An Advanced Multiplex Real-Time Reverse Transcription Loop-Mediated Isothermal Amplification Assay for Rapid and Reliable Detection of Porcine Epidemic Diarrhea Virus and Porcine Internal Positive Control
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Nucleic Acid Extraction
2.2. Construction of PEDV Reference Gene for mqRT-LAMP Assay
2.3. RT-PCR and qRT-PCR Assay
2.4. Primers and Assimilating Probes for PEDV N Gene and Internal Positive Control
2.5. Optimization of mqRT-LAMP Assay
2.6. Specificity and Sensitivity of mqRT-LAMP Assay
2.7. Precision of mqRT-LAMP
2.8. Clinical Evaluation of mqRT-LAMP
3. Results
3.1. Optimization of the mqRT-LAMP Assay
3.2. Specificity of the mqRT-LAMP Assay
3.3. Sensitivity Comparison of mqRT-LAMP with RT-PCR and qRT-PCR Assay
3.4. Precision of mqRT-LAMP
3.5. Clinical Evaluation of mqRT-LAMP
3.6. Comparative Analysis of Reaction Speed According to Clinical Evaluation Results of mqRT-LAMP and qRT-PCR
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jung, K.; Saif, L.J.; Wang, Q. Porcine epidemic diarrhea virus (PEDV): An update on etiology, transmission, pathogenesis, and prevention and control. Virus Res. 2020, 286, 198045. [Google Scholar] [CrossRef] [PubMed]
- Pensaert, M.B.; Yeo, S.G. Porcine epidemic diarrhea. In Diseases of Swine, 9th ed.; Straw, B.E., Zimmerman, J.J., D’Allaire, S., Taylor, D.J., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2006; pp. 367–372. [Google Scholar]
- Lee, C. Porcine epidemic diarrhea virus: An emerging and re-emerging epizootic swine virus. Virol. J. 2015, 12, 193. [Google Scholar] [CrossRef] [PubMed]
- Mole, B. Deadly pig virus slips through US borders. Nature 2013, 499, 388. [Google Scholar] [CrossRef] [PubMed]
- Oka, T.; Saif, L.J.; Marthaler, D.; Esseili, M.A.; Meulia, T.; Lin, C.M.; Vlasova, A.N.; Jung, K.; Zhang, Y.; Wang, Q. Cell culture isolation and sequence analysis of genetically diverse US porcine epidemic diarrhea virus strains including a novel strain with a large deletion in the spike gene. Vet. Microbiol. 2014, 173, 258–269. [Google Scholar] [CrossRef] [PubMed]
- Ojkic, D.; Hazlett, M.; Fairles, J.; Marom, A.; Slavic, D.; Maxie, G.; Alexandersen, S.; Pasick, J.; Alsop, J.; Burlatschenko, S. The first case of porcine epidemic diarrhea in Canada. Can. Vet. J. 2015, 56, 149–152. [Google Scholar]
- Stevenson, G.W.; Hoang, H.; Schwartz, K.J.; Burrough, E.R.; Sun, D.; Madson, D.; Cooper, V.L.; Pillatzki, A.; Gauger, P.; Schmitt, B.J.; et al. Emergence of porcine epidemic diarrhea virus in the United States: Clinical signs, lesions, and viral genomic sequences. J. Vet. Diagn. Investig. 2013, 25, 649–654. [Google Scholar] [CrossRef]
- Vlasova, A.N.; Marthaler, D.; Wang, Q.; Culhane, M.R.; Rossow, K.D.; Rovira, A.; Collins, J.; Saif, L.J. Distinct characteristics and complex evolution of PEDV strains, North America, May 2013–February 2014. Emerg. Infect. Dis. 2014, 20, 1620–1628. [Google Scholar] [CrossRef]
- Lee, S.; Lee, C. Outbreak-related porcine epidemic diarrhea virus strains similar to US strains, South Korea, 2013. Emerg. Infect. Dis. 2014, 20, 1223–1226. [Google Scholar] [CrossRef]
- Lin, C.N.; Chung, W.B.; Chang, S.W.; Wen, C.C.; Liu, H.; Chien, C.H.; Chiou, M.T. US-like strain of porcine epidemic diarrhea virus outbreaks in Taiwan, 2013–2014. J. Vet. Med. Sci. 2014, 76, 1297–1299. [Google Scholar] [CrossRef]
- Van Diep, N.; Norimine, J.; Sueyoshi, M.; Lan, N.T.; Hirai, T.; Yamaguchi, R. US-like isolates of porcine epidemic diarrhea virus from Japanese outbreaks between 2013 and 2014. Springerplus 2015, 4, 756. [Google Scholar] [CrossRef]
- Antas, M.; Woźniakowski, G. Current status of porcine epidemic diarrhoea (PED) in European pigs. J. Vet. Res. 2019, 63, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Kim, I.J.; Pyo, H.M.; Tark, D.S.; Song, J.Y.; Hyun, B.H. Multiplex real-time RT-PCR for the simultaneous detection and quantification of transmissible gastroenteritis virus and porcine epidemic diarrhea virus. J. Virol. Methods 2007, 146, 172–177. [Google Scholar] [CrossRef]
- Kim, S.Y.; Song, D.S.; Park, B.K. Differential detection of transmissible gastroenteritis virus and porcine epidemic diarrhea virus by duplex RT-PCR. J. Vet. Diagn. Investig. 2001, 13, 516–520. [Google Scholar] [CrossRef] [PubMed]
- Miller, L.C.; Crawford, K.K.; Lager, K.M.; Kellner, S.G.; Brockmeier, S.L. Evaluation of two real-time polymerase chain reaction assays for Porcine epidemic diarrhea virus (PEDV) to assess PEDV transmission in growing pigs. J. Vet. Diagn. Investig. 2016, 28, 20–29. [Google Scholar] [CrossRef]
- Zhao, P.D.; Bai, J.; Jiang, P.; Tang, T.S.; Li, Y.; Tan, C.; Shi, X. Development of a multiplex TaqMan probe-based real-time PCR for discrimination of variant and classical porcine epidemic diarrhea virus. J. Virol. Methods 2014, 206, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, L.M.; Han, J.Q.; Sun, T.R.; Zhao, X.; Xu, R.T.; Song, Q.Y. A TaqMan probe-based real-time PCR to differentiate porcine epidemic diarrhea virus virulent strains from attenuated vaccine strains. Mol. Cell. Probes 2019, 45, 37–42. [Google Scholar] [CrossRef]
- Dhama, K.; Karthik, K.; Chakraborty, S.; Tiwari, R.; Kapoor, S.; Kumar, A.; Thomas, P. Loop-mediated isothermal amplification of DNA (LAMP): A new diagnostic tool lights the world of diagnosis of animal and human pathogens: A review. Pak. J. Biol. Sci. 2014, 17, 151–166. [Google Scholar] [CrossRef]
- Mori, Y.; Notomi, T. Loop-mediated isothermal amplification (LAMP): A rapid, accurate, and cost-effective diagnostic method for infectious diseases. J. Infect. Chemother. 2009, 15, 62–69. [Google Scholar] [CrossRef]
- Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-mediated isothermal amplification of DNA. Nucleic. Acids. Res. 2000, 28, E63. [Google Scholar] [CrossRef]
- Gou, H.; Deng, J.; Wang, J.; Pei, J.; Liu, W.; Zhao, M.; Chen, J. Rapid and sensitive detection of porcine epidemic diarrhea virus by reverse transcription loop-mediated isothermal amplification combined with a vertical flow visualization strip. Mol. Cell. Probes 2015, 29, 48–53. [Google Scholar] [CrossRef]
- Mai, T.N.; Nguyen, V.D.; Yamazaki, W.; Okabayashi, T.; Mitoma, S.; Notsu, K.; Sakai, Y.; Yamaguchi, R.; Norimine, J.; Sekiguchi, S. Development of pooled testing system for porcine epidemic diarrhoea using real-time fluorescent reverse-transcription loop-mediated isothermal amplification assay. BMC Vet. Res. 2018, 14, 172. [Google Scholar] [CrossRef]
- Ren, X.; Li, P. Development of reverse transcription loop-mediated isothermal amplification for rapid detection of porcine epidemic diarrhea virus. Virus Genes 2011, 42, 229–235. [Google Scholar] [CrossRef]
- Sun, Q.W.; Wu, S.Q.; Yang, C.J.; Wang, J.L.; Ge, J.; Chang, B.; Xu, T. Development of a reverse transcription loop-mediated isothermal amplification assay for visual detection of porcine epidemic diarrhea virus. J. Anim. Vet. Adv. 2012, 11, 1897–1900. [Google Scholar] [CrossRef]
- Yu, X.; Shi, L.; Lv, X.; Yao, W.; Cao, M.; Yu, H.; Wang, X.; Zheng, S. Development of a real-time reverse transcription loop-mediated isothermal amplification method for the rapid detection of porcine epidemic diarrhea virus. Virol. J. 2015, 12, 76. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.K.; Kim, H.R.; Kim, D.Y.; Kim, J.M.; Kwon, N.Y.; Park, J.H.; Park, J.Y.; Kim, S.H.; Lee, K.K.; Lee, C.; et al. A simple colorimetric detection of porcine epidemic diarrhea virus by reverse transcription loop-mediated isothermal amplification assay using hydroxynaphthol blue metal indicator. J. Virol. Methods 2021, 298, 114289. [Google Scholar] [CrossRef] [PubMed]
- Tanner, N.A.; Zhang, Y.; Evans, T.C., Jr. Simultaneous multiple target detection in real-time loop-mediated isothermal amplification. Biotechniques 2012, 53, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Kubota, R.; Jenkins, D. Real-time duplex applications of loop-mediated amplification (LAMP) by assimilating probes. Int. J. Mol. Sci. 2015, 16, 4786–4799. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Huang, S.; Liu, N.; Dong, D.; Yang, Z.; Tang, Y.; Ma, W.; He, X.; Ao, D.; Xu, Y.; et al. Establishment of an accurate and fast detection method using molecular beacons in loop-mediated isothermal amplification assay. Sci. Rep. 2017, 7, 40125. [Google Scholar] [CrossRef]
- Gadkar, V.J.; Goldfarb, D.M.; Gantt, S.; Tilley, P.A. Real-time detection and monitoring of loop mediated amplification (LAMP) reaction using self-quenching and de-quenching fluorogenic probes. Sci. Rep. 2017, 8, 5548. [Google Scholar] [CrossRef]
- Nyan, D.C.; Swinson, K.L. A novel multiplex isothermal amplification method for rapid detection and identification of viruses. Sci. Rep. 2015, 5, 17925. [Google Scholar] [CrossRef]
- Barros, S.C.; Ramos, F.; Zé-Zé, L.; Alves, M.J.; Fagulha, T.; Duarte, M.; Henriques, M.; Luís, T.; Fevereiro, M. Simultaneous detection of West Nile and Japanese encephalitis virus RNA by duplex TaqMan RT-PCR. J. Virol. Methods 2013, 193, 554–557. [Google Scholar] [CrossRef] [PubMed]
- Kubota, R.; Alvarez, A.M.; Su, W.W.; Jenkins, D.M. FRET-based assimilating probe for sequence-specific real-time monitoring of loop-mediated isothermal amplification (LAMP). Biol. Eng. Trans. 2011, 4, 81–100. [Google Scholar] [CrossRef]
- Navarro, E.; Serrano-Heras, G.; Castaño, M.J.; Solera, J. Real-time PCR detection chemistry. Clin. Chim. Acta 2015, 439, 231–250. [Google Scholar] [CrossRef]
- Jenkins, D.M.; Kubota, R.; Dong, J.; Li, Y.; Higashiguchi, D. Handheld device for real-time, quantitative, LAMP-based detection of Salmonella enterica using assimilating probes. Biosens. Bioelectron. 2011, 30, 255–260. [Google Scholar] [CrossRef]
- Thiessen, L.D.; Neill, T.M.; Mahaffee, W.F. Development of a quantitative loop-mediated isothermal amplification assay for the field detection of Erysiphe necator. PeerJ 2018, 6, e4639. [Google Scholar] [CrossRef]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Kwiecien, R.; Kopp-Schneider, A.; Blettner, M. Concordance analysis: Part 16 of a series on evaluation of scientific publications. Dtsch. Ärztebl. Int. 2011, 108, 515–521. [Google Scholar] [CrossRef]
- Mukaka, M.M. Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi. Med. J. 2012, 24, 69–71. [Google Scholar]
- Li, C.; Liang, J.; Yang, D.; Zhang, Q.; Miao, D.; He, X.; Du, Y.; Zhang, W.; Ni, J.; Zhao, K. Visual and rapid detection of porcine epidemic diarrhea virus (PEDV) using reverse transcription loop-mediated isothermal amplification method. Animals 2022, 12, 2712. [Google Scholar] [CrossRef]
- Broeders, S.; Huber, I.; Grohmann, L.; Berden, G.; Taverniers, I.; Mazzara, M.; Roosens, N.; Morisset, D. Guidelines for validation of qualitative real-time PCR methods. Trends. Food. Sci. Technol. 2014, 37, 115–126. [Google Scholar] [CrossRef]
- Lim, D.R.; Kim, H.R.; Chae, H.G.; Ku, B.K.; Nah, J.J.; Ryoo, S.; Wee, S.H.; Lee, C.; Lyoo, Y.S.; Park, C.K. Probe-based real-time reverse transcription loop-mediated isothermal amplification (RRT-LAMP) assay for rapid and specific detection of foot-and-mouth disease virus. Transbound. Emerg. Dis. 2020, 67, 2936–2945. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Kashina, A. Quantification of intracellular N-terminal β-actin arginylation. Sci. Rep. 2019, 9, 16669. [Google Scholar] [CrossRef] [PubMed]
- Pol, F.; Quéguiner, S.; Gorin, S.; Deblanc, C.; Simon, G. Validation of commercial real-time RT-PCR kits for detection of influenza A viruses in porcine samples and differentiation of pandemic (H1N1) 2009 virus in pigs. J. Virol. Methods 2011, 171, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, R.; Liu, H.; Chen, J.; Li, X.; Zhang, J.; Zhou, B. Development of a multiplex quantitative PCR for detecting porcine epidemic diarrhea virus, transmissible gastroenteritis virus, and porcine deltacoronavirus simultaneously in China. Vet. Sci. 2023, 10, 402. [Google Scholar] [CrossRef]
- Smith, A.G.; O’Doherty, J.V.; Reilly, P.; Ryan, M.T.; Bahar, B.; Sweeney, T. The effects of laminarin derived from Laminaria digitata on measurements of gut health: Selected bacterial populations, intestinal fermentation, mucin gene expression and cytokine gene expression in the pig. Br. J. Nutr. 2011, 105, 669–677. [Google Scholar] [CrossRef]
- Ramamurthy, T.; Pal, A.; Bag, P.K.; Bhattacharya, S.K.; Nair, G.B.; Kurozano, H.; Yamasaki, S.; Shirai, H.; Takeda, T.; Uesaka, Y. Detection of cholera toxin gene in stool specimens by polymerase chain reaction: Comparison with bead enzyme-linked immunosorbent assay and culture method for laboratory diagnosis of cholera. J. Clin. Microbiol. 1993, 31, 3068–3070. [Google Scholar] [CrossRef]
- De Leon, R.; Matsui, S.M.; Baric, R.S.; Herrmann, J.E.; Blacklow, N.R.; Greenberg, H.B.; Sobsey, M.D. Detection of Norwalk virus in stool specimens by reverse transcriptase-polymerase chain reaction and nonradioactive oligoprobes. J. Clin. Microbiol. 1992, 30, 3151–3157. [Google Scholar] [CrossRef]
- Francois, P.; Tangomo, M.; Hibbs, J.; Bonetti, E.J.; Boehme, C.C.; Notomi, T.; Perkins, M.D.; Schrenzel, J. Robustness of a loop-mediated isothermal amplification reaction for diagnostic applications. FEMS Immunol. Med. Microbiol. 2011, 62, 41–48. [Google Scholar] [CrossRef]
- Kaneko, H.; Kawana, T.; Fukushima, E.; Suzutani, T. Tolerance of loop-mediated isothermal amplification to a culture medium and biological substances. J. Biochem. Biophys. Methods 2007, 70, 499–501. [Google Scholar] [CrossRef]
Assay | Primer and Probe | Sequence (5′-3′) | Target Gene | Genome Position a | Reference |
---|---|---|---|---|---|
mqRT -LAMP | F3 | CTTCGAARGAACGTGACCT | PEDV N | 27,184–27,202 | [26] & this study |
B3 | CAATGCTGCAACATTTGGT | 27,356–27,374 | |||
LF | GCTATTTTCGCCCTTGGGA | 27,230–27,248 | |||
LB | AGGTGTTGATGCSTCAGG | 27,314–27,331 | |||
FIP (F1c + F2) | TGGGTCCGAAGCAAGCTG+ AGACATCCCAGAGTGGAGG | 27,253–27,270 + 27,206–27,224 | |||
BIP (B1c + B2) | TTGGAGATGCGGAATTTGTCG+ AACTGGCGATCTGAGCATAG | 27,289–27,309 + 27,332–27,351 | |||
PEDV-LF-F | FAM-ATAAGGTCCTCGCCGCTCAAGATAGGCAGA- GCTATTTTCGCCCTTGGGA | ||||
Q | TCTGCCTATCTTGAGCGGCGAGGACCTTAT-BHQ1 | ||||
EIPC-F3 | CATCCTGCGTCTGGACCT | Sus scrofa β-actin | 609–626 | This study | |
EIPC-B3 | AGCTCTTCTCCAGGGAGG | 788–805 | |||
EIPC-LF | CGCTCCGTCAGGATCTTCAT | 655–674 | |||
EIPC-LB | CTACGTCGCCCTGGACTTC | 738–756 | |||
EIPC-FIP (F1c + F2) | CCGTGGTGGTGAAGCTGTAGC+ GGACCTGACCGACTACCTC | 677–679 + 636–654 | |||
EIPC-BIP (B1c + B2) | AGATCGTGCGGGACATCAAGG+ AGTGGCCATCTCCTGCTC | 707–727 + 757–774 | |||
EIPC-LF-F | HEX-ATAAGGTCCTCGCCGCTCAAGATAGGCAGA- CGCTCCGTCAGGATCTTCAT | ||||
Q | TCTGCCTATCTTGAGCGGCGAGGACCTTAT-BHQ1 | ||||
RT- PCR | P1 | TTCCCAGCGTAGTTGAGATTG | PEDV N | 26,761–26,781 | [25] |
P2 | CGAAGTGGCTCTGGATTTGTT | 27,168–27,188 | |||
qRT- PCR | NF | CGCAAAGACTGAACCCACTAA | PEDV N | 26,684–26,704 | [13] modified |
NR | TTGCCTCTGTTGTTACTTGGAGAT | 26,858–26,881 | |||
NP-FAM | FAM–TGTTGCCATTRCCACGACTCCTGC–BHQ1 | 26,824–26,847 |
Pathogen | Strain | Source a | Amplification of Target Gene (Tp) | |
---|---|---|---|---|
PEDV N Gene (FAM) | EIPC b (HEX) | |||
Porcine epidemic diarrhea virus | KNU141112-S DEL5/ORF3 | CVAS | 9.69 | − |
Transmissible gastroenteritis virus | 175Lvac | APQA | − | 15.8 |
Porcine delta coronavirus | KNU16-07 | IVBS | − | 16.6 |
Porcine rotavirus | A1Va | IVBS | − | − |
Porcine circovirus type 2 | PCK0201 | IVBS | − | 11.2 |
Porcine reproductive and respiratory syndrome virus type 1 | Lelystad | APQA | − | − |
Porcine reproductive and respiratory syndrome virus type 2 | LMY | APQA | − | − |
Classical swine fever virus | LOM | APQA | − | 21.8 |
Swine influenza virus | VDS1 | IVBS | − | − |
Porcine parvovirus | NADL-2 | IVBS | − | 14 |
Aujeszky’s disease virus | YS | IVBS | − | 12.7 |
Non-infected pig fecal sample | − | IVBS | − | 13.7 |
Non-infected pig intestinal sample | − | IVBS | − | 11.4 |
PK-15 cell | − | IVBS | − | 10.9 |
Vero cell | − | IVBS | − | − |
Dilution (Copies/µL) | Intra-Assay Tp Value (min) | Inter-Assay Tp Value (min) | ||||
---|---|---|---|---|---|---|
High (106) | Medium (104) | Low (102) | High (106) | Medium (104) | Low (102) | |
Mean | 8.73 | 10.47 | 15.04 | 9.09 | 11.20 | 17.45 |
SD | 0.23 | 0.39 | 0.49 | 0.09 | 0.09 | 0.18 |
CV (%) | 2.65 | 3.76 | 3.28 | 0.95 | 1.74 | 1.01 |
Method | mqRT-LAMP Assay | Positive Rate | Overall Agreement (%) | |||
---|---|---|---|---|---|---|
Positive | Negative a | Total | ||||
qRT-PCR | Positive | 142 | 0 | 142 | 76.8% | 99.5% |
Negative | 1 | 42 | 43 | |||
Total | 143 | 42 | 185 | |||
RT-PCR | Positive | 129 | 0 | 129 | 69.7% | 92.4% |
Negative | 14 | 42 | 56 | |||
Total | 143 | 42 | 185 | |||
Positive rate | 77.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.-R.; Kim, J.-M.; Baek, J.-S.; Park, J.; Kim, W.-I.; Ku, B.K.; Jeoung, H.-Y.; Lee, K.-K.; Park, C.-K. An Advanced Multiplex Real-Time Reverse Transcription Loop-Mediated Isothermal Amplification Assay for Rapid and Reliable Detection of Porcine Epidemic Diarrhea Virus and Porcine Internal Positive Control. Viruses 2023, 15, 2204. https://doi.org/10.3390/v15112204
Kim H-R, Kim J-M, Baek J-S, Park J, Kim W-I, Ku BK, Jeoung H-Y, Lee K-K, Park C-K. An Advanced Multiplex Real-Time Reverse Transcription Loop-Mediated Isothermal Amplification Assay for Rapid and Reliable Detection of Porcine Epidemic Diarrhea Virus and Porcine Internal Positive Control. Viruses. 2023; 15(11):2204. https://doi.org/10.3390/v15112204
Chicago/Turabian StyleKim, Hye-Ryung, Jong-Min Kim, Ji-Su Baek, Jonghyun Park, Won-Il Kim, Bok Kyung Ku, Hye-Young Jeoung, Kyoung-Ki Lee, and Choi-Kyu Park. 2023. "An Advanced Multiplex Real-Time Reverse Transcription Loop-Mediated Isothermal Amplification Assay for Rapid and Reliable Detection of Porcine Epidemic Diarrhea Virus and Porcine Internal Positive Control" Viruses 15, no. 11: 2204. https://doi.org/10.3390/v15112204
APA StyleKim, H. -R., Kim, J. -M., Baek, J. -S., Park, J., Kim, W. -I., Ku, B. K., Jeoung, H. -Y., Lee, K. -K., & Park, C. -K. (2023). An Advanced Multiplex Real-Time Reverse Transcription Loop-Mediated Isothermal Amplification Assay for Rapid and Reliable Detection of Porcine Epidemic Diarrhea Virus and Porcine Internal Positive Control. Viruses, 15(11), 2204. https://doi.org/10.3390/v15112204