A Survey of Henipavirus Tropism—Our Current Understanding from a Species/Organ and Cellular Level
Abstract
:1. Introduction
1.1. The Genus Henipavirus
1.2. Genomic Structure
1.3. Viral Tropism
1.4. Currently Well-Characterized Henipaviruses
1.4.1. Hendra Virus (HeV)
1.4.2. Nipah Virus (NiV)
1.4.3. Cedar Virus (CedV)
1.4.4. Mojiang Virus (MojV)
1.4.5. Ghana Virus (GhV)
1.5. Other Viruses Not Currently Characterized by ICTV as of This Submission
1.5.1. Langya Virus (LayV)
1.5.2. Angavokely Virus (AngV)
1.5.3. Gamak Virus (GAKV)
1.5.4. Daeryong Virus (DARV)
1.5.5. Melian Virus (MeliV)
1.5.6. Denwin Virus (DewV)
2. Experimental Host Tropism
2.1. Hendra Virus (HeV)
2.1.1. Hamsters
2.1.2. Non-Human Primates (NHPs)
2.1.3. Guinea Pigs
2.1.4. Pigs
2.1.5. Fruit Bats
2.1.6. Cats
2.1.7. Ferrets
2.1.8. Horses
2.2. Nipah Virus (NiV)
2.2.1. Hamsters
2.2.2. Non-Human Primates (NHPs)
2.2.3. Guinea Pigs
2.2.4. Pigs
2.2.5. Cats
2.2.6. Bats
2.2.7. Ferrets
2.3. Cedar Virus
2.3.1. Guinea Pigs
2.3.2. Hamsters
2.3.3. Mice
2.3.4. Ferrets
3. Tissue/Organ Tropism
3.1. Hendra Virus (HeV)
3.2. Nipah Virus (NiV)
4. Cellular Tropism
4.1. Nipah Virus (NiV) and Hendra Virus (HeV)
4.2. EphrinB2 and –B3 Are Host Receptors for NiV and HeV
4.3. Specificity of Other Henipavirus Envelope Proteins in Cellular Tropism
4.3.1. GhV
4.3.2. Mojiang Virus (MojV)
4.3.3. Cedar Virus (CedV)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Murray, K.; Rogers, R.; Selvey, L.; Selleck, P.; Hyatt, A.; Gould, A.; Gleeson, L.; Hooper, P.; Westbury, H. A Novel Morbillivirus Pneumonia of Horses and Its Transmission to Humans. Emerg. Infect. Dis. 1995, 1, 31–33. [Google Scholar] [CrossRef] [PubMed]
- Selvey, L.A.; Wells, R.M.; McCormack, J.G.; Ansford, A.J.; Murray, K.; Rogers, R.J.; Lavercombe, P.S.; Selleck, P.; Sheridan, J.W. Infection of Humans and Horses by a Newly Described Morbillivirus. Med. J. Aust. 1995, 162, 642–645. [Google Scholar] [CrossRef] [PubMed]
- Selvey, L.; Sheridan, J. Outbreak of Severe Respiratory Disease in Humans and Horses Due to a Previously Unrecognized Paramyxovirus. J. Travel Med. 1995, 2, 275. [Google Scholar] [CrossRef] [PubMed]
- Harcourt, B.H.; Tamin, A.; Ksiazek, T.G.; Rollin, P.E.; Anderson, L.J.; Bellini, W.J.; Rota, P.A. Molecular Characterization of Nipah Virus, a Newly Emergent Paramyxovirus. Virology 2000, 271, 334–349. [Google Scholar] [CrossRef]
- Park, A.; Yun, T.; Vigant, F.; Pernet, O.; Won, S.T.; Dawes, B.E.; Bartkowski, W.; Freiberg, A.N.; Lee, B. Nipah Virus C Protein Recruits Tsg101 to Promote the Efficient Release of Virus in an ESCRT-Dependent Pathway. PLoS Pathog. 2016, 12, e1005659. [Google Scholar] [CrossRef]
- Horie, R.; Yoneda, M.; Uchida, S.; Sato, H.; Kai, C. Region of Nipah Virus C Protein Responsible for Shuttling between the Cytoplasm and Nucleus. Virology 2016, 497, 294–304. [Google Scholar] [CrossRef]
- Park, M.-S.; Shaw, M.L.; Muñoz-Jordan, J.; Cros, J.F.; Nakaya, T.; Bouvier, N.; Palese, P.; García-Sastre, A.; Basler, C.F. Newcastle Disease Virus (NDV)-Based Assay Demonstrates Interferon-Antagonist Activity for the NDV V Protein and the Nipah Virus V, W, and C Proteins. J. Virol. 2003, 77, 1501–1511. [Google Scholar] [CrossRef]
- Shaw, M.L.; García-Sastre, A.; Palese, P.; Basler, C.F. Nipah Virus V and W Proteins Have a Common STAT1-Binding Domain yet Inhibit STAT1 Activation from the Cytoplasmic and Nuclear Compartments, Respectively. J. Virol. 2004, 78, 5633–5641. [Google Scholar] [CrossRef]
- Rota, P.A.; Lo, M.K. Molecular Virology of the Henipaviruses. Curr. Top Microbiol. Immunol. 2012, 359, 41–58. [Google Scholar] [CrossRef]
- Haas, G.D.; Lee, B. Paramyxoviruses from Bats: Changes in Receptor Specificity and Their Role in Host Adaptation. Curr. Opin. Virol. 2023, 58, 101292. [Google Scholar] [CrossRef]
- Aguilar, H.C.; Iorio, R.M. Henipavirus Membrane Fusion and Viral Entry. Curr. Top Microbiol. Immunol. 2012, 359, 79–94. [Google Scholar] [CrossRef] [PubMed]
- Pernet, O.; Wang, Y.E.; Lee, B. Henipavirus Receptor Usage and Tropism. Curr. Top Microbiol. Immunol. 2012, 359, 59–78. [Google Scholar] [CrossRef] [PubMed]
- Chua, K.B.; Goh, K.J.; Wong, K.T.; Kamarulzaman, A.; Tan, P.S.; Ksiazek, T.G.; Zaki, S.R.; Paul, G.; Lam, S.K.; Tan, C.T. Fatal Encephalitis Due to Nipah Virus among Pig-Farmers in Malaysia. Lancet 1999, 354, 1257–1259. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). Update: Outbreak of Nipah Virus--Malaysia and Singapore. MMWR Morb. Mortal Wkly. Rep. 1999, 48, 335–337. [Google Scholar]
- Marsh, G.A.; de Jong, C.; Barr, J.A.; Tachedjian, M.; Smith, C.; Middleton, D.; Yu, M.; Todd, S.; Foord, A.J.; Haring, V.; et al. Cedar Virus: A Novel Henipavirus Isolated from Australian Bats. PLoS Pathog. 2012, 8, e1002836. [Google Scholar] [CrossRef]
- Wu, Z.; Yang, L.; Yang, F.; Ren, X.; Jiang, J.; Dong, J.; Sun, L.; Zhu, Y.; Zhou, H.; Jin, Q. Novel Henipa-like Virus, Mojiang Paramyxovirus, in Rats, China, 2012. Emerg. Infect Dis. 2014, 20, 1064–1066. [Google Scholar] [CrossRef]
- Drexler, J.F.; Corman, V.M.; Gloza-Rausch, F.; Seebens, A.; Annan, A.; Ipsen, A.; Kruppa, T.; Müller, M.A.; Kalko, E.K.V.; Adu-Sarkodie, Y.; et al. Henipavirus RNA in African Bats. PLoS ONE 2009, 4, e6367. [Google Scholar] [CrossRef]
- Zhang, X.-A.; Li, H.; Jiang, F.-C.; Zhu, F.; Zhang, Y.-F.; Chen, J.-J.; Tan, C.-W.; Anderson, D.E.; Fan, H.; Dong, L.-Y.; et al. A Zoonotic Henipavirus in Febrile Patients in China. N. Engl. J. Med. 2022, 387, 470–472. [Google Scholar] [CrossRef]
- Madera, S.; Kistler, A.; Ranaivoson, H.C.; Ahyong, V.; Andrianiaina, A.; Andry, S.; Raharinosy, V.; Randriambolamanantsoa, T.H.; Ravelomanantsoa, N.A.F.; Tato, C.M.; et al. Discovery and Genomic Characterization of a Novel Henipavirus, Angavokely Virus, from Fruit Bats in Madagascar. J. Virol. 2022, 96, e0092122. [Google Scholar] [CrossRef]
- Lee, S.-H.; Kim, K.; Kim, J.; No, J.S.; Park, K.; Budhathoki, S.; Lee, S.H.; Lee, J.; Cho, S.H.; Cho, S.; et al. Discovery and Genetic Characterization of Novel Paramyxoviruses Related to the Genus Henipavirus in Crocidura Species in the Republic of Korea. Viruses 2021, 13, 2020. [Google Scholar] [CrossRef]
- Vanmechelen, B.; Meurs, S.; Horemans, M.; Loosen, A.; Joly Maes, T.; Laenen, L.; Vergote, V.; Koundouno, F.R.; Magassouba, N.; Konde, M.K.; et al. The Characterization of Multiple Novel Paramyxoviruses Highlights the Diverse Nature of the Subfamily Orthoparamyxovirinae. Virus Evol. 2022, 8, veac061. [Google Scholar] [CrossRef] [PubMed]
- Westbury, H.A. Hendra Virus Disease in Horses. Rev. Sci. Tech. 2000, 19, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Westbury, H. Hendra Virus: A Highly Lethal Zoonotic Agent. Vet. J. 2000, 160, 165–166. [Google Scholar] [CrossRef]
- Rockx, B.; Brining, D.; Kramer, J.; Callison, J.; Ebihara, H.; Mansfield, K.; Feldmann, H. Clinical Outcome of Henipavirus Infection in Hamsters Is Determined by the Route and Dose of Infection. J. Virol. 2011, 85, 7658–7671. [Google Scholar] [CrossRef] [PubMed]
- Rockx, B.; Bossart, K.N.; Feldmann, F.; Geisbert, J.B.; Hickey, A.C.; Brining, D.; Callison, J.; Safronetz, D.; Marzi, A.; Kercher, L.; et al. A Novel Model of Lethal Hendra Virus Infection in African Green Monkeys and the Effectiveness of Ribavirin Treatment. J. Virol. 2010, 84, 9831–9839. [Google Scholar] [CrossRef] [PubMed]
- Bossart, K.N.; Geisbert, T.W.; Feldmann, H.; Zhu, Z.; Feldmann, F.; Geisbert, J.B.; Yan, L.; Feng, Y.-R.; Brining, D.; Scott, D.; et al. A Neutralizing Human Monoclonal Antibody Protects African Green Monkeys from Hendra Virus Challenge. Sci. Transl. Med. 2011, 3, 105ra103. [Google Scholar] [CrossRef] [PubMed]
- Hooper, P.T.; Westbury, H.A.; Russell, G.M. The Lesions of Experimental Equine Morbillivirus Disease in Cats and Guinea Pigs. Vet. Pathol. 1997, 34, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Williamson, M.M.; Hooper, P.T.; Selleck, P.W.; Westbury, H.A.; Slocombe, R.F. A Guinea-Pig Model of Hendra Virus Encephalitis. J. Comp. Pathol. 2001, 124, 273–279. [Google Scholar] [CrossRef]
- Williamson, M.M.; Hooper, P.T.; Selleck, P.W.; Westbury, H.A.; Slocombe, R.F. Experimental Hendra Virus Infectionin Pregnant Guinea-Pigs and Fruit Bats (Pteropus poliocephalus). J. Comp. Pathol. 2000, 122, 201–207. [Google Scholar] [CrossRef]
- Li, M.; Embury-Hyatt, C.; Weingartl, H.M. Experimental Inoculation Study Indicates Swine as a Potential Host for Hendra Virus. Vet Res. 2010, 41, 33. [Google Scholar] [CrossRef]
- Young, P.L.; Halpin, K.; Selleck, P.W.; Field, H.; Gravel, J.L.; Kelly, M.A.; Mackenzie, J.S. Serologic Evidence for the Presence in Pteropus Bats of a Paramyxovirus Related to Equine Morbillivirus. Emerg. Infect. Dis. 1996, 2, 239–240. [Google Scholar] [CrossRef] [PubMed]
- Williamson, M.M.; Hooper, P.T.; Selleck, P.W.; Gleeson, L.J.; Daniels, P.W.; Westbury, H.A.; Murray, P.K. Transmission Studies of Hendra Virus (Equine Morbillivirus) in Fruit Bats, Horses and Cats. Aust. Vet. J. 1998, 76, 813–818. [Google Scholar] [CrossRef] [PubMed]
- Hooper, P.T.; Williamson, M.M. Hendra and Nipah Virus Infections. Vet. Clin. N. Am. Equine Pract. 2000, 16, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Westbury, H.A.; Hooper, P.T.; Brouwer, S.L.; Selleck, P.W. Susceptibility of Cats to Equine Morbillivirus. Aust. Vet. J. 1996, 74, 132–134. [Google Scholar] [CrossRef]
- Pallister, J.; Middleton, D.; Wang, L.-F.; Klein, R.; Haining, J.; Robinson, R.; Yamada, M.; White, J.; Payne, J.; Feng, Y.-R.; et al. A Recombinant Hendra Virus G Glycoprotein-Based Subunit Vaccine Protects Ferrets from Lethal Hendra Virus Challenge. Vaccine 2011, 29, 5623–5630. [Google Scholar] [CrossRef]
- Marsh, G.A.; Haining, J.; Hancock, T.J.; Robinson, R.; Foord, A.J.; Barr, J.A.; Riddell, S.; Heine, H.G.; White, J.R.; Crameri, G.; et al. Experimental Infection of Horses with Hendra Virus/Australia/Horse/2008/Redlands. Emerg. Infect. Dis. 2011, 17, 2232–2238. [Google Scholar] [CrossRef]
- Harcourt, B.H.; Lowe, L.; Tamin, A.; Liu, X.; Bankamp, B.; Bowden, N.; Rollin, P.E.; Comer, J.A.; Ksiazek, T.G.; Hossain, M.J.; et al. Genetic characterization of Nipah virus, Bangladesh, 2004. Emerg. Infect. Dis. 2005, 11, 1594–1597. [Google Scholar] [CrossRef]
- Chua, K.B.; Bellini, W.J.; Rota, P.A.; Harcourt, B.H.; Tamin, A.; Lam, S.K.; Ksiazek, T.G.; Rollin, P.E.; Zaki, S.R.; Shieh, W.; et al. Nipah virus: A recently emergent deadly paramyxovirus. Science 2000, 288, 1432–1435. [Google Scholar] [CrossRef]
- Hossain, M.J.; Gurley, E.S.; Montgomery, J.M.; Bell, M.; Carroll, D.S.; Hsu, V.P.; Formenty, P.; Croisier, A.; Bertherat, E.; Faiz, M.A.; et al. Clinical presentation of nipah virus infection in Bangladesh. Clin. Infect. Dis. 2008, 46, 977–984. [Google Scholar] [CrossRef]
- Goh, K.J.; Tan, C.T.; Chew, N.K.; Tan, P.S.; Kamarulzaman, A.; Sarji, S.A.; Wong, K.T.; Abdullah, B.J.; Chua, K.B.; Lam, S.K. Clinical features of Nipah virus encephalitis among pig farmers in Malaysia. N. Engl. J. Med. 2000, 342, 1229–1235. [Google Scholar] [CrossRef]
- Wong, K.T.; Grosjean, I.; Brisson, C.; Blanquier, B.; Fevre-Montange, M.; Bernard, A.; Loth, P.; Georges-Courbot, M.-C.; Chevallier, M.; Akaoka, H.; et al. A Golden Hamster Model for Human Acute Nipah Virus Infection. Am. J. Pathol. 2003, 163, 2127–2137. [Google Scholar] [CrossRef]
- DeBuysscher, B.L.; de Wit, E.; Munster, V.J.; Scott, D.; Feldmann, H.; Prescott, J. Comparison of the pathogenicity of Nipah virus isolates from Bangladesh and Malaysia in the Syrian hamster. PLoS Negl. Trop. Dis. 2013, 7, e2024. [Google Scholar] [CrossRef]
- Marianneau, P.; Guillaume, V.; Wong, T.; Badmanathan, M.; Looi, R.Y.; Murri, S.; Loth, P.; Tordo, N.; Wild, F.; Horvat, B.; et al. Experimental Infection of Squirrel Monkeys with Nipah Virus. Emerg. Infect. Dis. 2010, 16, 507–510. [Google Scholar] [CrossRef] [PubMed]
- Geisbert, T.W.; Daddario-DiCaprio, K.M.; Hickey, A.C.; Smith, M.A.; Chan, Y.-P.; Wang, L.-F.; Mattapallil, J.J.; Geisbert, J.B.; Bossart, K.N.; Broder, C.C. Development of an Acute and Highly Pathogenic Nonhuman Primate Model of Nipah Virus Infection. PLoS ONE 2010, 5, e10690. [Google Scholar] [CrossRef]
- Geisbert, J.B.; Borisevich, V.; Prasad, A.N.; Agans, K.N.; Foster, S.L.; Deer, D.J.; Cross, R.W.; Mire, C.E.; Geisbert, T.W.; Fenton, K.A. An Intranasal Exposure Model of Lethal Nipah Virus Infection in African Green Monkeys. J. Infect. Dis. 2020, 221, S414–S418. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.N.; Woolsey, C.; Geisbert, J.B.; Agans, K.N.; Borisevich, V.; Deer, D.J.; Mire, C.E.; Cross, R.W.; Fenton, K.A.; Broder, C.C.; et al. Resistance of Cynomolgus Monkeys to Nipah and Hendra Virus Disease Is Associated with Cell-Mediated and Humoral Immunity. J. Infect. Dis. 2020, 221, S436–S447. [Google Scholar] [CrossRef] [PubMed]
- Stevens, C.S.; Lowry, J.; Juelich, T.; Atkins, C.; Johnson, K.; Smith, J.K.; Panis, M.; Ikegami, T.; tenOever, B.; Freiberg, A.N.; et al. Nipah Virus Bangladesh Infection Elicits Organ-Specific Innate and Inflammatory Responses in the Marmoset Model. J. Infect. Dis. 2023, 228, 604–614. [Google Scholar] [CrossRef]
- Mire, C.E.; Satterfield, B.A.; Geisbert, J.B.; Agans, K.N.; Borisevich, V.; Yan, L.; Chan, Y.P.; Cross, R.W.; Fenton, K.A.; Broder, C.C.; et al. Pathogenic Differences between Nipah Virus Bangladesh and Malaysia Strains in Primates: Implications for Antibody Therapy. Sci. Rep. 2016, 6, 30916. [Google Scholar] [CrossRef]
- Middleton, D.J.; Morrissy, C.J.; van der Heide, B.M.; Russell, G.M.; Braun, M.A.; Westbury, H.A.; Halpin, K.; Daniels, P.W. Experimental Nipah Virus Infection in Pteropid Bats (Pteropus poliocephalus). J. Comp. Pathol. 2007, 136, 266–272. [Google Scholar] [CrossRef]
- Torres-Velez, F.J.; Shieh, W.-J.; Rollin, P.E.; Morken, T.; Brown, C.; Ksiazek, T.G.; Zaki, S.R. Histopathologic and Immunohistochemical Characterization of Nipah Virus Infection in the Guinea Pig. Vet. Pathol. 2008, 45, 576–585. [Google Scholar] [CrossRef]
- Middleton, D.J.; Westbury, H.A.; Morrissy, C.J.; van der Heide, B.M.; Russell, G.M.; Braun, M.A.; Hyatt, A.D. Experimental Nipah Virus Infection in Pigs and Cats. J. Comp. Pathol. 2002, 126, 124–136. [Google Scholar] [CrossRef] [PubMed]
- Weingartl, H.; Czub, S.; Copps, J.; Berhane, Y.; Middleton, D.; Marszal, P.; Gren, J.; Smith, G.; Ganske, S.; Manning, L.; et al. Invasion of the Central Nervous System in a Porcine Host by Nipah Virus. J. Virol. 2005, 79, 7528–7534. [Google Scholar] [CrossRef] [PubMed]
- Berhane, Y.; Weingartl, H.M.; Lopez, J.; Neufeld, J.; Czub, S.; Embury-Hyatt, C.; Goolia, M.; Copps, J.; Czub, M. Bacterial Infections in Pigs Experimentally Infected with Nipah Virus. Transbound. Emerg. Dis. 2008, 55, 165–174. [Google Scholar] [CrossRef]
- Berhane, Y.; Berry, J.D.; Ranadheera, C.; Marszal, P.; Nicolas, B.; Yuan, X.; Czub, M.; Weingartl, H. Production and Characterization of Monoclonal Antibodies against Binary Ethylenimine Inactivated Nipah Virus. J. Virol. Methods 2006, 132, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Weingartl, H.M.; Berhane, Y.; Caswell, J.L.; Loosmore, S.; Audonnet, J.-C.; Roth, J.A.; Czub, M. Recombinant Nipah Virus Vaccines Protect Pigs against Challenge. J. Virol. 2006, 80, 7929–7938. [Google Scholar] [CrossRef]
- Kasloff, S.B.; Leung, A.; Pickering, B.S.; Smith, G.; Moffat, E.; Collignon, B.; Embury-Hyatt, C.; Kobasa, D.; Weingartl, H.M. Pathogenicity of Nipah henipavirus Bangladesh in a swine host. Sci. Rep. 2019, 9, 5230. [Google Scholar] [CrossRef] [PubMed]
- Parashar, U.D.; Sunn, L.M.; Ong, F.; Mounts, A.W.; Arif, M.T.; Ksiazek, T.G.; Kamaluddin, M.A.; Mustafa, A.N.; Kaur, H.; Ding, L.M.; et al. Case-control study of risk factors for human infection with a new zoonotic paramyxovirus, Nipah virus, during a 1998-1999 outbreak of severe encephalitis in Malaysia. J. Infect. Dis. 2000, 181, 1755–1759. [Google Scholar] [CrossRef]
- Mungall, B.A.; Middleton, D.; Crameri, G.; Bingham, J.; Halpin, K.; Russell, G.; Green, D.; McEachern, J.; Pritchard, L.I.; Eaton, B.T.; et al. Feline Model of Acute Nipah Virus Infection and Protection with a Soluble Glycoprotein-Based Subunit Vaccine. J. Virol. 2006, 80, 12293–12302. [Google Scholar] [CrossRef]
- McEachern, J.A.; Bingham, J.; Crameri, G.; Green, D.J.; Hancock, T.J.; Middleton, D.; Feng, Y.-R.; Broder, C.C.; Wang, L.-F.; Bossart, K.N. A Recombinant Subunit Vaccine Formulation Protects against Lethal Nipah Virus Challenge in Cats. Vaccine 2008, 26, 3842–3852. [Google Scholar] [CrossRef]
- Mungall, B.A.; Middleton, D.; Crameri, G.; Halpin, K.; Bingham, J.; Eaton, B.T.; Broder, C.C. Vertical Transmission and Fetal Replication of Nipah Virus in an Experimentally Infected Cat. J. Infect. Dis. 2007, 196, 812–816. [Google Scholar] [CrossRef]
- Enserink, M. Emerging Diseases. Malaysian Researchers Trace Nipah Virus Outbreak to Bats. Science 2000, 289, 518–519. [Google Scholar] [CrossRef] [PubMed]
- Pallister, J.A.; Klein, R.; Arkinstall, R.; Haining, J.; Long, F.; White, J.R.; Payne, J.; Feng, Y.-R.; Wang, L.-F.; Broder, C.C.; et al. Vaccination of Ferrets with a Recombinant G Glycoprotein Subunit Vaccine Provides Protection against Nipah Virus Disease for over 12 Months. Virol. J. 2013, 10, 237. [Google Scholar] [CrossRef]
- Mire, C.E.; Versteeg, K.M.; Cross, R.W.; Agans, K.N.; Fenton, K.A.; Whitt, M.A.; Geisbert, T.W. Single Injection Recombinant Vesicular Stomatitis Virus Vaccines Protect Ferrets against Lethal Nipah Virus Disease. Virol. J. 2013, 10, 353. [Google Scholar] [CrossRef]
- Clayton, B.A.; Middleton, D.; Bergfeld, J.; Haining, J.; Arkinstall, R.; Wang, L.; Marsh, G.A. Transmission routes for nipah virus from Malaysia and Bangladesh. Emerg. Infect. Dis. 2012, 18, 1983–1993. [Google Scholar] [CrossRef]
- Schountz, T.; Campbell, C.; Wagner, K.; Rovnak, J.; Martellaro, C.; DeBuysscher, B.L.; Feldmann, H.; Prescott, J. Differential Innate Immune Responses Elicited by Nipah Virus and Cedar Virus Correlate with Disparate In Vivo Pathogenesis in Hamsters. Viruses 2019, 11, 291. [Google Scholar] [CrossRef] [PubMed]
- Goldspink, L.K.; Edson, D.W.; Vidgen, M.E.; Bingham, J.; Field, H.E.; Smith, C.S. Natural Hendra Virus Infection in Flying-Foxes-Tissue Tropism and Risk Factors. PLoS ONE 2015, 10, e0128835. [Google Scholar] [CrossRef] [PubMed]
- Edson, D.; Field, H.; McMichael, L.; Vidgen, M.; Goldspink, L.; Broos, A.; Melville, D.; Kristoffersen, J.; de Jong, C.; McLaughlin, A.; et al. Routes of Hendra Virus Excretion in Naturally-Infected Flying-Foxes: Implications for Viral Transmission and Spillover Risk. PLoS ONE 2015, 10, e0140670. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.E.; Umapathi, T.; Tan, C.B.; Tjia, H.T.; Chua, T.S.; Oh, H.M.; Fock, K.M.; Kurup, A.; Das, A.; Tan, A.K.; et al. The Neurological Manifestations of Nipah Virus Encephalitis, a Novel Paramyxovirus. Ann. Neurol. 1999, 46, 428–432. [Google Scholar] [CrossRef] [PubMed]
- Maisner, A.; Neufeld, J.; Weingartl, H. Organ- and Endotheliotropism of Nipah Virus Infections in Vivo and in Vitro. Thromb. Haemost. 2009, 102, 1014–1023. [Google Scholar] [CrossRef]
- Baseler, L.; de Wit, E.; Scott, D.P.; Munster, V.J.; Feldmann, H. Syrian Hamsters (Mesocricetus auratus) Oronasally Inoculated with a Nipah Virus Isolate from Bangladesh or Malaysia Develop Similar Respiratory Tract Lesions. Vet. Pathol. 2015, 52, 38–45. [Google Scholar] [CrossRef]
- Baseler, L.; Scott, D.P.; Saturday, G.; Horne, E.; Rosenke, R.; Thomas, T.; Meade-White, K.; Haddock, E.; Feldmann, H.; de Wit, E. Identifying Early Target Cells of Nipah Virus Infection in Syrian Hamsters. PLoS Negl. Trop. Dis. 2016, 10, e0005120. [Google Scholar] [CrossRef] [PubMed]
- DeBuysscher, B.L.; Scott, D.P.; Rosenke, R.; Wahl, V.; Feldmann, H.; Prescott, J. Nipah Virus Efficiently Replicates in Human Smooth Muscle Cells without Cytopathic Effect. Cells 2021, 10, 1319. [Google Scholar] [CrossRef] [PubMed]
- Welch, S.R.; Scholte, F.E.M.; Harmon, J.R.; Coleman-McCray, J.D.; Lo, M.K.; Montgomery, J.M.; Nichol, S.T.; Spiropoulou, C.F.; Spengler, J.R. In Situ Imaging of Fluorescent Nipah Virus Respiratory and Neurological Tissue Tropism in the Syrian Hamster Model. J. Infect. Dis. 2020, 221, S448–S453. [Google Scholar] [CrossRef]
- Ang, L.T.; Nguyen, A.T.; Liu, K.J.; Chen, A.; Xiong, X.; Curtis, M.; Martin, R.M.; Raftry, B.C.; Ng, C.Y.; Vogel, U.; et al. Generating Human Artery and Vein Cells from Pluripotent Stem Cells Highlights the Arterial Tropism of Nipah and Hendra Viruses. Cell 2022, 185, 2523–2541. [Google Scholar] [CrossRef] [PubMed]
- Stachowiak, B.; Weingartl, H.M. Nipah Virus Infects Specific Subsets of Porcine Peripheral Blood Mononuclear Cells. PLoS ONE 2012, 7, e30855. [Google Scholar] [CrossRef]
- Lamb, R.A.; Joshi, S.B.; Dutch, R.E. The Paramyxovirus Fusion Protein Forms an Extremely Stable Core Trimer: Structural Parallels to Influenza Virus Haemagglutinin and HIV-1 Gp41. Mol. Membr. Biol. 1999, 16, 11–19. [Google Scholar] [CrossRef]
- Lamb, R.A. Paramyxovirus Fusion: A Hypothesis for Changes. Virology 1993, 197, 1–11. [Google Scholar] [CrossRef]
- Bossart, K.N.; Wang, L.F.; Eaton, B.T.; Broder, C.C. Functional Expression and Membrane Fusion Tropism of the Envelope Glycoproteins of Hendra Virus. Virology 2001, 290, 121–135. [Google Scholar] [CrossRef]
- Bossart, K.N.; Wang, L.-F.; Flora, M.N.; Chua, K.B.; Lam, S.K.; Eaton, B.T.; Broder, C.C. Membrane Fusion Tropism and Heterotypic Functional Activities of the Nipah Virus and Hendra Virus Envelope Glycoproteins. J. Virol. 2002, 76, 11186–11198. [Google Scholar] [CrossRef]
- Bonaparte, M.I.; Dimitrov, A.S.; Bossart, K.N.; Crameri, G.; Mungall, B.A.; Bishop, K.A.; Choudhry, V.; Dimitrov, D.S.; Wang, L.-F.; Eaton, B.T.; et al. Ephrin-B2 Ligand Is a Functional Receptor for Hendra Virus and Nipah Virus. Proc. Natl. Acad. Sci. USA 2005, 102, 10652–10657. [Google Scholar] [CrossRef]
- Negrete, O.A.; Levroney, E.L.; Aguilar, H.C.; Bertolotti-Ciarlet, A.; Nazarian, R.; Tajyar, S.; Lee, B. EphrinB2 Is the Entry Receptor for Nipah Virus, an Emergent Deadly Paramyxovirus. Nature 2005, 436, 401–405. [Google Scholar] [CrossRef] [PubMed]
- Negrete, O.A.; Wolf, M.C.; Aguilar, H.C.; Enterlein, S.; Wang, W.; Mühlberger, E.; Su, S.V.; Bertolotti-Ciarlet, A.; Flick, R.; Lee, B. Two Key Residues in EphrinB3 Are Critical for Its Use as an Alternative Receptor for Nipah Virus. PLoS Pathog. 2006, 2, e7. [Google Scholar] [CrossRef] [PubMed]
- Guillaume, V.; Aslan, H.; Ainouze, M.; Guerbois, M.; Wild, T.F.; Buckland, R.; Langedijk, J.P.M. Evidence of a Potential Receptor-Binding Site on the Nipah Virus G Protein (NiV-G): Identification of Globular Head Residues with a Role in Fusion Promotion and Their Localization on an NiV-G Structural Model. J. Virol. 2006, 80, 7546–7554. [Google Scholar] [CrossRef]
- Negrete, O.A.; Chu, D.; Aguilar, H.C.; Lee, B. Single Amino Acid Changes in the Nipah and Hendra Virus Attachment Glycoproteins Distinguish EphrinB2 from EphrinB3 Usage. J. Virol. 2007, 81, 10804–10814. [Google Scholar] [CrossRef] [PubMed]
- Palmer, A.; Klein, R. Multiple Roles of Ephrins in Morphogenesis, Neuronal Networking, and Brain Function. Genes Dev. 2003, 17, 1429–1450. [Google Scholar] [CrossRef]
- Poliakov, A.; Cotrina, M.; Wilkinson, D.G. Diverse Roles of Eph Receptors and Ephrins in the Regulation of Cell Migration and Tissue Assembly. Dev. Cell 2004, 7, 465–480. [Google Scholar] [CrossRef]
- Benson, M.D.; Romero, M.I.; Lush, M.E.; Lu, Q.R.; Henkemeyer, M.; Parada, L.F. Ephrin-B3 Is a Myelin-Based Inhibitor of Neurite Outgrowth. Proc. Natl. Acad. Sci. USA 2005, 102, 10694–10699. [Google Scholar] [CrossRef]
- Pernet, O.; Schneider, B.S.; Beaty, S.M.; LeBreton, M.; Yun, T.E.; Park, A.; Zachariah, T.T.; Bowden, T.A.; Hitchens, P.; Ramirez, C.M.; et al. Evidence for henipavirus spillover into human populations in Africa. Nat. Commun. 2014, 5, 5342. [Google Scholar] [CrossRef]
- Krüger, N.; Hoffmann, M.; Weis, M.; Drexler, J.F.; Müller, M.A.; Winter, C.; Corman, V.M.; Gützkow, T.; Drosten, C.; Maisner, A.; et al. Surface Glycoproteins of an African Henipavirus Induce Syncytium Formation in a Cell Line Derived from an African Fruit Bat, Hypsignathus monstrosus. J. Virol. 2013, 87, 13889–13891. [Google Scholar] [CrossRef]
- Diederich, S.; Moll, M.; Klenk, H.-D.; Maisner, A. The Nipah Virus Fusion Protein Is Cleaved within the Endosomal Compartment. J. Biol. Chem. 2005, 280, 29899–29903. [Google Scholar] [CrossRef]
- Pager, C.T.; Craft, W.W.; Patch, J.; Dutch, R.E. A Mature and Fusogenic Form of the Nipah Virus Fusion Protein Requires Proteolytic Processing by Cathepsin L. Virology 2006, 346, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Pager, C.T.; Dutch, R.E. Cathepsin L Is Involved in Proteolytic Processing of the Hendra Virus Fusion Protein. J. Virol. 2005, 79, 12714–12720. [Google Scholar] [CrossRef] [PubMed]
- Krüger, N.; Hoffmann, M.; Drexler, J.F.; Müller, M.A.; Corman, V.M.; Drosten, C.; Herrler, G. Attachment Protein G of an African Bat Henipavirus Is Differentially Restricted in Chiropteran and Nonchiropteran Cells. J. Virol. 2014, 88, 11973–11980. [Google Scholar] [CrossRef] [PubMed]
- Weis, M.; Behner, L.; Hoffmann, M.; Krüger, N.; Herrler, G.; Drosten, C.; Drexler, J.F.; Dietzel, E.; Maisner, A. Characterization of African Bat Henipavirus GH-M74a Glycoproteins. J. Gen. Virol. 2014, 95, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, P.; Escudero Pérez, B.; Drexler, J.F.; Corman, V.M.; Müller, M.A.; Drosten, C.; Volchkov, V. Surface Glycoproteins of the Recently Identified African Henipavirus Promote Viral Entry and Cell Fusion in a Range of Human, Simian and Bat Cell Lines. Virus Res. 2014, 181, 77–80. [Google Scholar] [CrossRef]
- Rissanen, I.; Ahmed, A.A.; Azarm, K.; Beaty, S.; Hong, P.; Nambulli, S.; Duprex, W.P.; Lee, B.; Bowden, T.A. Idiosyncratic Mòjiāng Virus Attachment Glycoprotein Directs a Host-Cell Entry Pathway Distinct from Genetically Related Henipaviruses. Nat. Commun. 2017, 8, 16060. [Google Scholar] [CrossRef]
- Pryce, R.; Azarm, K.; Rissanen, I.; Harlos, K.; Bowden, T.A.; Lee, B. A Key Region of Molecular Specificity Orchestrates Unique Ephrin-B1 Utilization by Cedar Virus. Life Sci. Alliance 2020, 3, e201900578. [Google Scholar] [CrossRef]
- Laing, E.D.; Navaratnarajah, C.K.; Cheliout Da Silva, S.; Petzing, S.R.; Xu, Y.; Sterling, S.L.; Marsh, G.A.; Wang, L.-F.; Amaya, M.; Nikolov, D.B.; et al. Structural and Functional Analyses Reveal Promiscuous and Species Specific Use of Ephrin Receptors by Cedar Virus. Proc. Natl. Acad. Sci. USA 2019, 116, 20707–20715. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Dhar, S.; Banerjee, A.; Ray, S. Detailed Molecular Biochemistry for Novel Therapeutic Design Against Nipah and Hendra Virus: A Systematic Review. Curr. Mol. Pharmacol. 2020, 13, 108–125. [Google Scholar] [CrossRef]
Virus | Organisms | Organ/Tissues | Cells |
---|---|---|---|
Hendra (HeV) | -Natural hosts: horses, humans, bats -Experimental: hamsters, guinea pigs, cats, ferrets, pigs, non-human primates | -lung, kidney, liver, placenta, lymph nodes, vascular endothelium | -primary epithelial cells -cell lines: HeLa, 293T, 3T3, BSC-1, HuTK−143B, Vero |
Nipah (NiV) | -Natural hosts: pigs, humans, bats -Experimental: hamsters, guinea pigs, cats, pigs, non-human primates, ferrets | -lung, brain, liver, arteries, bronchiolar respiratory epithelium, nasal turbinates, kidneys | -primary: epithelial cells (artery), macrophages, endothelial cells, neurons -cell lines: HeLa, 293T, CHO, U87, U373, PCI-13, Vero |
Cedar (CedV) | -Natural hosts: bats -Experimental: guinea pig, mice, ferrets, hamster | -lungs, spleen, also isolated from urine | -cell lines: PaKi, A549, HEK293T, Vero, BHK21, L2, C6, Rat2 cells |
Ghana (Kumasi/M74 virus) | -Natural hosts: bats | NA | -cell lines: HypNi/1.1, EidNi |
Mojiang (MojV) | -Natural hosts: humans, rats | NA | -cell lines: A549, U87, BHK21, HEK293T, Vero, Hep2 |
Langya (LayV) | -Natural hosts: humans, shrews, voles | -NA | -cell lines: Vero |
Angavokely (AngV) | -Natural hosts: bats | -unclear (isolated from urine) | NA |
Gamak (GAKV) | -Natural hosts: shrews | -kidney | -cell line: Vero E6 |
Daeryong (DARV) | -Natural hosts: shrews | -kidney | NA |
Denwin (DewV) | -Natural hosts: shrews | -kidney | NA |
Melian (MeliV) | -Natural hosts: shrews | -kidney | NA |
Virus | Host Species | Viral Dose Used | Inoculation Route | Symptoms/Outcome of Infection | End of Study (P)/Death or Euthanasia (E) | Reference |
---|---|---|---|---|---|---|
Hendra virus | Hamster | 105 TCID50 102 TCID50 | i.n. i.n. | Acute respiratory distress Neurological signs, systemic spread | 3 days (E) 6 and 7 days (E) | [41,42] |
African green monkeys (AGM) | 4 × 105 TCID50 | i.t. | Nasal discharge, labored breathing, seizures | 7.5–9.5 days (E) | [25,26] | |
Guinea pigs | 5 × 103 TCID50 | s.c. | Clinical ill | 8 to 13 days (E); 1 until P | [27] | |
Pigs | 6.6 × 107 PFU | o.n. | Respiratory distress | 5 days (E) | [30] | |
Fruit bats | 5 × 104 TCID50 5 × 104 TCID50 | s.c. o.n. | No significant clinical signs | P | [29,32] | |
Cats | 103.6 TCID50 103.6 TCID50 103.6 TCID50 | i.n. s.c. o. | Fever, depression, increased/variable respiratory rate | 6–9 days (E) | [34] | |
Ferrets | 5 × 103 TCID50 | o.n. | Fever, depression, tremors | 9 days (E) | [35] | |
Horses | 2 × 106 TCID50 | o.n. | Fever, increased heart rate, depression, reduced appetite, nasal discharge | 6–9 days (E) | [36] | |
Nipah virus (Malaysia; NiV-M) | Hamster | 102 TCID50 107 TCID50 104 PFU | i.n.i.n. i.p. i.n. | Respiratory signs Imbalance, breathing difficulties, limp paralysis | 5 days (E) 9–12 days (E) 5–8 days (E) 9–14 days (E) | [24] [41] |
Non-human primates Squirrel monkeys African green monkeys Macaque monkeys | 103/107 PFU 103/107 PFU 2.5 × 103 to 1.3 × 106 PFU 2 × 103 or 2 × 104 PFU 5 × 105 PFU 5 × 105 PFU | i.v. i.n. i.t. i.t./o. i.n. i.t. i.n. | Anorexia, acute respiratory distress, uncoordinated motor movements up to coma Depression, lethargy, breathing difficulties, loss of appetite, imbalance No clinical disease | 8, 12, 21 days (E) P 10–12 days (E) 9–10 days (E) P | [43] [43] [44] [45] [46] | |
Guinea pigs | 5 × 104 TCID50 6 × 104 PFU | i.p. i.p. | Abnormal behaviour, ataxia (3/8 animals) | 7/8 days (E) 4 to 8 days (E) | [49] [50] | |
Pigs | 5 × 104 TCID50 5 × 104 TCID50 2.5 × 105 PFU | o. s.c. o.n. | No clinical signs Ataxia, semi-consciousness, uncoordinated movement 2/11 animals severe disease | P 7/8 days (2 out of 4 animals) (E) 2 out of 11 (E) | [51] [52] | |
Fruit bats | 5 × 104 TCID50 | s.c. | Subclinical | P | [49] | |
Cats | 5 × 104 TCID50 5 × 102 TCID50 5 × 103 TCID50 | o.n. s.c. | Fever, increased respiratory rateFebrile illness | 9 days (E), 1 of 2 animals 9 days (E) | [51] [58] | |
Ferrets | 5 × 101 TCID50 to 5 × 104 TCID50 | o.n. | Loss of appetite, depression, dyspnea, neurological disease | 6–10 days (E), depending on dose | [26] | |
Nipah virus (Bangladesh, NiV-B) | Pigs | 2 × 105 PFU | o.n. | No clinical signs | P | [56] |
NHPs African green monkeysMarmorsets | 2 × 103 or 2 × 104 PFU 6.3 × 104 PFU | i.n. i.t. i.t. and i.n. | Fever, depression, loss of appetite, labored breathing Weight loss, multiple organ dysfunction | 9–10 days (E) 8–11 days (E) | [48] [47] | |
Hamster | 1 to 105 TCID50 105 TCID50 | i.p. i.n. | Respiratory stress with higher doses; neurological signs with lower doses | 8–9 days (NiV-M) (E) 8–14 days (NiV-B) (E) | [42] | |
Ferret | 5 × 103 TCID50 | o.n. | Respiratory and neurological signs | 7–9 days (E) | [64] | |
Cedar virus | Mice (BALB/c) | 1 × 105 TCID50 | o.n. | No clinical signs | P | [15] |
Guinea pigs | 2 × 106 TCID50 | i.p. | No clinical signs | P | [15] | |
Hamsters | 1 × 105 TCID50 | i.n. | No clinical signs | P | [65] | |
Ferrets | 2 × 106 TCID50 | o.n. | No clinical signs | P | [15] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diederich, S.; Babiuk, S.; Boshra, H. A Survey of Henipavirus Tropism—Our Current Understanding from a Species/Organ and Cellular Level. Viruses 2023, 15, 2048. https://doi.org/10.3390/v15102048
Diederich S, Babiuk S, Boshra H. A Survey of Henipavirus Tropism—Our Current Understanding from a Species/Organ and Cellular Level. Viruses. 2023; 15(10):2048. https://doi.org/10.3390/v15102048
Chicago/Turabian StyleDiederich, Sandra, Shawn Babiuk, and Hani Boshra. 2023. "A Survey of Henipavirus Tropism—Our Current Understanding from a Species/Organ and Cellular Level" Viruses 15, no. 10: 2048. https://doi.org/10.3390/v15102048
APA StyleDiederich, S., Babiuk, S., & Boshra, H. (2023). A Survey of Henipavirus Tropism—Our Current Understanding from a Species/Organ and Cellular Level. Viruses, 15(10), 2048. https://doi.org/10.3390/v15102048