Macrophage-Derived Factors with the Potential to Contribute to Pathogenicity of HIV-1 and HIV-2: Role of CCL-2/MCP-1
Abstract
:1. Introduction
2. Materials and Methods
2.1. Monocyte Isolation and Differentiation
2.2. HIV-Infection of Human Monocyte-Derived Macrophages
2.3. Reverse Transcriptase (RT) Assay
2.4. Cytokine ELISA Assays
2.5. Relative Quantitative Real-Time PCR
2.6. Western Blot Analysis of Protein Expression
2.7. Construction of STAT1-Encoding Pseudotyped Retrovirus and Transduction of MDM
2.8. Gene Knockdown by Small Interfering RNAs
2.9. Statistical Analysis
3. Results
3.1. HIV-2 Infection Suppresses CCL2 Production in Human MDM
3.2. STAT1 Reduction Is Associated with Inhibition of CCL2 Production in HIV-2-Infected MDM
3.3. STAT1 Reduction in HIV-2-Infected MDM Is Regulated by the Cullin2/RBX1 Proteasome Pathway
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimer
References
- Kedzierska, K.; Crowe, S.M. The role of monocytes and macrophages in the pathogenesis of HIV-1 infection. Curr. Med. Chem. 2002, 9, 1893–1903. [Google Scholar]
- Reeves, J.D.; Doms, R.W. Human immunodeficiency virus type 2. J. Gen. Virol. 2002, 83 Pt 6, 1253–1265. [Google Scholar]
- Freedman, D.; Shattock, A.; Stuart, J.; McLaughlin, H. Acquired immunodeficiency syndrome. Ir. Med. J. 1989, 82, 135–138. [Google Scholar]
- de Silva, T.I.; Cotten, M.; Rowland-Jones, S.L. HIV-2: The forgotten AIDS virus. Trends Microbiol. 2008, 16, 588–595. [Google Scholar]
- Berry, N.; Ariyoshi, K.; Jaffar, S.; Sabally, S.; Corrah, T.; Tedder, R.; Whittle, H. Low peripheral blood viral HIV-2 RNA in individuals with high CD4 percentage differentiates HIV-2 from HIV-1 infection. J. Hum. Virol. 1998, 1, 457–468. [Google Scholar] [PubMed]
- Kedzierska, K.; Crowe, S.M.; Turville, S.; Cunningham, A.L. The influence of cytokines, chemokines and their receptors on HIV-1 replication in monocytes and macrophages. Rev. Med. Virol. 2003, 13, 39–56. [Google Scholar]
- Ansari, A.W.; Heiken, H.; Meyer-Olson, D.; Schmidt, R.E. CCL2: A potential prognostic marker and target of anti-inflammatory strategy in HIV/AIDS pathogenesis. Eur. J. Immunol. 2011, 41, 3412–3418. [Google Scholar] [PubMed]
- Wong, M.E.; Jaworowski, A.; Hearps, A.C. The HIV Reservoir in Monocytes and Macrophages. Front. Immunol. 2019, 10, 1435. [Google Scholar] [PubMed]
- Siliciano, R.F. Latency and reservoirs for HIV-1. AIDS 1999, 13 (Suppl. SA), S49–S58. [Google Scholar]
- Altfeld, M.; Gale, M., Jr. Innate immunity against HIV-1 infection. Nat. Immunol. 2015, 16, 554–562. [Google Scholar] [PubMed]
- Loo, Y.M.; Gale, M., Jr. Viral regulation and evasion of the host response. Curr. Top. Microbiol. Immunol. 2007, 316, 295–313. [Google Scholar] [PubMed]
- Rustagi, A.; Gale, M., Jr. Innate antiviral immune signaling, viral evasion and modulation by HIV-1. J. Mol. Biol. 2014, 426, 1161–1177. [Google Scholar] [PubMed]
- Kelly, M.D.; Naif, H.M.; Adams, S.L.; Cunningham, A.L.; Lloyd, A.R. Dichotomous effects of beta-chemokines on HIV replication in monocytes and monocyte-derived macrophages. J. Immunol. 1998, 160, 3091–3095. [Google Scholar]
- Covino, D.A.; Sabbatucci, M.; Fantuzzi, L. The CCL2/CCR2 Axis in the Pathogenesis of HIV-1 Infection: A New Cellular Target for Therapy? Curr. Drug Targets 2016, 17, 76–110. [Google Scholar] [CrossRef]
- Packard, T.A.; Schwarzer, R.; Herzig, E.; Rao, D.; Luo, X.; Egedal, J.H.; Hsiao, F.; Widera, M.; Hultquist, J.F.; Grimmett, Z.W.; et al. CCL2: A Chemokine Potentially Promoting Early Seeding of the Latent HIV Reservoir. mBio 2022, 13, e0189122. [Google Scholar]
- Gruber, M.F.; Weih, K.A.; Boone, E.J.; Smith, P.D.; Clouse, K.A. Endogenous macrophage CSF production is associated with viral replication in HIV-1-infected human monocyte-derived macrophages. J. Immunol. 1995, 154, 5528–5535. [Google Scholar]
- Heredia, A.; Vallejo, A.; Soriano, V.; Epstein, J.S.; Hewlett, I.K. Chemokine receptors and HIV-2. Aids 1997, 11, 1198–1199. [Google Scholar]
- Gendelman, H.E.; Orenstein, J.M.; Martin, M.A.; Ferrua, C.; Mitra, R.; Phipps, T.; Wahl, L.A.; Lane, H.C.; Fauci, A.S.; Burke, D.S.; et al. Efficient isolation and propagation of human immunodeficiency virus on recombinant colony-stimulating factor 1-treated monocytes. J. Exp. Med. 1988, 167, 1428–1441. [Google Scholar]
- Gendelman, H.E.; Orenstein, J.M.; Baca, L.M.; Weiser, B.; Burger, H.; Kalter, D.C.; Meltzer, M.S. The macrophage in the persistence and pathogenesis of HIV infection. Aids 1989, 3, 475–495. [Google Scholar] [CrossRef]
- Hoffman, A.D.; Banapour, B.; Levy, J.A. Characterization of the AIDS-associated retrovirus reverse transcriptase and optimal conditions for its detection in virions. Virology 1985, 147, 326–335. [Google Scholar]
- Ansari, A.W.; Bhatnagar, N.; Dittrich-Breiholz, O.; Kracht, M.; Schmidt, R.E.; Heiken, H. Host chemokine (C-C motif) ligand-2 (CCL2) is differentially regulated in HIV type 1 (HIV-1)-infected individuals. Int. Immunol. 2006, 18, 1443–1451. [Google Scholar] [CrossRef] [PubMed]
- Valente, A.J.; Xie, J.F.; Abramova, M.A.; Wenzel, U.O.; Abboud, H.E.; Graves, D.T. A complex element regulates IFN-gamma-stimulated monocyte chemoattractant protein-1 gene transcription. J. Immunol. 1998, 161, 3719–3728. [Google Scholar] [CrossRef] [PubMed]
- Akhter, N.; Kochumon, S.; Hasan, A.; Wilson, A.; Nizam, R.; Al Madhoun, A.; Al-Rashed, F.; Arefanian, H.; Alzaid, F.; Sindhu, S.; et al. IFN-gamma and LPS Induce Synergistic Expression of CCL2 in Monocytic Cells via H3K27 Acetylation. J. Inflamm. Res. 2022, 15, 4291–4302. [Google Scholar] [CrossRef] [PubMed]
- Precious, B.; Childs, K.; Fitzpatrick-Swallow, V.; Goodbourn, S.; Randall, R.E. Simian virus 5 V protein acts as an adaptor, linking DDB1 to STAT2, to facilitate the ubiquitination of STAT1. J. Virol. 2005, 79, 13434–13441. [Google Scholar] [CrossRef]
- Ulane, C.M.; Horvath, C.M. Paramyxoviruses SV5 and HPIV2 assemble STAT protein ubiquitin ligase complexes from cellular components. Virology 2002, 304, 160–166. [Google Scholar] [CrossRef]
- Yu, Y.; Xiao, Z.; Ehrlich, E.S.; Yu, X.; Yu, X.F. Selective assembly of HIV-1 Vif-Cul5-ElonginB-ElonginC E3 ubiquitin ligase complex through a novel SOCS box and upstream cysteines. Genes. Dev. 2004, 18, 2867–2872. [Google Scholar] [CrossRef]
- Hrecka, K.; Hao, C.; Gierszewska, M.; Swanson, S.K.; Kesik-Brodacka, M.; Srivastava, S.; Florens, L.; Washburn, M.P.; Skowronski, J. Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 2011, 474, 658–661. [Google Scholar] [CrossRef]
- Laguette, N.; Sobhian, B.; Casartelli, N.; Ringeard, M.; Chable-Bessia, C.; Segeral, E.; Yatim, A.; Emiliani, S.; Schwartz, O.; Benkirane, M. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 2011, 474, 654–657. [Google Scholar] [CrossRef]
- Fabryova, H.; Strebel, K. Vpr and Its Cellular Interaction Partners: R We There Yet? Cells 2019, 8, 1310. [Google Scholar] [CrossRef] [PubMed]
- Willey, R.L.; Maldarelli, F.; Martin, M.A.; Strebel, K. Human immunodeficiency virus type 1 Vpu protein induces rapid degradation of CD4. J. Virol. 1992, 66, 7193–7200. [Google Scholar] [CrossRef]
- Leligdowicz, A.; Rowland-Jones, S. Tenets of protection from progression to AIDS: Lessons from the immune responses to HIV-2 infection. Expert Rev. Vaccines 2008, 7, 319–331. [Google Scholar] [CrossRef] [PubMed]
- Saleh, S.; Vranckx, L.; Gijsbers, R.; Christ, F.; Debyser, Z. Insight into HIV-2 latency may disclose strategies for a cure for HIV-1 infection. J. Virus Erad. 2017, 3, 7–14. [Google Scholar] [CrossRef] [PubMed]
- de Mendoza, C.; Cabezas, T.; Caballero, E.; Requena, S.; Amengual, M.J.; Penaranda, M.; Saez, A.; Tellez, R.; Lozano, A.B.; Trevino, A.; et al. HIV-2 Epidemic in Spain—Challenges and Missing Opportunities. Aids 2017, 31, 1353–1364. [Google Scholar] [CrossRef] [PubMed]
- Canque, B.; Rosenzwajg, M.; Gey, A.; Tartour, E.; Fridman, W.H.; Gluckman, J.C. Macrophage inflammatory protein-1alpha is induced by human immunodeficiency virus infection of monocyte-derived macrophages. Blood 1996, 87, 2011–2019. [Google Scholar] [CrossRef] [PubMed]
- Mengozzi, M.; De Filippi, C.; Transidico, P.; Biswas, P.; Cota, M.; Ghezzi, S.; Vicenzi, E.; Mantovani, A.; Sozzani, S.; Poli, G. Human immunodeficiency virus replication induces monocyte chemotactic protein-1 in human macrophages and U937 promonocytic cells. Blood 1999, 93, 1851–1857. [Google Scholar] [CrossRef]
- Schmidtmayerova, H.; Nottet, H.S.; Nuovo, G.; Raabe, T.; Flanagan, C.R.; Dubrovsky, L.; Gendelman, H.E.; Cerami, A.; Bukrinsky, M.; Sherry, B. Human immunodeficiency virus type 1 infection alters chemokine beta peptide expression in human monocytes: Implications for recruitment of leukocytes into brain and lymph nodes. Proc. Natl. Acad. Sci. USA 1996, 93, 700–704. [Google Scholar] [CrossRef]
- Ylisastigui, L.; Amzazi, S.; Bakri, Y.; Vizzavona, J.; Vita, C.; Gluckman, J.C.; Benjouad, A. Effect of RANTES on the infection of monocyte-derived primary macrophages by human immunodeficiency virus type 1 and type 2. Biomed. Pharmacother. 1998, 52, 447–453. [Google Scholar] [CrossRef]
- Valentin, A.; Albert, J.; Fenyo, E.M.; Asjo, B. Dual tropism for macrophages and lymphocytes is a common feature of primary human immunodeficiency virus type 1 and 2 isolates. J. Virol. 1994, 68, 6684–6689. [Google Scholar] [CrossRef]
- Sabbatucci, M.; Covino, D.A.; Purificato, C.; Mallano, A.; Federico, M.; Lu, J.; Rinaldi, A.O.; Pellegrini, M.; Bona, R.; Michelini, Z.; et al. Endogenous CCL2 neutralization restricts HIV-1 replication in primary human macrophages by inhibiting viral DNA accumulation. Retrovirology 2015, 12, 4. [Google Scholar] [CrossRef]
- Carr, M.W.; Roth, S.J.; Luther, E.; Rose, S.S.; Springer, T.A. Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant. Proc. Natl. Acad. Sci. USA 1994, 91, 3652–3656. [Google Scholar] [CrossRef]
- Loetscher, P.; Seitz, M.; Clark-Lewis, I.; Baggiolini, M.; Moser, B. Monocyte chemotactic proteins MCP-1, MCP-2, and MCP-3 are major attractants for human CD4+ and CD8+ T lymphocytes. FASEB J. 1994, 8, 1055–1060. [Google Scholar] [CrossRef]
- Kinter, A.; Catanzaro, A.; Monaco, J.; Ruiz, M.; Justement, J.; Moir, S.; Arthos, J.; Oliva, A.; Ehler, L.; Mizell, S.; et al. CC-chemokines enhance the replication of T-tropic strains of HIV-1 in CD4(+) T cells: Role of signal transduction. Proc. Natl. Acad. Sci. USA 1998, 95, 11880–11885. [Google Scholar] [CrossRef] [PubMed]
- Campbell, G.R.; Spector, S.A. CCL2 increases X4-tropic HIV-1 entry into resting CD4+ T cells. J. Biol. Chem. 2008, 283, 30745–30753. [Google Scholar] [CrossRef] [PubMed]
- Anzinger, J.J.; Olinger, G.G.; Spear, G.T. Donor variability in HIV binding to peripheral blood mononuclear cells. Virol. J. 2008, 5, 95. [Google Scholar] [CrossRef] [PubMed]
- Bol, S.M.; van Remmerden, Y.; Sietzema, J.G.; Kootstra, N.A.; Schuitemaker, H.; van’t Wout, A.B. Donor variation in in vitro HIV-1 susceptibility of monocyte-derived macrophages. Virology 2009, 390, 205–211. [Google Scholar] [CrossRef]
- Leonard, W.J.; O’Shea, J.J. Jaks and STATs: Biological implications. Annu. Rev. Immunol. 1998, 16, 293–322. [Google Scholar] [CrossRef]
- Bhinge, A.A.; Kim, J.; Euskirchen, G.M.; Snyder, M.; Iyer, V.R. Mapping the chromosomal targets of STAT1 by Sequence Tag Analysis of Genomic Enrichment (STAGE). Genome Res. 2007, 17, 910–916. [Google Scholar] [CrossRef]
- Soond, S.M.; Townsend, P.A.; Barry, S.P.; Knight, R.A.; Latchman, D.S.; Stephanou, A. ERK and the F-box protein betaTRCP target STAT1 for degradation. J. Biol. Chem. 2008, 283, 16077–16083. [Google Scholar] [CrossRef]
- Swedan, S.; Musiyenko, A.; Barik, S. Respiratory syncytial virus nonstructural proteins decrease levels of multiple members of the cellular interferon pathways. J. Virol. 2009, 83, 9682–9693. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.C.; Wang, W.; Xiong, Y. Cullin-RING E3 Ubiquitin Ligases: Bridges to Destruction. Subcell. Biochem. 2017, 83, 323–347. [Google Scholar]
- Barry, M.; Fruh, K. Viral modulators of cullin RING ubiquitin ligases: Culling the host defense. Sci. STKE 2006, 2006, pe21. [Google Scholar] [CrossRef] [PubMed]
- Tolomeo, M.; Cavalli, A.; Cascio, A. STAT1 and Its Crucial Role in the Control of Viral Infections. Int. J. Mol. Sci. 2022, 23, 4095. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, A.; Yang, B.; Gendelman, H.E.; Persidsky, Y.; Kanmogne, G.D. STAT1 signaling modulates HIV-1-induced inflammatory responses and leukocyte transmigration across the blood-brain barrier. Blood 2008, 111, 2062–2072. [Google Scholar] [CrossRef] [PubMed]
Virus | Peak RT (cpm × 10−3) | CCL2 (MCP-1) (ng/mL) | CCL3 (ng/mL) | CCL4 (ng/mL) | CCL5 (ng/mL) |
---|---|---|---|---|---|
Medium | 1501.5 | 19.6 | <0.5 | <0.5 | <0.5 |
HIV-2B2 | 9814.5 | 13.0 | <0.5 | <0.5 | <0.5 |
HIV-2B3 | 16,117.4 | 8.5 | 0.55 | 0.27 | <0.5 |
HIV-2B4 | 20,450.6 | 4.6 | 1.8 | 0.14 | <0.5 |
HIV-2B5 | 42,830.1 | 4.2 | 1.4 | <0.5 | <0.5 |
HIV-2B7 | 10,966.2 | 4.3 | 1.48 | 0.64 | <0.5 |
HIV-2B8 | 13,239.5 | 1.8 | 0.2 | <0.5 | <0.5 |
HIV-2B9 | 4683.8 | 10.7 | <0.5 | <0.5 | <0.5 |
HIV-1UG24 | 11,099.8 | 27 | 0.53 | <0.5 | <0.5 |
HIV1BCFO3 | 67,695.3 | 34.9 | 0.79 | 0.34 | <0.5 |
HIV-1Ada | 136,262.7 | 35 | 1.98 | 0.45 | <0.5 |
HIV-1Bal | 144,347.2 | 48 | 5.76 | 3.4 | <0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, C.; Ouyang, W.; Kutza, J.; Grimm, T.A.; Fields, K.; Lankford, C.S.R.; Schwartzkopff, F.; Paciga, M.; Stantchev, T.; Tiffany, L.; et al. Macrophage-Derived Factors with the Potential to Contribute to Pathogenicity of HIV-1 and HIV-2: Role of CCL-2/MCP-1. Viruses 2023, 15, 2160. https://doi.org/10.3390/v15112160
Gao C, Ouyang W, Kutza J, Grimm TA, Fields K, Lankford CSR, Schwartzkopff F, Paciga M, Stantchev T, Tiffany L, et al. Macrophage-Derived Factors with the Potential to Contribute to Pathogenicity of HIV-1 and HIV-2: Role of CCL-2/MCP-1. Viruses. 2023; 15(11):2160. https://doi.org/10.3390/v15112160
Chicago/Turabian StyleGao, Chunling, Weiming Ouyang, Joseph Kutza, Tobias A. Grimm, Karen Fields, Carla S. R. Lankford, Franziska Schwartzkopff, Mark Paciga, Tzanko Stantchev, Linda Tiffany, and et al. 2023. "Macrophage-Derived Factors with the Potential to Contribute to Pathogenicity of HIV-1 and HIV-2: Role of CCL-2/MCP-1" Viruses 15, no. 11: 2160. https://doi.org/10.3390/v15112160
APA StyleGao, C., Ouyang, W., Kutza, J., Grimm, T. A., Fields, K., Lankford, C. S. R., Schwartzkopff, F., Paciga, M., Stantchev, T., Tiffany, L., Strebel, K., & Clouse, K. A. (2023). Macrophage-Derived Factors with the Potential to Contribute to Pathogenicity of HIV-1 and HIV-2: Role of CCL-2/MCP-1. Viruses, 15(11), 2160. https://doi.org/10.3390/v15112160