 11, 559365. [Google Scholar] [CrossRef]
- Dahlmann, T.A.; Terfehr, D.; Becker, K.; Teichert, I. Golden Gate Vectors for Efficient Gene Fusion and Gene Deletion in Diverse Filamentous Fungi. Curr. Genet. 2021, 67, 317–330. [Google Scholar] [CrossRef]
- Larroude, M.; Nicaud, J.-M.; Rossignol, T. Golden Gate Multigene Assembly Method for Yarrowia Lipolytica. In Yeast Metabolic Engineering; Mapelli, V., Bettiga, M., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2022; Volume 2513, pp. 205–220. ISBN 978-1-07-162398-5. [Google Scholar]
- Prielhofer, R.; Barrero, J.J.; Steuer, S.; Gassler, T.; Zahrl, R.; Baumann, K.; Sauer, M.; Mattanovich, D.; Gasser, B.; Marx, H. GoldenPiCS: A Golden Gate-Derived Modular Cloning System for Applied Synthetic Biology in the Yeast Pichia Pastoris. BMC Syst. Biol. 2017, 11, 123. [Google Scholar] [CrossRef] [PubMed]
- Neuhold, J.; Radakovics, K.; Lehner, A.; Weissmann, F.; Garcia, M.Q.; Romero, M.C.; Berrow, N.S.; Stolt-Bergner, P. GoldenBac: A Simple, Highly Efficient, and Widely Applicable System for Construction of Multi-Gene Expression Vectors for Use with the Baculovirus Expression Vector System. BMC Biotechnol. 2020, 20, 26. [Google Scholar] [CrossRef]
- Eberle, K.E.; Wennmann, J.T.; Kleespies, R.G.; Jehle, J.A. Basic Techniques in Insect Virology. In Manual of Techniques in Invertebrate Pathology; Elsevier: Amsterdam, The Netherlands, 2012; pp. 15–74. ISBN 978-0-12-386899-2. [Google Scholar]
- Pantha, P.; Chalivendra, S.; Oh, D.-H.; Elderd, B.D.; Dassanayake, M. A Tale of Two Transcriptomic Responses in Agricultural Pests via Host Defenses and Viral Replication. Int. J. Mol. Sci. 2021, 22, 3568. [Google Scholar] [CrossRef]
- Videla Richardson, G.A.; Garcia, C.P.; Roisman, A.; Slavutsky, I.; Fernandez Espinosa, D.D.; Romorini, L.; Miriuka, S.G.; Arakaki, N.; Martinetto, H.; Scassa, M.E.; et al. Specific Preferences in Lineage Choice and Phenotypic Plasticity of Glioma Stem Cells Under BMP4 and Noggin Influence: Lineage Choice of Glioma Stem Cells. Brain Pathol. 2016, 26, 43–61. [Google Scholar] [CrossRef] [PubMed]
- Garcia Fallit, M.; Pidre, M.L.; Asad, A.S.; Peña Agudelo, J.A.; Vera, M.B.; Nicola Candia, A.J.; Sagripanti, S.B.; Pérez Kuper, M.; Amorós Morales, L.C.; Marchesini, A.; et al. Evaluation of Baculoviruses as Gene Therapy Vectors for Brain Cancer. Viruses 2023, 15, 608. [Google Scholar] [CrossRef] [PubMed]
- Núñez, F.J.; Mendez, F.M.; Kadiyala, P.; Alghamri, M.S.; Savelieff, M.G.; Garcia-Fabiani, M.B.; Haase, S.; Koschmann, C.; Calinescu, A.-A.; Kamran, N.; et al. IDH1-R132H Acts as a Tumor Suppressor in Glioma via Epigenetic up-Regulation of the DNA Damage Response. Sci. Transl. Med. 2019, 11, eaaq1427. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Xu, Z.; Xu, W.; Jiang, K.; Zhang, F.; Ding, Q.; Xu, Z.; Chen, Y. Inhibition of ATM Reverses EMT and Decreases Metastatic Potential of Cisplatin-Resistant Lung Cancer Cells through JAK/STAT3/PD-L1 Pathway. J. Exp. Clin. Cancer Res. 2019, 38, 149. [Google Scholar] [CrossRef]
- Cruz-Bermúdez, A.; Laza-Briviesca, R.; Vicente-Blanco, R.J.; García-Grande, A.; Coronado, M.J.; Laine-Menéndez, S.; Palacios-Zambrano, S.; Moreno-Villa, M.R.; Ruiz-Valdepeñas, A.M.; Lendinez, C.; et al. Cisplatin Resistance Involves a Metabolic Reprogramming through ROS and PGC-1α in NSCLC Which Can Be Overcome by OXPHOS Inhibition. Free Radic. Biol. Med. 2019, 135, 167–181. [Google Scholar] [CrossRef]
- Tiong, T.-Y.; Weng, P.-W.; Wang, C.-H.; Setiawan, S.A.; Yadav, V.K.; Pikatan, N.W.; Fong, I.-H.; Yeh, C.-T.; Hsu, C.-H.; Kuo, K.-T. Targeting the SREBP-1/Hsa-Mir-497/SCAP/FASN Oncometabolic Axis Inhibits the Cancer Stem-like and Chemoresistant Phenotype of Non-Small Cell Lung Carcinoma Cells. Int. J. Mol. Sci. 2022, 23, 7283. [Google Scholar] [CrossRef]
- Ye, L.-Y.; Hu, S.; Xu, H.-E.; Xu, R.-R.; Kong, H.; Zeng, X.-N.; Xie, W.-P.; Wang, H. The Effect of Tetrandrine Combined with Cisplatin on Proliferation and Apoptosis of A549/DDP Cells and A549 Cells. Cancer Cell Int. 2017, 17, 40. [Google Scholar] [CrossRef]
- Tang, X.; Yan, L.; Zhu, L.; Jiao, D.; Chen, J.; Chen, Q. Salvianolic Acid A Reverses Cisplatin Resistance in Lung Cancer A549 Cells by Targeting C-Met and Attenuating Akt/MTOR Pathway. J. Pharmacol. Sci. 2017, 135, 1–7. [Google Scholar] [CrossRef]
- Mao, Q.; Unadkat, J.D. Role of the Breast Cancer Resistance Protein (BCRP/ABCG2) in Drug Transport—An Update. AAPS J. 2015, 17, 65–82. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, L.J.; Galski, H.; Fojo, A.; Willingham, M.; Lai, S.-L.; Gazdar, A.; Pirker, R.; Green, A.; Crist, W.; Brodeur, G.M.; et al. Expression of Multidrug Resistance Gene in Human Cancers. JNCI J. Natl. Cancer Inst. 1989, 81, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Amiri-Kordestani, L.; Basseville, A.; Kurdziel, K.; Fojo, A.T.; Bates, S.E. Targeting MDR in Breast and Lung Cancer: Discriminating Its Potential Importance from the Failure of Drug Resistance Reversal Studies. Drug Resist. Updates 2012, 15, 50–61. [Google Scholar] [CrossRef]
- Robey, R.W.; Pluchino, K.M.; Hall, M.D.; Fojo, A.T.; Bates, S.E.; Gottesman, M.M. Revisiting the Role of ABC Transporters in Multidrug-Resistant Cancer. Nat. Rev. Cancer 2018, 18, 452–464. [Google Scholar] [CrossRef] [PubMed]
- Chambers, A.C.; Aksular, M.; Graves, L.P.; Irons, S.L.; Possee, R.D.; King, L.A. Overview of the Baculovirus Expression System. Curr. Protoc. Protein Sci. 2018, 91, 5.4.1–5.4.6. [Google Scholar] [CrossRef]
- Berger, I.; Fitzgerald, D.J.; Richmond, T.J. Baculovirus Expression System for Heterologous Multiprotein Complexes. Nat. Biotechnol. 2004, 22, 1583–1587. [Google Scholar] [CrossRef]
- Weissmann, F.; Petzold, G.; VanderLinden, R.; Huis In ’T Veld, P.J.; Brown, N.G.; Lampert, F.; Westermann, S.; Stark, H.; Schulman, B.A.; Peters, J.-M. BiGBac Enables Rapid Gene Assembly for the Expression of Large Multisubunit Protein Complexes. Proc. Natl. Acad. Sci. USA 2016, 113, E2564–E2569. [Google Scholar] [CrossRef]
- Occhialini, A.; Piatek, A.A.; Pfotenhauer, A.C.; Frazier, T.P.; Stewart, C.N.; Lenaghan, S.C. MoChlo: A Versatile, Modular Cloning Toolbox for Chloroplast Biotechnology. Plant Physiol. 2019, 179, 943–957. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.; Zhou, J.; Zhang, L.; Xu, P. A Golden-Gate Based Cloning Toolkit to Build Violacein Pathway Libraries in Yarrowia Lipolytica. ACS Synth. Biol. 2021, 10, 115–124. [Google Scholar] [CrossRef]
- Stokstad, E. New Crop Pest Takes Africa at Lightning Speed. Science 2017, 356, 473–474. [Google Scholar] [CrossRef]
- Silver, A. Caterpillar’s Devastating March across China Spurs Hunt for Native Predator. Nature 2019, 570, 286–287. [Google Scholar] [CrossRef] [PubMed]
- Bernardi, D.; Salmeron, E.; Horikoshi, R.J.; Bernardi, O.; Dourado, P.M.; Carvalho, R.A.; Martinelli, S.; Head, G.P.; Omoto, C. Cross-Resistance between Cry1 Proteins in Fall Armyworm (Spodoptera frugiperda) May Affect the Durability of Current Pyramided Bt Maize Hybrids in Brazil. PLoS ONE 2015, 10, e0140130. [Google Scholar] [CrossRef]
- Harrison, R.D.; Thierfelder, C.; Baudron, F.; Chinwada, P.; Midega, C.; Schaffner, U.; Van Den Berg, J. Agro-Ecological Options for Fall Armyworm (Spodoptera frugiperda JE Smith) Management: Providing Low-Cost, Smallholder Friendly Solutions to an Invasive Pest. J. Environ. Manag. 2019, 243, 318–330. [Google Scholar] [CrossRef] [PubMed]
- Masson, T.; Fabre, M.L.; Pidre, M.L.; Niz, J.M.; Berretta, M.F.; Romanowski, V.; Ferrelli, M.L. Genomic Diversity in a Population of Spodoptera frugiperda Nucleopolyhedrovirus. Infect. Genet. Evol. 2021, 90, 104749. [Google Scholar] [CrossRef] [PubMed]
- Pidre, M.L.; Sabalette, K.B.; Romanowski, V.; Ferrelli, M.L. Identification of an Argentinean Isolate of Spodoptera frugiperda Granulovirus. Rev. Argent. Microbiol. 2019, 51, 381–385. [Google Scholar] [CrossRef]
- Niz, J.M.; Salvador, R.; Ferrelli, M.L.; De Cap, A.S.; Romanowski, V.; Berretta, M.F. Genetic Variants in Argentinean Isolates of Spodoptera frugiperda Multiple Nucleopolyhedrovirus. Virus Genes 2020, 56, 401–405. [Google Scholar] [CrossRef]
- Ferrelli, M.L.; Pidre, M.L.; Ghiringhelli, P.D.; Torres, S.; Fabre, M.L.; Masson, T.; Cédola, M.T.; Sciocco-Cap, A.; Romanowski, V. Genomic Analysis of an Argentinean Isolate of Spodoptera frugiperda Granulovirus Reveals That Various Baculoviruses Code for Lef-7 Proteins with Three F-Box Domains. PLoS ONE 2018, 13, e0202598. [Google Scholar] [CrossRef]
- Gottardo, M.F.; Pidre, M.L.; Zuccato, C.; Asad, A.S.; Imsen, M.; Jaita, G.; Candolfi, M.; Romanowski, V.; Seilicovich, A. Baculovirus-Based Gene Silencing of Humanin for the Treatment of Pituitary Tumors. Apoptosis 2018, 23, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Marvaldi, C.; Martin, D.; Conte, J.G.; Gottardo, M.F.; Pidre, M.L.; Imsen, M.; Irizarri, M.; Manuel, S.L.; Duncan, F.E.; Romanowski, V.; et al. Mitochondrial Humanin Peptide Acts as a Cytoprotective Factor in Granulosa Cell Survival. Reproduction 2021, 161, 581–591. [Google Scholar] [CrossRef] [PubMed]
- Peña Agudelo, J.A.; Pidre, M.L.; Garcia Fallit, M.; Pérez Küper, M.; Zuccato, C.; Nicola Candia, A.J.; Marchesini, A.; Vera, M.B.; De Simone, E.; Giampaoli, C.; et al. Mitochondrial Peptide Humanin Facilitates Chemoresistance in Glioblastoma Cells. Cancers 2023, 15, 4061. [Google Scholar] [CrossRef] [PubMed]
- Delou; Souza; Souza; Borges Highlights in Resistance Mechanism Pathways for Combination Therapy. Cells 2019, 8, 1013. [CrossRef]
Golden Gate-Based BEV System Features | PluriBAC | GoldenBac [20] |
---|---|---|
Number of levels | Three | Two |
Path between levels | Multiway | One way |
Variable | Linear | |
Promoters present in vectors | None | Polyhedrin promoter |
Overhangs designed in | Primers | Vectors |
Type IIS RE available to use | Two | One |
Recombinant baculovirus system compatibility | HR and Bac-to-BacTM | HR and Bac-to-BacTM |
Expression platform flexibility | Insect cells Larvae Mammalian cells Mice | Insect cells |
Reported biotechnological applications to date | Per os larvae infection Normal and tumor cell transduction in vitro Normal and tumor cell transduction in vivo Chemotherapy-inducible expression | Multimeric proteins expression |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amorós Morales, L.C.; Marchesini, A.; Gómez Bergna, S.M.; García Fallit, M.; Tongiani, S.E.; Vásquez, L.; Ferrelli, M.L.; Videla-Richardson, G.A.; Candolfi, M.; Romanowski, V.; et al. PluriBAC: A Versatile Baculovirus-Based Modular System to Express Heterologous Genes in Different Biotechnological Platforms. Viruses 2023, 15, 1984. https://doi.org/10.3390/v15101984
Amorós Morales LC, Marchesini A, Gómez Bergna SM, García Fallit M, Tongiani SE, Vásquez L, Ferrelli ML, Videla-Richardson GA, Candolfi M, Romanowski V, et al. PluriBAC: A Versatile Baculovirus-Based Modular System to Express Heterologous Genes in Different Biotechnological Platforms. Viruses. 2023; 15(10):1984. https://doi.org/10.3390/v15101984
Chicago/Turabian StyleAmorós Morales, Leslie C., Abril Marchesini, Santiago M. Gómez Bergna, Matías García Fallit, Silvana E. Tongiani, Larisa Vásquez, María Leticia Ferrelli, Guillermo A. Videla-Richardson, Marianela Candolfi, Víctor Romanowski, and et al. 2023. "PluriBAC: A Versatile Baculovirus-Based Modular System to Express Heterologous Genes in Different Biotechnological Platforms" Viruses 15, no. 10: 1984. https://doi.org/10.3390/v15101984
APA StyleAmorós Morales, L. C., Marchesini, A., Gómez Bergna, S. M., García Fallit, M., Tongiani, S. E., Vásquez, L., Ferrelli, M. L., Videla-Richardson, G. A., Candolfi, M., Romanowski, V., & Pidre, M. L. (2023). PluriBAC: A Versatile Baculovirus-Based Modular System to Express Heterologous Genes in Different Biotechnological Platforms. Viruses, 15(10), 1984. https://doi.org/10.3390/v15101984