RNAi-Based Therapy: Combating Shrimp Viral Diseases
Abstract
:1. Introduction
2. Viral Diseases in Shrimp
4. Current Therapeutic Strategies to Minimize the Impacts of Viral Diseases
4.1. Different Antiviral Agents
4.2. Immunostimulants
4.3. DNA Vaccines
4.4. Changing the Water Temperature
4.5. RNAi Based Therapy
5. Basic Mechanism of RNAi
6. Shrimp RNAi as a Virus-Fighting Weapon
Virus | Target Gene | Host | Delivery Method | RNAi Inducer | Reference |
---|---|---|---|---|---|
WSSV | WSSV051 | P. monodon | Oral | Bacterial expressed dsRNA | [95] |
Rab7 | P. monodon | Injection | Transcribed dsRNA | [80] | |
Vp28 | L. vannamei | Oral | Synthesized | [67] | |
Vp28 | L. vannamei | Injection | Transcribed dsRNA | [66] | |
M. ja ponicus | Injection | Synthesized | [64] | ||
ß-integrin | M. ja ponicus | Injection | In vitro transcribed dsRNA | [96] | |
Vp37 | L. vannamei | Injection | Synthesized | [65] | |
rr2 | L. vannamei | Injection | Bacterial expressed dsRNA | [70] | |
V9 | P. monodon, M. ja ponicus | Injection | Synthesized | [97] | |
V26 | L. vannamei | Injection | Transcribed dsRNA | [98] | |
YHV | Rab7 | P. monodon | Injection | Transcribed dsRNA | [80] |
gp116, gp64 | P. monodon | Transfection | Transcribed dsRNA | [72] | |
RdRp | P. monodon | Transfection | Transcribed dsRNA | [99] | |
RdRp | L. vannamei | Injection | Bacterial expressed dsRNA | [68] | |
RdRp | L. vannamei | Oral | Microalgal expressed dsRNA | [69] | |
rr2 | L. vannamei | Injection | Bacterial expressed dsRNA | [70] | |
YHV-pro | P. monodon | Injection | Bacterial expressed dsRNA | [73] | |
EEA 1 | P. monodon | Injection | Bacterial expressed dsRNA | [100] | |
TSV | Rab7 | L. vannamei | Injection | Bacterial expressed dsRNA | [101] |
Lamr | L. vannamei | Injection | In vitro transcribed dsRNA | [102] | |
LSNV | RdRp | P. monodon | Oral | Bacterial expressed dsRNA | [103] |
GAV | ß-actin | P. monodon | Oral | Bacterial expressed dsRNA | [88] |
IMNV | ORF1a, ORF1b | L. vannamei | Injection | Synthesized | [104] |
7. siRNA Mediated RNAi
8. miRNA Mediated RNAi
9. Evaluation of RNAi as a Remedy to Combat Viral Infection
10. Delivery Strategies of RNAi Molecules
11. Challenges in RNAi Therapy
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Escobedo-Bonilla, C.M. Application of RNA Interference (RNAi) against Viral Infections in Shrimp: A Review. J. Antivir. Antiretrovir. 2013, 5, 1–12. [Google Scholar] [CrossRef]
- Zainun, I.; Budidarsono, S.; Rinaldi, Y.; Cut Adek, M. Socio-Economic Aspects of Brackish Water Aquaculture (Tambak) Production In Nanggroe Aceh Darrusalam. ICRAF Southeast. Asia 2007, 46, 1–57. [Google Scholar]
- Alday-Sanz, V. The Shrimp Book, 1st ed.; Nottingham University Press: Nottingham, UK, 2010; p. 920. ISBN 978-1904761594. [Google Scholar]
- Walker, P.J.; Mohan, C.V. Viral disease emergence in shrimp aquaculture: Origins, impact and the effectiveness of health management strategies. Rev. Aquac. 2009, 1, 125–154. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Bossier, P.; Norouzitallab, P.; Vanrompay, D. Trained immunity and perspectives for shrimp aquaculture. Rev. Aquac. 2020, 12, 2351–2370. [Google Scholar] [CrossRef]
- Manan, H.; Ikhwanuddin, M. Triploid induction in penaeid shrimps aquaculture: A review. Rev. Aquac. 2020, 13, 619–631. [Google Scholar] [CrossRef]
- Flegel, T. Major viral diseases of the black tiger prawn (Penaeus monodon) in Thailand. World J. Microbiol. Biotechnol. 1997, 13, 433–442. [Google Scholar] [CrossRef]
- Alabi, A.; Latchford, J.; Jones, D. Demonstration of residual antibacterial activity in plasma of vaccinated Penaeus vannamei. Aquaculture 2000, 187, 15–34. [Google Scholar] [CrossRef]
- Lee, D.; Yu, Y.-B.; Choi, J.-H.; Jo, A.-H.; Hong, S.-M.; Kang, J.-C.; Kim, J.-H. Viral Shrimp Diseases Listed by the OIE: A Review. Viruses 2022, 14, 585. [Google Scholar] [CrossRef]
- Hsu, Y.; Wang, K.; Yang, Y.; Tung, M.; Hu, C.; Lo, C.; Wang, C.; Hsu, T. Diagnosis of Penaeus monodon-type baculovirus by PCR and by ELISA of occlusion bodies. Dis. Aquat. Org. 2000, 40, 93–99. [Google Scholar] [CrossRef]
- Lightner, D.V.; Redman, R.M. Shrimp diseases and current diagnostic methods. Aquaculture 1998, 164, 201–220. [Google Scholar] [CrossRef]
- Flegel, T.W. Historic emergence, impact and current status of shrimp pathogens in Asia. J. Invertebr. Pathol. 2012, 110, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J. Progress in the gut microbiota in exploring shrimp disease pathogenesis and incidence. Appl. Microbiol. Biotechnol. 2018, 102, 7343–7350. [Google Scholar] [CrossRef] [PubMed]
- Itsathitphaisarn, O.; Thitamadee, S.; Weerachatyanukul, W.; Sritunyalucksana, K. Potential of RNAi applications to control viral diseases of farmed shrimp. J. Invertebr. Pathol. 2017, 147, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Lima, P.C.; Harris, J.O.; Cook, M. Exploring RNAi as a therapeutic strategy for controlling disease in aquaculture. Fish Shellfish. Immunol. 2013, 34, 729–743. [Google Scholar] [CrossRef] [PubMed]
- Reshi, M.L.; Wu, J.-L.; Wang, H.-V.; Hong, J.-R. RNA interference technology used for the study of aquatic virus infections. Fish Shellfish. Immunol. 2014, 40, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Zhang, X. RNAi-based antiviral immunity of shrimp. Dev. Comp. Immunol. 2020, 115, 103907. [Google Scholar] [CrossRef]
- Castel, S.E.; Martienssen, R.A. RNA interference in the nucleus: Roles for small RNAs in transcription, epigenetics and beyond. Nat. Rev. Genet. 2013, 14, 100–112. [Google Scholar] [CrossRef]
- Walker, P.J.; Winton, J.R. Emerging viral diseases of fish and shrimp. Veter. Res. 2010, 41, 51. [Google Scholar] [CrossRef]
- Lightner, D.V.; Redman, R.M.; Bell, T.; Brock, J. Detection of IHHN virus in Penaeys stylirostris and P. vannamei imported into Hawaii. J. World Maric. Soc. 1983, 225, 212–225. [Google Scholar] [CrossRef]
- Zhan, W.-B.; Wang, Y.-H.; Fryer, J.L.; Yu, K.-K.; Fukuda, H.; Meng, Q.-X. White Spot Syndrome Virus Infection of Cultured Shrimp in China. J. Aquat. Anim. Health 1998, 10, 405–410. [Google Scholar] [CrossRef]
- Lightner, D.; Redman, R. A parvo-like virus disease of penaeid shrimp. J. Invertebr. Pathol. 1985, 45, 47–53. [Google Scholar] [CrossRef]
- Dhar, A.K.; Cruz-Flores, R.; Caro, L.F.A.; Siewiora, H.M.; Jory, D. Diversity of single-stranded DNA containing viruses in shrimp. VirusDisease 2019, 30, 43–57. [Google Scholar] [CrossRef] [PubMed]
- Hammer, H.S.; Stuck, K.C.; Overstreet, R.M. Infectivity and Pathogenicity ofBaculovirus penaei(BP) in Cultured Larval and Postlarval Pacific White Shrimp, Penaeus vannamei, Related to the Stage of Viral Development. J. Invertebr. Pathol. 1998, 72, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Lightner, D.V.; Redman, R.M. A baculovirus-caused disease of the penaeid shrimp, Penaeus monodon. J. Invertebr. Pathol. 1981, 38, 299–302. [Google Scholar] [CrossRef]
- Chen, Z.; Huang, J.; Zhang, F.; Zhou, Y.; Huang, H. Detection of shrimp hemocyte iridescent virus by recombinase polymerase amplification assay. Mol. Cell. Probes 2019, 49, 101475. [Google Scholar] [CrossRef]
- Liu, S.; Wang, X.; Xu, T.; Li, X.; Du, L.; Zhang, Q. Vectors and reservoir hosts of covert mortality nodavirus (CMNV) in shrimp ponds. J. Invertebr. Pathol. 2018, 154, 29–36. [Google Scholar] [CrossRef]
- Tang, K.; Pantoja, C.; Redman, R.; Lightner, D. Development of in situ hybridization and RT-PCR assay for the detection of a nodavirus (PvNV) that causes muscle necrosis in Penaeus vannamei. Dis. Aquat. Org. 2007, 75, 183–190. [Google Scholar] [CrossRef]
- Munro, J.; Callinan, R.; Owens, L. Gill-associated virus and its association with decreased production of Penaeus monodon in Australian prawn farms. J. Fish Dis. 2010, 34, 13–20. [Google Scholar] [CrossRef]
- Cowley, J.; Dimmock, C.; Wongteerasupaya, C.; Boonsaeng, V.; Panyim, S.; Walker, P. Yellow head virus from Thailand and gill-associated virus from Australia are closely related but distinct prawn viruses. Dis. Aquat. Org. 1999, 36, 153–157. [Google Scholar] [CrossRef]
- Sittidilokratna, N.; Dangtip, S.; Sritunyalucksana, K.; Babu, R.; Pradeep, B.; Mohan, C.V.; Gudkovs, N.; Walker, P.J. Detection of Laem-Singh virus in cultured Penaeus monodon shrimp from several sites in the Indo-Pacific region. Dis. Aquat. Org. 2009, 84, 195–200. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, X. Comparison of antiviral efficiency of immune responses in shrimp. Fish Shellfish. Immunol. 2008, 25, 522–527. [Google Scholar] [CrossRef] [PubMed]
- Abubakar, M.; Atmaca, H.T.; Zahoor, M.A.; Kul, O. Cellular Immunity-Pathogen Interactions in Infectious Diseases. J. Immunol. Res. 2015, 2015, 1. [Google Scholar] [CrossRef] [PubMed]
- Tassanakajon, A.; Amparyup, P.; Somboonwiwat, K.; Supungul, P. Cationic Antimicrobial Peptides in Penaeid Shrimp. Mar. Biotechnol. 2011, 13, 639–657. [Google Scholar] [CrossRef] [PubMed]
- Chen, I.-T.; Lee, D.-Y.; Huang, Y.-T.; Kou, G.-H.; Wang, H.-C.; Chang, G.-D.; Lo, C.-F. Six Hours after Infection, the Metabolic Changes Induced by WSSV Neutralize the Host’s Oxidative Stress Defenses. Sci. Rep. 2016, 6, 27732. [Google Scholar] [CrossRef]
- Gheysen, G.; Vanholme, B. RNAi from plants to nematodes. Trends Biotechnol. 2007, 25, 89–92. [Google Scholar] [CrossRef]
- Rahman, M.; Escobedo-Bonilla, C.; Corteel, M.; Dantas-Lima, J.; Wille, M.; Sanz, V.A.; Pensaert, M.; Sorgeloos, P.; Nauwynck, H. Effect of high water temperature (33 °C) on the clinical and virological outcome of experimental infections with white spot syndrome virus (WSSV) in specific pathogen-free (SPF) Litopenaeus vannamei. Aquaculture 2006, 261, 842–849. [Google Scholar] [CrossRef]
- Rameshthangam, P.; Ramasamy, P. Antiviral activity of bis(2-methylheptyl)phthalate isolated from Pongamia pinnata leaves against White Spot Syndrome Virus of Penaeus monodon Fabricius. Virus Res. 2007, 126, 38–44. [Google Scholar] [CrossRef]
- Chotigeat, W.; Tongsupa, S.; Supamataya, K.; Phongdara, A. Effect of Fucoidan on Disease Resistance of Black Tiger Shrimp. Aquaculture 2004, 233, 23–30. [Google Scholar] [CrossRef]
- Citarasu, T.; Sivaram, V.; Immanuel, G.; Rout, N.; Murugan, V. Influence of selected Indian immunostimulant herbs against white spot syndrome virus (WSSV) infection in black tiger shrimp, Penaeus monodon with reference to haematological, biochemical and immunological changes. Fish Shellfish. Immunol. 2006, 21, 372–384. [Google Scholar] [CrossRef]
- Rengpipat, S.; Rukpratanporn, S.; Piyatiratitivorakul, S.; Menasaveta, P. Immunity enhancement in black tiger shrimp (Penaeus monodon) by a probiont bacterium (Bacillus S11). Aquaculture 2000, 191, 271–288. [Google Scholar] [CrossRef]
- Chang, C.-F.; Su, M.S.; Chen, H.-Y.; Lo, C.-F.; Kou, G.-H.; Liao, I.-C. Effect of dietary β-1,3-glucan on resistance to white spot syndrome virus (WSSV) in postlarval and juvenile Penaeus monodon. Dis. Aquat. Org. 1999, 36, 163–168. [Google Scholar] [CrossRef]
- Itami, T.; Asano, M.; Tokushige, K.; Kubono, K.; Nakagawa, A.; Takeno, N.; Nishimura, H.; Maeda, M.; Kondo, M.; Takahashi, Y. Enhancement of disease resistance of kuruma shrimp, Penaeus japonicus, after oral administration of peptidoglycan derived from Bifidobacterium thermophilum. Aquaculture 1998, 164, 277–288. [Google Scholar] [CrossRef]
- Takahashi, Y.; Kondo, M.; Itami, T.; Honda, T.; Inagawa, H.; Nishizawa, T.; Soma, G.-I.; Yokomizo, Y. Enhancement of disease resistance against penaeid acute viraemia and induction of virus-inactivating activity in haemolymph of kuruma shrimp, Penaeus japonicus, by oral administration ofPantoea agglomeranslipopolysaccharide (LPS). Fish Shellfish. Immunol. 2000, 10, 555–558. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-F.; Su, M.-S.; Chen, H.-Y.; Liao, I.-C. Dietary β-1,3-glucan effectively improves immunity and survival of Penaeus monodon challenged with white spot syndrome virus. Fish Shellfish. Immunol. 2003, 15, 297–310. [Google Scholar] [CrossRef] [PubMed]
- López, N.; Cuzon, G.; Gaxiola, G.; Taboada, G.; Valenzuela, M.; Pascual, C.; Sánchez, A.; Rosas, C. Physiological, nutritional, and immunological role of dietary β 1-3 glucan and ascorbic acid 2-monophosphate in Litopenaeus vannamei juveniles. Aquaculture 2003, 224, 223–243. [Google Scholar] [CrossRef]
- Mondal, H.; Thomas, J. A review on the recent advances and application of vaccines against fish pathogens in aquaculture. Aquac. Int. 2022, 30, 1971–2000. [Google Scholar] [CrossRef]
- Tseng, F.; Tsai, H.; Liao, I.; Song, Y. Introducing foreign DNA into tiger shrimp (Penaeusmonodon) by electroporation. Theriogenology 2000, 54, 1421–1432. [Google Scholar] [CrossRef]
- Preston, N.; Baule, V.; Leopold, R.; Henderling, J.; Atkinson, P.; Whyard, S. Delivery of DNA to early embryos of the Kuruma prawn, Penaeus japonicus. Aquaculture 2000, 181, 225–234. [Google Scholar] [CrossRef]
- Kumar, S.R.; Ahamed, V.I.; Sarathi, M.; Basha, A.N.; Hameed, A.S. Immunological responses of Penaeus monodon to DNA vaccine and its efficacy to protect shrimp against white spot syndrome virus (WSSV). Fish Shellfish. Immunol. 2008, 24, 467–478. [Google Scholar] [CrossRef]
- Rout, N.; Kumar, S.; Jaganmohan, S.; Murugan, V. DNA vaccines encoding viral envelope proteins confer protective immunity against WSSV in black tiger shrimp. Vaccine 2007, 25, 2778–2786. [Google Scholar] [CrossRef]
- Rahman, M.; Corteel, M.; Dantas-Lima, J.; Wille, M.; Alday-Sanz, V.; Pensaert, M.; Sorgeloos, P.; Nauwynck, H. Impact of daily fluctuations of optimum (27 °C) and high water temperature (33 °C) on Penaeus vannamei juveniles infected with white spot syndrome virus (WSSV). Aquaculture 2007, 269, 107–113. [Google Scholar] [CrossRef]
- Vidal, O.M.; Granja, C.B.; Aranguren, F.; Brock, J.A.; Salazar, M. A Profound Effect of Hyperthermia on Survival of Litopenaeus vannamei Juveniles Infected with White Spot Syndrome Virus. J. World Aquac. Soc. 2001, 32, 364–372. [Google Scholar] [CrossRef]
- Du, H.-H.; Li, W.-F.; Xu, Z.-R.; Kil, Z.-S. Effect of hyperthermia on the replication of white spot syndrome virus (WSSV) in Procambarus clarkii. Dis. Aquat. Org. 2006, 71, 175–178. [Google Scholar] [CrossRef] [PubMed]
- Granja, C.; Vidal, O.; Parra, G.; Salazar, M. Hyperthermia reduces viral load of white spot syndrome virus in Penaeus vannamei. Dis. Aquat. Org. 2006, 68, 175–180. [Google Scholar] [CrossRef]
- Guan, Y.; Yu, Z.; Li, C. The effects of temperature on white spot syndrome infections in Marsupenaeus japonicus. J. Invertebr. Pathol. 2003, 83, 257–260. [Google Scholar] [CrossRef]
- Du, H.; Dai, W.; Han, X.; Li, W.; Xu, Y.; Xu, Z. Effect of low water temperature on viral replication of white spot syndrome virus in Procambarus clarkii. Aquaculture 2008, 277, 149–151. [Google Scholar] [CrossRef]
- Jiravanichpaisal, P.; Söderhäll, K.; Söderhäll, I. Effect of water temperature on the immune response and infectivity pattern of white spot syndrome virus (WSSV) in freshwater crayfish. Fish Shellfish. Immunol. 2004, 17, 265–275. [Google Scholar] [CrossRef]
- Almeida, R.; Allshire, R.C. RNA silencing and genome regulation. Trends Cell Biol. 2005, 15, 251–258. [Google Scholar] [CrossRef]
- Hammond, S.M.; Bernstein, E.; Beach, D.; Hannon, G.J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 2000, 404, 293–296. [Google Scholar] [CrossRef]
- Bernstein, E.; Caudy, A.A.; Hammond, S.M.; Hannon, G.J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001, 409, 363–366. [Google Scholar] [CrossRef]
- Krishnan, P.; Babu, P.G.; Saravanan, S.; Rajendran, K.; Chaudhari, A. DNA constructs expressing long-hairpin RNA (lhRNA) protect Penaeus monodon against White Spot Syndrome Virus. Vaccine 2009, 27, 3849–3855. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Ju, C.; Zhang, X. Roles of small RNAs in the immune defense mechanisms of crustaceans. Mol. Immunol. 2015, 68, 399–403. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Han, F.; Zhang, X. Silencing shrimp white spot syndrome virus (WSSV) genes by siRNA. Antivir. Res. 2007, 73, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Weerachatyanukul, W.; Chotwiwatthanakun, C.; Jariyapong, P. Dual VP28 and VP37 dsRNA encapsulation in IHHNV virus-like particles enhances shrimp protection against white spot syndrome virus. Fish Shellfish. Immunol. 2021, 113, 89–95. [Google Scholar] [CrossRef]
- Nilsen, P.; Karlsen, M.; Sritunyalucksana, K.; Thitamadee, S. White spot syndrome virus VP28 specific double-stranded RNA provides protection through a highly focused siRNA population. Sci. Rep. 2017, 7, 1–14. [Google Scholar] [CrossRef]
- Ramos-Carreño, S.; Giffard-Mena, I.; Zamudio-Ocadiz, J.N.; Nuñez-Rivera, A.; Valencia-Yañez, R.; Ruiz-Garcia, J.; Viana, M.T.; Cadena-Nava, R.D. Antiviral therapy in shrimp through plant virus VLP containing VP28 dsRNA against WSSV. Beilstein J. Org. Chem. 2021, 17, 1360–1373. [Google Scholar] [CrossRef]
- Saksmerprome, V.; Charoonnart, P.; Gangnonngiw, W.; Withyachumnarnkul, B. A novel and inexpensive application of RNAi technology to protect shrimp from viral disease. J. Virol. Methods 2009, 162, 213–217. [Google Scholar] [CrossRef]
- Charoonnart, P.; Worakajit, N.; Zedler, J.A.Z.; Meetam, M.; Robinson, C.; Saksmerprome, V. Generation of microalga Chlamydomonas reinhardtii expressing shrimp antiviral dsRNA without supplementation of antibiotics. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef]
- Chaimongkon, D.; Assavalapsakul, W.; Panyim, S.; Attasart, P. A multi-target dsRNA for simultaneous inhibition of yellow head virus and white spot syndrome virus in shrimp. J. Biotechnol. 2020, 321, 48–56. [Google Scholar] [CrossRef]
- Robalino, J.; Bartlett, T.; Shepard, E.; Prior, S.; Jaramillo, G.; Scura, E.; Chapman, R.W.; Gross, P.S.; Browdy, C.L.; Warr, G.W. Double-Stranded RNA Induces Sequence-Specific Antiviral Silencing in Addition to Nonspecific Immunity in a Marine Shrimp: Convergence of RNAInterference and Innate Immunity in the Invertebrate Antiviral Response? J. Virol. 2005, 79, 13561–13571. [Google Scholar] [CrossRef]
- Tirasophon, W.; Roshorm, Y.; Panyim, S. Silencing of yellow head virus replication in penaeid shrimp cells by dsRNA. Biochem. Biophys. Res. Commun. 2005, 334, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Yodmuang, S.; Tirasophon, W.; Roshorm, Y.; Chinnirunvong, W.; Panyim, S. YHV-protease dsRNA inhibits YHV replication in Penaeus monodon and prevents mortality. Biochem. Biophys. Res. Commun. 2006, 341, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.H.; He, J.G. Nucleic Acid Sensing in Invertebrate Antiviral Immunity. In International Review of Cell and Molecular Biology; Elsevier Inc.: Amsterdam, The Netherlands, 2019; Volume 345, pp. 287–360. ISBN 9780128159811. [Google Scholar]
- Martinez, J.; Patkaniowska, A.; Urlaub, H.; Lührmann, R.; Tuschl, T. Single-Stranded Antisense siRNAs Guide Target RNA Cleavage in RNAi. Cell 2002, 110, 563–574. [Google Scholar] [CrossRef] [PubMed]
- Shekhar, M.S.; Lu, Y. Application of Nucleic-acid-based Therapeutics for Viral Infections in Shrimp Aquaculture. Mar. Biotechnol. 2008, 11, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.N.; van Hulten, M.C.W.; Barnes, A.C. “Vaccination” of Shrimp against Viral Pathogens: Phenomenology and Underlying Mechanisms. Vaccine 2008, 26, 4885–4892. [Google Scholar] [CrossRef]
- Lightner, D. Virus diseases of farmed shrimp in the Western Hemisphere (the Americas): A review. J. Invertebr. Pathol. 2011, 106, 110–130. [Google Scholar] [CrossRef]
- Harpeni, E. The Potential Roles Of Interferon In Managing Viral Diseases In Crustacean. J. Coast. Dev. 2011, 14, 91–103. [Google Scholar]
- Ongvarrasopone, C.; Chanasakulniyom, M.; Sritunyalucksana, K.; Panyim, S. Suppression of PmRab7 by dsRNA Inhibits WSSV or YHV Infection in Shrimp. Mar. Biotechnol. 2008, 10, 374–381. [Google Scholar] [CrossRef]
- Unajak, S.; Boonsaeng, V.; Jitrapakdee, S. Isolation and characterization of cDNA encoding Argonaute, a component of RNA silencing in shrimp (Penaeus monodon). Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2006, 145, 179–187. [Google Scholar] [CrossRef]
- Dechklar, M.; Udomkit, A.; Panyim, S. Characterization of Argonaute cDNA from Penaeus monodon and implication of its role in RNA interference. Biochem. Biophys. Res. Commun. 2008, 367, 768–774. [Google Scholar] [CrossRef]
- Su, J.; Oanh, D.T.; Lyons, R.E.; Leeton, L.; van Hulten, M.C.; Tan, S.-H.; Song, L.; Rajendran, K.; Walker, P.J. A key gene of the RNA interference pathway in the black tiger shrimp, Penaeus monodon: Identification and functional characterisation of Dicer-1. Fish Shellfish. Immunol. 2008, 24, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Wang, L.; Song, L.; Zhang, H.; Dong, C.; Zhang, Y.; Qiu, L.; Shi, Y.; Zhao, J.; Bi, Y. A Dicer-1 gene from white shrimp Litopenaeus vannamei: Expression pattern in the processes of immune response and larval development. Fish Shellfish. Immunol. 2010, 29, 565–570. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-H.; Jia, X.-T.; Zhao, L.; Li, C.-Z.; Zhang, S.; Chen, Y.-G.; Weng, S.-P.; He, J.-G. Identification and functional characterization of Dicer2 and five single VWC domain proteins of Litopenaeus vannamei. Dev. Comp. Immunol. 2011, 35, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Labreuche, Y.; Warr, G.W. Insights into the antiviral functions of the RNAi machinery in penaeid shrimp. Fish Shellfish. Immunol. 2013, 34, 1002–1010. [Google Scholar] [CrossRef]
- Attasart, P.; Kaewkhaw, R.; Chimwai, C.; Kongphom, U.; Namramoon, O.; Panyim, S. Inhibition of Penaeus monodon densovirus replication in shrimp by double-stranded RNA. Arch. Virol. 2010, 155, 825–832. [Google Scholar] [CrossRef]
- Sellars, M.J.; Rao, M.; Arnold, S.J.; Wade, N.M.; Cowley, J.A. Penaeus monodon is protected against gill- associated virus by muscle injection but not oral delivery of bacterially expressed dsRNAs. Dis. Aquat. Org. 2011, 95, 19–30. [Google Scholar] [CrossRef]
- Zhu, F.; Zhang, X. The antiviral vp28-siRNA expressed in bacteria protects shrimp against white spot syndrome virus (WSSV). Aquaculture 2011, 319, 311–314. [Google Scholar] [CrossRef]
- Ho, T.; Yasri, P.; Panyim, S.; Udomkit, A. Double-stranded RNA confers both preventive and therapeutic effects against Penaeus stylirostris densovirus (PstDNV) in Litopenaeus vannamei. Virus Res. 2011, 155, 131–136. [Google Scholar] [CrossRef]
- Posiri, P.; Ongvarrasopone, C.; Panyim, S. Improved preventive and curative effects of YHV infection in Penaeus monodon by a combination of two double stranded RNAs. Aquaculture 2011, 314, 34–38. [Google Scholar] [CrossRef]
- Tirasophon, W.; Yodmuang, S.; Chinnirunvong, W.; Plongthongkum, N.; Panyim, S. Therapeutic inhibition of yellow head virus multiplication in infected shrimps by YHV-protease dsRNA. Antivir. Res. 2007, 74, 150–155. [Google Scholar] [CrossRef]
- Assavalapsakul, W.; Chinnirunvong, W.; Panyim, S. Application of YHV-protease dsRNA for protection and therapeutic treatment against yellow head virus infection in Litopenaeus vannamei. Dis. Aquat. Org. 2009, 84, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Attasart, P.; Kaewkhaw, R.; Chimwai, C.; Kongphom, U.; Panyim, S. Clearance of Penaeus monodon densovirus in naturally pre-infected shrimp by combined ns1 and vp dsRNAs. Virus Res. 2011, 159, 79–82. [Google Scholar] [CrossRef] [PubMed]
- Thammasorn, T.; Sangsuriya, P.; Meemetta, W.; Senapin, S.; Jitrakorn, S.; Rattanarojpong, T.; Saksmerprome, V. Large-scale production and antiviral efficacy of multi-target double-stranded RNA for the prevention of white spot syndrome virus (WSSV) in shrimp. BMC Biotechnol. 2015, 15, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Li, D.-F.; Zhang, M.-C.; Yang, H.-J.; Zhu, Y.-B.; Xu, X. β-integrin mediates WSSV infection. Virology 2007, 368, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Alenton, R.R.R.; Kondo, H.; Hirono, I.; Maningas, M.B.B. Gene silencing of VP9 gene impairs WSSV infectivity on Macrobrachium rosenbergii. Virus Res. 2016, 214, 65–70. [Google Scholar] [CrossRef]
- Mejía-Ruíz, C.H.; Vega-Peña, S.; Alvarez-Ruiz, P.; Escobedo-Bonilla, C.M. Double-stranded RNA against white spot syndrome virus (WSSV) vp28 or vp26 reduced susceptibility of Litopenaeus vannamei to WSSV, and survivors exhibited decreased susceptibility in subsequent re-infections. J. Invertebr. Pathol. 2011, 107, 65–68. [Google Scholar] [CrossRef]
- Thedcharoen, P.; Pewkliang, Y.; Kiem, H.K.T.; Nuntakarn, L.; Taengchaiyaphum, S.; Sritunyalucksana, K.; Flegel, T.W.; Saksmerprome, V.; Borwornpinyo, S. Effective suppression of yellow head virus replication in Penaeus monodon hemocytes using constitutive expression vector for long-hairpin RNA (lhRNA). J. Invertebr. Pathol. 2020, 175, 107442. [Google Scholar] [CrossRef]
- Posiri, P.; Thongsuksangcharoen, S.; Chaysri, N.; Panyim, S.; Ongvarrasopone, C. PmEEA1, the early endosomal protein is employed by YHV for successful infection in Penaeus monodon. Fish Shellfish. Immunol. 2019, 95, 449–455. [Google Scholar] [CrossRef]
- Ongvarrasopone, C.; Saejia, P.; Chanasakulniyom, M.; Panyim, S. Inhibition of Taura syndrome virus replication in Litopenaeus vannamei through silencing the LvRab7 gene using double-stranded RNA. Arch. Virol. 2011, 156, 1117–1123. [Google Scholar] [CrossRef]
- Senapin, S.; Phiwsaiya, K.; Anantasomboon, G.; Sriphaijit, T.; Browdy, C.L.; Flegel, T.W. Knocking down a Taura syndrome virus (TSV) binding protein Lamr is lethal for the whiteleg shrimp Penaeus vannamei. Fish Shellfish. Immunol. 2010, 29, 422–429. [Google Scholar] [CrossRef]
- Saksmerprome, V.; Thammasorn, T.; Jitrakorn, S.; Wongtripop, S.; Borwornpinyo, S.; Withyachumnarnkul, B. Using double-stranded RNA for the control of Laem-Singh Virus (LSNV) in Thai P. monodon. J. Biotechnol. 2013, 164, 449–453. [Google Scholar] [CrossRef] [PubMed]
- Feijó, R.; Maggioni, R.; Martins, P.; de Abreu, K.; Oliveira-Neto, J.; Guertler, C.; Justino, E.; Perazzolo, L.; Marins, L. RNAi-based inhibition of infectious myonecrosis virus replication in Pacific white shrimp Litopenaeus vannamei. Dis. Aquat. Org. 2015, 114, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Caplen, N.J.; Mousses, S. Short Interfering RNA (SiRNA)- Mediated RNA Interference (RNAi) in Human Cells. Ann. N. Y. Acad. Sci. 2003, 1002, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, A.; Tantray, V.G.; Kirmani, A.R.; Ahangar, A.G. A review on current status of antiviral siRNA. Rev. Med. Virol. 2018, 28, e1976. [Google Scholar] [CrossRef]
- Sabin, L.R.; Cherry, S. Small creatures use small RNAs to direct antiviral defenses. Eur. J. Immunol. 2013, 43, 27–33. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, Y.; Zhang, X. Synonymous SNPs of viral genes facilitate virus to escape host antiviral RNAi immunity. RNA Biol. 2019, 16, 1697–1710. [Google Scholar] [CrossRef]
- Huang, T.; Zhang, X. Host defense against DNA virus infection in shrimp is mediated by the siRNA pathway. Eur. J. Immunol. 2012, 43, 137–146. [Google Scholar] [CrossRef]
- Bronkhorst, A.W.; van Cleef, K.W.; Venselaar, H.; van Rij, R.P. A dsRNA-binding protein of a complex invertebrate DNA virus suppresses the Drosophila RNAi response. Nucleic Acids Res. 2014, 42, 12237–12248. [Google Scholar] [CrossRef]
- Eulalio, A.; Huntzinger, E.; Izaurralde, E. Getting to the Root of MiRNA-Mediated Gene Silencing. Cell 2008, 132, 9–14. [Google Scholar] [CrossRef]
- Jones-Rhoades, M.W.; Bartel, D.P. Computational Identification of Plant MicroRNAs and Their Targets, Including a Stress-Induced miRNA. Mol. Cell 2004, 14, 787–799. [Google Scholar] [CrossRef]
- He, Y.; Zhang, X. Comprehensive characterization of viral miRNAs involved in white spot syndrome virus (WSSV) infection. RNA Biol. 2012, 9, 1019–1029. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Yang, K.; Zhang, X. Viral MicroRNAs Targeting Virus Genes Promote Virus Infection in Shrimp In Vivo. J. Virol. 2014, 88, 1104–1112. [Google Scholar] [CrossRef] [PubMed]
- Ren, Q.; Huang, X.; Cui, Y.; Sun, J.; Wang, W.; Zhang, X. Two White Spot Syndrome Virus MicroRNAs Target the Dorsal Gene To Promote Virus Infection in Marsupenaeus japonicus Shrimp. J. Virol. 2017, 91, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Ju, C.; Zhang, X. Shrimp miR-1000 Functions in Antiviral Immunity by Simultaneously Triggering the Degradation of Two Viral mRNAs. Front. Immunol. 2018, 9, 2999. [Google Scholar] [CrossRef] [PubMed]
- Carthew, R.W.; Sontheimer, E.J. Origins and Mechanisms of miRNAs and siRNAs. Cell 2009, 136, 642–655. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Target Recognition and Regulatory Functions. Cell 2009, 136, 215–233. [Google Scholar] [CrossRef]
- Huang, T.; Xu, D.; Zhang, X. Characterization of host microRNAs that respond to DNA virus infection in a crustacean. BMC Genom. 2012, 13, 159. [Google Scholar] [CrossRef]
- Huang, T.; Zhang, X. Functional Analysis of a Crustacean MicroRNA in Host-Virus Interactions. J. Virol. 2012, 86, 12997–13004. [Google Scholar] [CrossRef]
- Nguyen, D.V.; Christiaens, O.; Bossier, P.; Smagghe, G. RNA interference in shrimp and potential applications in aquaculture. Rev. Aquac. 2016, 10, 573–584. [Google Scholar] [CrossRef]
- Förstemann, K.; Horwich, M.D.; Wee, L.; Tomari, Y.; Zamore, P.D. Drosophila microRNAs Are Sorted into Functionally Distinct Argonaute Complexes after Production by Dicer-1. Cell 2007, 130, 287–297. [Google Scholar] [CrossRef]
- Jaskiewicz, L.; Filipowicz, W. Role of Dicer in Posttranscriptional RNA Silencing. Poxviruses 2008, 320, 77–97. [Google Scholar] [CrossRef]
- Huang, T.; Cui, Y.; Zhang, X. Involvement of Viral MicroRNA in the Regulation of Antiviral Apoptosis in Shrimp. J. Virol. 2014, 88, 2544–2554. [Google Scholar] [CrossRef] [PubMed]
- Shu, L.; Zhang, X. Shrimp miR-12 Suppresses White Spot Syndrome Virus Infection by Synchronously Triggering Antiviral Phagocytosis and Apoptosis Pathways. Front. Immunol. 2017, 8, 855. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Sun, Y.; Zhang, X. Noncoding miRNAs bridge virus infection and host autophagy in shrimp in vivo. FASEB J. 2017, 31, 2854–2868. [Google Scholar] [CrossRef] [PubMed]
- Plasterk, R.H.A. RNA Silencing: The Genome’s Immune System. Science 2002, 296, 1263–1265. [Google Scholar] [CrossRef]
- Gitlin, L.; Karelsky, S.; Andino, R. Short interfering RNA confers intracellular antiviral immunity in human cells. Nature 2002, 418, 430–434, Erratum in 2003, 423, 197. [Google Scholar] [CrossRef]
- Lecellier, C.H.; Voinnet, O. RNA Silencing: No Mercy for Viruses? Immunol. Rev. 2004, 198, 285–303. [Google Scholar] [CrossRef]
- Tan, F.L.; Yin, J.Q. RNAi, a new therapeutic strategy against viral infection. Cell Res. 2004, 14, 460–466. [Google Scholar] [CrossRef]
- Rijiravanich, A.; Browdy, C.L.; Withyachumnarnkul, B. Knocking down caspase-3 by RNAi reduces mortality in Pacific white shrimp Penaeus (Litopenaeus) vannamei challenged with a low dose of white-spot syndrome virus. Fish Shellfish. Immunol. 2008, 24, 308–313. [Google Scholar] [CrossRef]
- Robalino, J.; Browdy, C.L.; Prior, S.; Metz, A.; Parnell, P.; Gross, P.; Warr, G. Induction of Antiviral Immunity by Double-Stranded RNA in a Marine Invertebrate. J. Virol. 2004, 78, 10442–10448. [Google Scholar] [CrossRef]
- Kim, C.S.; Kosuke, Z.; Nam, Y.K.; Kim, S.K.; Kim, K.H. Protection of shrimp (Penaeus chinensis) against white spot syndrome virus (WSSV) challenge by double-stranded RNA. Fish Shellfish. Immunol. 2007, 23, 242–246. [Google Scholar] [CrossRef] [PubMed]
- Qayoom, U.; Mushtaq, Z. RNAi Technology in Fish and Shellfish- Status and Prospects: A Review. Agric. Rev. 2020, 42, 267–275. [Google Scholar] [CrossRef]
- Abo-Al-Ela, H.G. RNA Interference in Aquaculture: A Small Tool for Big Potential. J. Agric. Food Chem. 2021, 69, 4343–4355. [Google Scholar] [CrossRef] [PubMed]
- Arenal, A.; Pimentel, R.; Guimarais, M.; Rodriguez, A.; Martinez, R.; Abad, Z. Gene Transfer in Shrimp (Litopenaeus schmitti) by Electroporation of Single-Cell Embryos and Injection of Naked DNA into Adult Muscle. Biotecnol. Appl. 2000, 17, 247–250. [Google Scholar]
- Chang, S.-H.; Lee, B.-C.; Chen, Y.-D.; Lee, Y.-C.; Tsai, H.-J. Development of transgenic zooplankton Artemia as a bioreactor to produce exogenous protein. Transgenic Res. 2011, 20, 1099–1111. [Google Scholar] [CrossRef]
- Chu, B.; Yao, F.; Cheng, C.; Wu, Y.; Mei, Y.; Li, X.; Liu, Y.; Wang, P.; Hou, L.; Zou, X. The Potential Role of As-sumo-1 in the Embryonic Diapause Process and Early Embryo Development of Artemia sinica. PLoS ONE 2014, 9, e85343. [Google Scholar] [CrossRef]
- Kato, Y.; Shiga, Y.; Kobayashi, K.; Tokishita, S.-I.; Yamagata, H.; Iguchi, T.; Watanabe, H. Development of an RNA interference method in the cladoceran crustacean Daphnia magna. Dev. Genes Evol. 2011, 220, 337–345. [Google Scholar] [CrossRef]
- Sharabi, O.; Manor, R.; Weil, S.; Aflalo, E.D.; Lezer, Y.; Levy, T.; Aizen, J.; Ventura, T.; Mather, P.B.; Khalaila, I.; et al. Identification and Characterization of an Insulin-Like Receptor Involved in Crustacean Reproduction. Endocrinology 2016, 157, 928–941. [Google Scholar] [CrossRef]
- Cha, G.-H.; Liu, Y.; Peng, T.; Huang, M.-Z.; Xie, C.-Y.; Xiao, Y.-C.; Wang, W.-N. Molecular cloning, expression of a galectin gene in Pacific white shrimp Litopenaeus vannamei and the antibacterial activity of its recombinant protein. Mol. Immunol. 2015, 67, 325–340. [Google Scholar] [CrossRef]
- Chimwai, C.; Tongboonsong, P.; Namramoon, O.; Panyim, S.; Attasart, P. A formulated double-stranded RNA diet for reducing Penaeus monodon densovirus infection in black tiger shrimp. J. Invertebr. Pathol. 2016, 134, 23–26. [Google Scholar] [CrossRef]
- Lu, Y.; Sun, P.S. Viral resistance in shrimp that express an antisense Taura syndrome virus coat protein gene. Antivir. Res. 2005, 67, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.S.; Venzon, N.C.; Calderon, F.R.; Esaki, D.M. Evaluation of methods for DNA delivery into shrimp zygotes of Penaeus(Litopenaeus) vannamei. Aquaculture 2005, 243, 19–26. [Google Scholar] [CrossRef]
- Kay, M.A.; Glorioso, J.C.; Naldini, L. Viral vectors for gene therapy: The art of turning infectious agents into vehicles of therapeutics. Nat. Med. 2001, 7, 33–40. [Google Scholar] [CrossRef]
- Thomas, C.E.; Ehrhardt, A.; Kay, M.A. Progress and problems with the use of viral vectors for gene therapy. Nat. Rev. Genet. 2003, 4, 346–358. [Google Scholar] [CrossRef] [PubMed]
- Attasart, P.; Namramoon, O.; Kongphom, U.; Chimwai, C.; Panyim, S. Ingestion of bacteria expressing dsRNA triggers specific RNA silencing in shrimp. Virus Res. 2013, 171, 252–256. [Google Scholar] [CrossRef] [PubMed]
- Treerattrakool, S.; Chartthai, C.; Phromma-In, N.; Panyim, S.; Udomkit, A. Silencing of gonad-inhibiting hormone gene expression in Penaeus monodon by feeding with GIH dsRNA-enriched Artemia. Aquaculture 2013, 404–405, 116–121. [Google Scholar] [CrossRef]
- Thammasorn, T.; Somchai, P.; Laosutthipong, C.; Jitrakorn, S.; Wongtripop, S.; Thitamadee, S.; Withyachumnarnkul, B.; Saksmerprome, V. Therapeutic effect of Artemia enriched with Escherichia coli expressing double-stranded RNA in the black tiger shrimp Penaeus monodon. Antivir. Res. 2013, 100, 202–206. [Google Scholar] [CrossRef]
- Ufaz, S.; Balter, A.; Tzror, C.; Einbender, S.; Koshet, O.; Shainsky-Roitman, J.; Yaari, Z.; Schroeder, A. Anti-viral RNAi nanoparticles protect shrimp against white spot disease. Mol. Syst. Des. Eng. 2017, 3, 38–48. [Google Scholar] [CrossRef]
- Nie, W.; Chen, X.; Tang, Y.; Xu, N.; Zhang, H. Potential dsRNAs can be delivered to aquatic for defense pathogens. Front. Bioeng. Biotechnol. 2022, 10, 1066799. [Google Scholar] [CrossRef]
- Gupta, N.; Rai, D.B.; Jangid, A.K.; Pooja, D.; Kulhari, H. Nanomaterials-Based SiRNA Delivery: Routes of Administration, Hurdles and Role of Nanocarriers. In Nanotechnology in Modern Animal Biotechnology: Recent Trends and Future Perspectives; Springer: Singapore, 2019; pp. 67–114. ISBN 9789811360046. [Google Scholar]
- Lim, L.P.; Lau, N.C.; Garrett-Engele, P.; Grimson, A.; Schelter, J.M.; Castle, J.; Bartel, D.P.; Linsley, P.S.; Johnson, J.M. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005, 433, 769–773. [Google Scholar] [CrossRef]
- Birmingham, A.; Anderson, E.M.; Reynolds, A.; Ilsley-Tyree, D.; Leake, D.; Fedorov, Y.; Baskerville, S.; Maksimova, E.; Robinson, K.; Karpilow, J.; et al. 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat. Methods 2006, 3, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Jackson, A.L.; Burchard, J.; Leake, D.; Reynolds, A.; Schelter, J.; Guo, J.; Johnson, J.M.; Lim, L.; Karpilow, J.; Nichols, K.; et al. Position-specific chemical modification of siRNAs reduces “off-target” transcript silencing. RNA 2006, 12, 1197–1205. [Google Scholar] [CrossRef] [PubMed]
- Jackson, A.L.; Bartz, S.R.; Schelter, J.; Kobayashi, S.V.; Burchard, J.; Mao, M.; Li, B.; Cavet, G.; Linsley, P.S. Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol. 2003, 21, 635–637. [Google Scholar] [CrossRef] [PubMed]
- Fedorov, Y.; Anderson, E.M.; Birmingham, A.; Reynolds, A.; Karpilow, J.; Robinson, K.; Leake, D.; Marshall, W.S.; Khvorova, A. Off-target effects by siRNA can induce toxic phenotype. RNA 2006, 12, 1188–1196. [Google Scholar] [CrossRef] [PubMed]
- Harborth, J.; Elbashir, S.M.; Bechert, K.; Tuschl, T.; Weber, K. Identification of essential genes in cultured mammalian cells using small interfering RNAs. J. Cell Sci. 2001, 114, 4557–4565. [Google Scholar] [CrossRef]
- Elbashir, S.M.; Martinez, J.; Patkaniowska, A.; Lendeckel, W.; Tuschl, T. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. 2001, 20, 6877–6888. [Google Scholar] [CrossRef]
- Elbashir, S.M.; Harborth, J.; Weber, K.; Tuschl, T. Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 2002, 26, 199–213. [Google Scholar] [CrossRef]
- Khvorova, A.; Reynolds, A.; Jayasena, S.D. Functional siRNAs and miRNAs Exhibit Strand Bias. Cell 2003, 115, 209–216. [Google Scholar] [CrossRef]
- Reynolds, A.; Leake, D.; Boese, Q.; Scaringe, S.; Marshall, W.S.; Khvorova, A. Rational siRNA design for RNA interference. Nat. Biotechnol. 2004, 22, 326–330. [Google Scholar] [CrossRef]
- Naito, Y.; Yamada, T.; Ui-Tei, K.; Morishita, S.; Saigo, K. siDirect: Highly effective, target-specific siRNA design software for mammalian RNA interference. Nucleic Acids Res. 2004, 32, W124–W129. [Google Scholar] [CrossRef]
- Qiu, S.; Adema, C.M.; Lane, T. A computational study of off-target effects of RNA interference. Nucleic Acids Res. 2005, 33, 1834–1847. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Zhang, Y.; Kang, L.; Roossinck, M.J.; Mysore, K.S. Computational Estimation and Experimental Verification of Off-Target Silencing during Posttranscriptional Gene Silencing in Plants. Plant Physiol. 2006, 142, 429–440. [Google Scholar] [CrossRef] [PubMed]
- Shim, M.S.; Kwon, Y.J. Efficient and targeted delivery of siRNA in vivo. FEBS J. 2010, 277, 4814–4827. [Google Scholar] [CrossRef]
- Sioud, M. Induction of Inflammatory Cytokines and Interferon Responses by Double-stranded and Single-stranded siRNAs is Sequence-dependent and Requires Endosomal Localization. J. Mol. Biol. 2005, 348, 1079–1090. [Google Scholar] [CrossRef] [PubMed]
- Hornung, V.; Guenthner-Biller, M.; Bourquin, C.; Ablasser, A.; Schlee, M.; Uematsu, S.; Noronha, A.; Manoharan, M.; Akira, S.; de Fougerolles, A.; et al. Sequence-specific potent induction of IFN-α by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat. Med. 2005, 11, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Kosuke, Z.; Kim, K.H. Effects of Long Double-Stranded RNAs on the Resistance of Rock Bream Oplegnathus Fasciatus Fingerling against Rock Bream Iridovirus (RBIV) Challenge. J. Fish. Pathol. 2010, 23, 273–280. [Google Scholar]
- Wu, Y.-C.; Lu, Y.-F.; Chi, S.-C. Anti-viral mechanism of barramundi Mx against betanodavirus involves the inhibition of viral RNA synthesis through the interference of RdRp. Fish Shellfish. Immunol. 2010, 28, 467–475. [Google Scholar] [CrossRef]
- Zheng, Z.; Tang, S.; Tao, M. Development of Resistance to RNAi in Mammalian Cells. Ann. N. Y. Acad. Sci. 2005, 1058, 105–118. [Google Scholar] [CrossRef]
- Ye, K.; Jin, S. Potent and Specific Inhibition of Retrovirus Production by Coexpression of Multiple siRNAs Directed Against Different Regions of Viral Genomes. Biotechnol. Prog. 2006, 22, 45–52. [Google Scholar] [CrossRef]
- Ely, A.; Carmona, S.; Crowther, C.; Mufamadi, S.; Barichievy, S.; Weinberg, M.; Arbuthnot, P. 799. Expressed Long Hairpin RNA Sequences Inhibit HBV Replication In Vivo without Inducing an Interferon Response. Mol. Ther. 2006, 13, S309–S310. [Google Scholar] [CrossRef]
- Shockey, J.E.; O’leary, N.A.; de la Vega, E.; Browdy, C.L.; Baatz, J.E.; Gross, P.S. The role of crustins in Litopenaeus vannamei in response to infection with shrimp pathogens: An in vivo approach. Dev. Comp. Immunol. 2009, 33, 668–673. [Google Scholar] [CrossRef] [PubMed]
Virus | Abbreviation | Family | Genome Type | Year of Emergence | Country of First Appearance | Reference |
---|---|---|---|---|---|---|
Infectious hypodermal and hematopoeitic necrosis virus | IHHNV | Parvoviridae | ssDNA | 1981 | Hawaii, USA | [20] |
White spot syndrome virus | WSSV | Nimaviridae | dsDNA | 1992 | Taiwan | [21] |
Hepatopancreatic parvovirus | HPV | Parvoviridae | ssDNA | 1984 | China | [22] |
Spawner-isolated mortality virus | SMV | Parvoviridae | ssDNA | 1993 | Australia | [23] |
Lymphoidal parvo-like virus | LPV | Parvoviridae | DNA | 1991 | Australia | [23] |
Baculovirus penaei | BP | Baculoviridae | dsDNA | Late 1990s | Mexico | [24] |
Monodon baculovirus | MBV | Baculoviridae | dsDNA | 1977 | Taiwan | [4,25] |
Shrimp hemocyte iridescent virus | SHIV | Iridoviridae | DNA | 2014 | China | [26] |
Taura syndrome virus | TSV | Picornaviridae | (+) ssRNA | 1992 | Ecuador | [4] |
Infectious myonecrosis virus | IMNV | Totiviridae | (+) ssRNA | 2002 | Brazil | [9] |
Covert mortality nodavirus | CMNV | Nodaviridae | RNA | 2009 | China | [27] |
Penaeus vannamei nodavirus | PvNV | Nodaviridae | RNA | 2004 | Belize | [28] |
Yellow head virus | YHV | Roniviridae | (+) ssRNA | 1990 | Thailand | [4] |
Gill associated virus | GAV | Roniviridae | (+) ssRNA | 1996 | Australia | [29,30] |
Laem Singh virus | LSNV | Leuteovirus-like | (+) ssRNA | 2003 | Thailand | [31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, M.S.; Islam, M.N.; Das, M.; Islam, S.F.; Rabbane, M.G.; Karim, E.; Roy, A.; Alam, M.S.; Ahmed, R.; Kibria, A.S.M. RNAi-Based Therapy: Combating Shrimp Viral Diseases. Viruses 2023, 15, 2050. https://doi.org/10.3390/v15102050
Alam MS, Islam MN, Das M, Islam SF, Rabbane MG, Karim E, Roy A, Alam MS, Ahmed R, Kibria ASM. RNAi-Based Therapy: Combating Shrimp Viral Diseases. Viruses. 2023; 15(10):2050. https://doi.org/10.3390/v15102050
Chicago/Turabian StyleAlam, Md. Shahanoor, Mohammad Nazrul Islam, Mousumi Das, Sk. Farzana Islam, Md. Golam Rabbane, Ehsanul Karim, Animesh Roy, Mohammad Shafiqul Alam, Raju Ahmed, and Abu Syed Md. Kibria. 2023. "RNAi-Based Therapy: Combating Shrimp Viral Diseases" Viruses 15, no. 10: 2050. https://doi.org/10.3390/v15102050
APA StyleAlam, M. S., Islam, M. N., Das, M., Islam, S. F., Rabbane, M. G., Karim, E., Roy, A., Alam, M. S., Ahmed, R., & Kibria, A. S. M. (2023). RNAi-Based Therapy: Combating Shrimp Viral Diseases. Viruses, 15(10), 2050. https://doi.org/10.3390/v15102050