Viral Subversion of the Chromosome Region Maintenance 1 Export Pathway and Its Consequences for the Cell Host
Abstract
:1. Introduction
2. CRM1-Dependent Export of Macromolecules
2.1. Association Cargo—CRM1: The NES Pattern
2.2. Association Cargo—CRM1: The NES Pattern
3. Biological Functions of CRM1
3.1. Evaluation of the Impact of CRM1 Associated Mutations or Overexpression in Disease
3.2. Evaluation of the Impact of CRM1 Inhibitors
3.3. Investigatation of CRM1 Interactome
4. Viral Subversion of the CRM1 Function
4.1. Viral Interference with the CRM1 Export Pathway
4.1.1. Drive of vRNA Export
4.1.2. To Adapt the Transport Network to Favor Viral Components Mobility and Virus Assembly
4.1.3. To Control Host Factors Redistribution Promoting Viral Replication
4.1.4. To Alter the Nuclear Pore Composition
Type of Genome | Family | Virus Name | Viral Protein | NES Sequence Hydrophobic Acids Are in Red | Effect of Nuclear Export on the Host Cell and/or Virus Cycle | References |
---|---|---|---|---|---|---|
ssRNA(+) | Retroviridae | Human immunodeficiency virus type 1 (HIV-1) | Rev | LQLPPLERLTLD Class 1b | Nuclear export of Rev is essential to support unspliced viral RNA export from nucleus. | [6,7] |
Vpr | EAIIRILQQLLFI Class 1a-R | Nuclear export of Vpr is required for efficient replication. | [150] | |||
Human T-cell leukemia virus type 1 (HTLV-1) | Tax | YKRIEELLYKISLTT Class 1a | N.D | [151] | ||
Rex | ALSAQLYSSLSLDS Class 1c | Support CRM1-dependent export of the unspliced viral RNA. | [101,152] | |||
HBz | MVNFVSVGLFRCLPVPCPEDLLVEELVDGLLSL | Nuclear export of HBZ is essential to regulate the mTOR signaling pathway via inhibition of GADD34 activity in the cytoplasm. | [153] | |||
Mouse mammary tumor virus (MMTV) | Rem | N.D | Support CRM1-dependent export of the unspliced viral RNA. | [154] | ||
Coronaviridae | SARS-CoV-2 | ORF9 | LALLSDLQDL Class 1b (putative NES) | N.D | NetNES 1.1 | |
N (Nucleocapsid) | LLDRLNQL Class 1a (putative NES) | |||||
S (Spike) | LEPLVDLPI Class 1b (putative NES) | |||||
M (Matrix) | LESELVIGAVIL Class 1c (putative NES) | |||||
E (Enveloppe) | LAILTALRL Class 1b (putative NES) | |||||
ORF3a | VHFVCNLLL Class 1b (putative NES) | |||||
NSP12 (RdRp) | LMIERFVSLAI Class 1b (putative NES) | |||||
ORF6 | N.D | By interacting with Nup98/Ra1, ORF6 inhibits CRM1-dependent export of IRF-1 and RIG-I mRNA. | [155] | |||
SARS-CoV | ORF3b | L-HKLLQTLVL Class 1c | Suppression of IFN I signaling (mitochondrial antiviral signaling—MAVS) | [156] | ||
ORF9b | LRLGSQLSL Class 2 | Inhibition of apoptosis caspase-3 dependent. | [157] | |||
Alphaviridae | Venezuelan Equine Encephalitis (VEE) | Capsid | TDPFLAMQVQELTRSMANLTFKQRRDAPPEGPSAKKPKK | N.D | [158] | |
nsP2 | VREFGLDLDSGL Class 4 | N.D | [159] | |||
Flaviviridae | Hepatitis C virus (HCV) | Core protein | LGKVIDTL Class 1d | N.D | [160] | |
Dengue virus (DENV) | NS5 (RNA polymerase) | LLTKPWDIIPMVTQMAM Class 1a | Modulation of IL-8 production | [161] | ||
Zika virus (ZIKV) | NS3 (protease) | TRVVAAEMEEALRGL Class 2 | N.D | [162] | ||
Chikungunya virus (CHIKV) | Capsid | VKGTIDNADLAKLAF Class 1a | N.D | [163] | ||
Potyviridae | Turnip Mosaic Virus (TuMV) | TuMV Nlb (RNA Polymerase) | YEYWWDTWADNWREW | Interaction between Nlb and CRM1 required to promote viral replication | [141] | |
Picornaviridae | Cardiovirus | L protein | N.D | Alteration of nuclear pore complex homeostasis. | [147] | |
Mengovirus | L protein | N.D | [164] | |||
ssRNA(−) | Bornaviridae | Borna disease virus (BDV) | X protein | LRLTLLELVRRL Class 2 | Nuclear export of X protein is essential to mitochondrial localization of the viral protein. Mitochondrial localization required to its neuroprotective activity. | [165] |
Orthomyxoviridae | Human parainfluenza 2 virus (HPIV-2) | P (Phosphoprotein) | IIELLKGLDL Class 1d | N.D | [166] | |
Influenza A (IAV) | NP (Nucleoprotein) | Several sequences: MIDGIGRFYI Class 1b VKGVGTMVM Class 1b LIFLARSALIL | Support viral vRNP export. | [104] | ||
NS2/NEP (Nuclear export Protein) | MITQFESAKA Class 1b | [167] | ||||
M1 (Matrix) | ILGFVFTLTV Class 1b | [108] | ||||
Influenza D (IDV) | NS2 | LVSLIRLKSKL Class 1d | [168] | |||
Pneumoviridae | Respiratory Syncytial Virus (RSV) | M (Matrix protein) | IIPYSGLLLVITV | Support virus particle formation and vRNA export. CRM1-mediated nuclear export is critical to the infectious cycle of RSV. | [143] | |
dsDNA | Herpesviridae | Cytomegalovirus (CMV) | Pp65 (Matrix protein) | NLVPMVATV | Support viral RNA export. Pp65 export is important for pp65 antigen presentation and CHD activation. | [169] |
UL84 | Two independent NES: LSLNLFALRI LTLSSLTL Class 2 | Support viral RNA export. | [170] | |||
UL94 | CILCQLLLLY | N.D | [171] | |||
Kaposi’s sarcoma-associated herpesvirus (KHSV) | LANA 2 | MVP-LVIK-LRL Class 2 | Subcellular localization of LANA2 regulate p53 activity and apoptosis induction. LANA2 export regulate lytic viral cycle. | [172,173] | ||
ORF45 | VLSQRIGLMDV | N.D | [174] | |||
Herpes simplex virus type 1 (HSV-1) | pUL47 (Tegument protein) | IMSQFRKLLM Class 1b | pUL47 binds to RNA transcripts. | [175] | ||
ICP27 | DMLIDLGLDLDL Class 2 | Export of ICP27 is crucial for viral production by playing a role in ICP4 expression, the mRNA export factor. | [121,176,177] | |||
ICP34.5 | LPPRLALRLR | N.D | [178] | |||
Bovine herpesvirus type-1 (BHV-1) | BICP27 (Bovin ICP27) | LEELCAARRLSL | N.D | [179] | ||
Adenoviridae | Human Adenovirus tye-5 (HAdV-5) | E4 | MV--LTREELVI Class 1c | N.D | [180] | |
E1A | VSQIFPDSVMLAVQEGIDLL Class 1b | N.D | [181] | |||
E4orf6 | N.D | E4 is co-exported from nucleus with the complex HuR-mRNA (c-fos, c-myc, COX-2), increasing mRNA stability and inducing cell transformation. | [182,183] | |||
Hepadnaviridae | Hepatite B virus (HBV) | HBx (Protein X) | QILPKVLHKRTLGLSAM | NES domain of HBx is associate with cytoplasmic retention of CRM1. | [184] | |
HBc (Core protein) | Two sequences: WGELMTLATWVGNL Class 1a-R RDLVVSYVNTNMGL Class 1c or 1d | Interaction with CRM1 allowed HBC particles containing encapsidated viral RNAs. | [125] | |||
Papillomaviridae | Human papillomavirus type 11 (HPV 11) | E1 | ISPRLDAIKL Class 1a | Nuclear export of E1 is necessary for long-term viral DNA maintenance and cell proliferation. | [185] | |
E7 | IRQLQDLLL Class 1b | N.D | [186] | |||
Human papillomavirus type 16 (HPV 16) | E7 | IRTLEDLLM Class 1b | N.D | [187] | ||
Human papillomavirus type 8 (HPV 8) | E7 | IRTFQELL Class 3 | N.D | [188] | ||
ssDNA | Parvoviridae | Murine minute virus (MVM) | NS2-P (non-structural protein 2) | MTKKFGTLTIHDTEKYASQPELCNN | Nuclear export of NS2-P is essential for proper viral production. | [18,189] |
Anelloviridae | Chicken anemia virus (CAV) | VP1 (Nucleocapsid) | ELDTNFFTLYVAQG Class 1c-R | N.D | [190] |
4.2. Viral Interference of CRM1 to Modulate Cellular Pathways
4.2.1. Modulation of Immune and Antiviral Signaling
4.2.2. Modulation of Pro-Oncogenic Cell Activity
5. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Kaps | Karyopherin |
CRM1 | Chromosome Region Maintenance 1 |
NPC | nuclear pore complex |
SNUPN | Snuportin |
LMB | Leptomycin B |
NES | nuclear export signal |
SINE | selective inhibitors of nuclear export |
mRNP | messenger ribonucleo-particle |
ARE | AU-rich element |
3′UTR | 3′ untranslated-region |
IFN | interferon |
IL | interleukine |
vRNA | viral RNA |
HIV-1 | human immunodeficiency virus type 1 |
MMTV | mouse mammary tumor virus |
HTLV-1 | human T-cell leukemia virus type 1 |
NLS | nuclear localization signal |
IAV | Influenza A virus |
FV | foamy virus |
MMPV | Mason–Pfizer Monkey Virus |
HBV | Hepatitis B virus |
TuMV | turnip mosaic virus |
RSV | respiratory syncytial virus |
SARS-CoV (-2) | severe acute respiratory syndrome coronavirus (-2) |
EMCV | encephalomyocarditis virus |
TMEV | Theiler’s murine encephalomyelitis virus |
HCV | Hepatitis C virus |
HAdV | human adenovirus |
VEE | Venezuelan equine encephalitis virus |
DEN | Dengue virus |
CHIKV | Chikungunya virus |
BDV | Borna disease virus |
HPIV-2 | human parainfluenza virus |
IDV | Influenza D virus |
CMV | cytomegalovirus |
KHSV | Kaposi’s sarcoma associated herpesvirus |
HSV-1 | herpes simplex-virus type 1 |
BHV-1 | bovine herpesvirus type 1 |
HAdV | human adenovirus |
CAV | chicken anemia virus |
MVM | murine minute virus |
References
- Fung, H.Y.J.; Chook, Y.M. Atomic basis of CRM1-cargo recognition, release and inhibition. Semin. Cancer Biol. 2014, 27, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Adachi, Y.; Yanagida, M. Higher order chromosome structure is affected by cold-sensitive mutations in a Schizosaccharomyces pombe gene crm1+ which encodes a 115-kD protein preferentially localized in the nucleus and its periphery. J. Cell Biol. 1989, 108, 1195–1207. [Google Scholar] [CrossRef] [PubMed]
- Stade, K.; Ford, C.S.; Guthrie, C.; Weis, K. Exportin 1 (Crm1p) Is an Essential Nuclear Export Factor. Cell 1997, 90, 1041–1050. [Google Scholar] [CrossRef]
- Fukuda, M.; Asano, S.; Nakamura, T.; Adachi, M.; Yoshida, M.; Yanagida, M.; Nishida, E. CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature 1997, 390, 308–311. [Google Scholar] [CrossRef]
- Fornerod, M.; Ohno, M.; Yoshida, M.; Mattaj, I.W. CRM1 Is an Export Receptor for Leucine-Rich Nuclear Export Signals. Cell 1997, 90, 1051–1060. [Google Scholar] [CrossRef]
- Wolff, B.; Sanglier, J.-J.; Wang, Y. Leptomycin B is an inhibitor of nuclear export: Inhibition of nucleo-cytoplasmic translocation of the human immunodeficiency virus type 1 (HIV-1) Rev protein and Rev-dependent mRNA. Chem. Biol. 1997, 4, 139–147. [Google Scholar] [CrossRef]
- Neville, M.; Stutz, F.; Lee, L.; Davis, L.I.; Rosbash, M. The importin-beta family member Crm1p bridges the interaction between Rev and the nuclear pore complex during nuclear export. Curr. Biol. 1997, 7, 767–775. [Google Scholar] [CrossRef]
- Wing, C.E.; Fung, H.Y.J.; Chook, Y.M. Karyopherin-mediated nucleocytoplasmic transport. Nat. Rev. Mol. Cell Biol. 2022, 23, 307–328. [Google Scholar] [CrossRef]
- Cautain, B.; Hill, R.; de Pedro, N.; Link, W. Components and regulation of nuclear transport processes. FEBS J. 2015, 282, 445–462. [Google Scholar] [CrossRef]
- Fung, H.Y.J.; Fu, S.-C.; Chook, Y.M.; University of Texas Southwestern Medical Center USA. Nuclear export receptor CRM1 recognizes diverse conformations in nuclear export signals. eLife 2017, 6, e23961. [Google Scholar] [CrossRef]
- Monecke, T.; Güttler, T.; Neumann, P.; Dickmanns, A.; Görlich, D.; Ficner, R. Crystal Structure of the Nuclear Export Receptor CRM1 in Complex with Snurportin1 and RanGTP. Science 2009, 324, 1087–1091. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.-C.; Fung, H.Y.J.; Cağatay, T.; Baumhardt, J.; Chook, Y.M. Correlation of CRM1-NES affinity with nuclear export activity. Mol. Biol. Cell 2018, 29, 2037–2044. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Pei, J.; Baumhardt, J.M.; Chook, Y.M.; Grishin, N.V. Structural prerequisites for CRM1-dependent nuclear export signaling peptides: Accessibility, adapting conformation, and the stability at the binding site. Sci. Rep. 2019, 9, 6627. [Google Scholar] [CrossRef] [PubMed]
- Kehlenbach, R.H.; Dickmanns, A.; Gerace, L. Nucleocytoplasmic Shuttling Factors Including Ran and CRM1 Mediate Nuclear Export of NFAT In Vitro. J. Cell Biol. 1998, 141, 863–874. [Google Scholar] [CrossRef]
- Engelsma, D.; Bernad, R.; Calafat, J.; Fornerod, M. Supraphysiological nuclear export signals bind CRM1 independently of RanGTP and arrest at Nup358. EMBO J. 2004, 23, 3643–3652. [Google Scholar] [CrossRef]
- Monecke, T.; Haselbach, D.; Voß, B.; Russek, A.; Neumann, P.; Thomson, E.; Hurt, E.; Zachariae, U.; Stark, H.; Grubmüller, H.; et al. Structural basis for cooperativity of CRM1 export complex formation. Proc. Natl. Acad. Sci. USA 2012, 110, 960–965. [Google Scholar] [CrossRef]
- Güttler, T.; Madl, T.; Neumann, P.; Deichsel, D.; Corsini, L.; Monecke, T.; Ficner, R.; Sattler, M.; Görlich, D. NES consensus redefined by structures of PKI-type and Rev-type nuclear export signals bound to CRM1. Nat. Struct. Mol. Biol. 2010, 17, 1367–1376. [Google Scholar] [CrossRef]
- Dong, X.; Biswas, A.; Süel, K.E.; Jackson, L.K.; Martinez, R.; Gu, H.; Chook, Y.M. Structural basis for leucine-rich nuclear export signal recognition by CRM1. Nature 2009, 458, 1136–1141. [Google Scholar] [CrossRef]
- Güttler, T.; Görlich, D. Ran-dependent nuclear export mediators: A structural perspective. EMBO J. 2011, 30, 3457–3474. [Google Scholar] [CrossRef]
- Kaláb, P.; Pralle, A.; Isacoff, E.Y.; Heald, R.; Weis, K. Analysis of a RanGTP-regulated gradient in mitotic somatic cells. Nature 2006, 440, 697–701. [Google Scholar] [CrossRef]
- Petosa, C.; Schoehn, G.; Askjaer, P.; Bauer, U.; Moulin, M.; Steuerwald, U.; Soler-López, M.; Baudin, F.; Mattaj, I.W.; Müller, C.W. Architecture of CRM1/Exportin1 Suggests How Cooperativity Is Achieved during Formation of a Nuclear Export Complex. Mol. Cell 2004, 16, 761–775. [Google Scholar] [CrossRef]
- Kudo, N.; Wolff, B.; Sekimoto, T.; Schreiner, E.P.; Yoneda, Y.; Yanagida, M.; Horinouchi, S.; Yoshida, M. Leptomycin B Inhibition of Signal-Mediated Nuclear Export by Direct Binding to CRM1. Exp. Cell Res. 1998, 242, 540–547. [Google Scholar] [CrossRef]
- Dian, C.; Bernaudat, F.; Langer, K.; Oliva, M.F.; Fornerod, M.; Schoehn, G.; Müller, C.W.; Petosa, C. Structure of a Truncation Mutant of the Nuclear Export Factor CRM1 Provides Insights into the Auto-Inhibitory Role of Its C-Terminal Helix. Structure 2013, 21, 1338–1349. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, B.I.; Cautain, B.; Grenho, I.; Link, W. Small Molecule Inhibitors of CRM1. Front. Pharmacol. 2020, 11, 625. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.P.; Jacquemyn, M.; Lipecka, J.; Chhuon, C.; Aushev, V.N.; Meunier, B.; Singh, M.K.; Carpi, N.; Piel, M.; Codogno, P.; et al. STK 38 kinase acts as XPO 1 gatekeeper regulating the nuclear export of autophagy proteins and other cargoes. Embo Rep. 2019, 20, e48150. [Google Scholar] [CrossRef] [PubMed]
- Langer, K.; Dian, C.; Rybin, V.; Müller, C.W.; Petosa, C. Insights into the Function of the CRM1 Cofactor RanBP3 from the Structure of Its Ran-Binding Domain. PLoS ONE 2011, 6, e17011. [Google Scholar] [CrossRef] [PubMed]
- Ryan, K.J.; Wente, S.R. The nuclear pore complex: A protein machine bridging the nucleus and cytoplasm. Curr. Opin. Cell Biol. 2000, 12, 361–371. [Google Scholar] [CrossRef]
- Ritterhoff, T.; Das, H.; Hofhaus, G.; Schröder, R.R.; Flotho, A.; Melchior, F. The RanBP2/RanGAP1*SUMO1/Ubc9 SUMO E3 ligase is a disassembly machine for Crm1-dependent nuclear export complexes. Nat. Commun. 2016, 7, 11482. [Google Scholar] [CrossRef]
- Bley, C.J.; Nie, S.; Mobbs, G.W.; Petrovic, S.; Gres, A.T.; Liu, X.; Mukherjee, S.; Harvey, S.; Huber, F.M.; Lin, D.H.; et al. Architecture of the cytoplasmic face of the nuclear pore. Science 2022, 376, eabm9129. [Google Scholar] [CrossRef]
- Azizian, N.G.; Li, Y. XPO1-dependent nuclear export as a target for cancer therapy. J. Hematol. Oncol. 2020, 13, 61. [Google Scholar] [CrossRef]
- Taylor, J.; Sendino, M.; Gorelick, A.N.; Pastore, A.; Chang, M.T.; Penson, A.V.; Gavrila, E.I.; Stewart, C.; Melnik, E.M.; Chavez, F.H.; et al. Altered Nuclear Export Signal Recognition as a Driver of Oncogenesis. Cancer Discov. 2019, 9, 1452–1467. [Google Scholar] [CrossRef] [PubMed]
- Puente, X.S.; Pinyol, M.; Quesada, V.; Conde, L.; Ordóñez, G.R.; Villamor, N.; Escaramis, G.; Jares, P.; Beà, S.; González-Díaz, M.; et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 2011, 475, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Miloudi, H.; Bohers, É.; Guillonneau, F.; Taly, A.; Gibouin, V.C.; Viailly, P.-J.; Jego, G.; Grumolato, L.; Jardin, F.; Sola, B. XPO1E571K Mutation Modifies Exportin 1 Localisation and Interactome in B-Cell Lymphoma. Cancers 2020, 12, 2829. [Google Scholar] [CrossRef] [PubMed]
- Baumhardt, J.M.; Walker, J.S.; Lee, Y.; Shakya, B.; Brautigam, C.A.; Lapalombella, R.; Grishin, N.; Chook, Y.M. Recognition of nuclear export signals by CRM1 carrying the oncogenic E571K mutation. Mol. Biol. Cell 2020, 31, 1879–1891. [Google Scholar] [CrossRef]
- Räsch, F.; Weber, R.; Izaurralde, E.; Igreja, C. 4E-T-bound mRNAs are stored in a silenced and deadenylated form. Genes Dev. 2020, 34, 847–860. [Google Scholar] [CrossRef]
- Arnaoutov, A.; Azuma, Y.; Ribbeck, K.; Joseph, J.; Boyarchuk, Y.; Karpova, T.; McNally, J.; Dasso, M. Crm1 is a mitotic effector of Ran-GTP in somatic cells. Nat. Cell Biol. 2005, 7, 626–632. [Google Scholar] [CrossRef]
- Siddiqui, N.; Borden, K.L.B. mRNA export and cancer. Wiley Interdiscip. Rev. RNA 2012, 3, 13–25. [Google Scholar] [CrossRef]
- Yue, L.; Sun, Z.; Yao, Y.; Shen, Z.; Wang, H.; Liu, X.; Zhou, F.; Xiang, J.; Yao, R.; Niu, H. CRM1, a novel independent prognostic factor overexpressed in invasive breast carcinoma of poor prognosis. Oncol. Lett. 2018, 15, 7515–7522. [Google Scholar] [CrossRef]
- Gao, W.; Lu, C.; Chen, L.; Keohavong, P. Overexpression of CRM1: A Characteristic Feature in a Transformed Phenotype of Lung Carcinogenesis and a Molecular Target for Lung Cancer Adjuvant Therapy. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2015, 10, 815–825. [Google Scholar] [CrossRef]
- Liu, S.; Wang, S.; Gu, R.; Che, N.; Wang, J.; Cheng, J.; Yuan, Z.; Cheng, Y.; Liao, Y. The XPO1 Inhibitor KPT-8602 Ameliorates Parkinson’s Disease by Inhibiting the NF-κB/NLRP3 Pathway. Front. Pharmacol. 2022, 13, 847605. [Google Scholar] [CrossRef]
- Nakashima, A.; Cheng, S.-B.; Ikawa, M.; Yoshimori, T.; Huber, W.J.; Menon, R.; Huang, Z.; Fierce, J.; Padbury, J.F.; Sadovsky, Y.; et al. Evidence for lysosomal biogenesis proteome defect and impaired autophagy in preeclampsia. Autophagy 2019, 16, 1771–1785. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Chen, X.; Zhou, Q.; Burstein, E.; Yang, S.; Jia, D. Inhibiting cancer cell hallmark features through nuclear export inhibition. Signal Transduct. Target. Ther. 2016, 1, 16010. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, H.; Na, L.; Du, C.; Zhang, Z.; Zheng, Y.-H.; Wang, X. ANP32A and ANP32B are key factors in the Rev-dependent CRM1 pathway for nuclear export of HIV-1 unspliced mRNA. J. Biol. Chem. 2019, 294, 15346–15357. [Google Scholar] [CrossRef] [PubMed]
- Gravina, G.L.; Senapedis, W.; McCauley, D.; Baloglu, E.; Shacham, S.; Festuccia, C. Nucleo-cytoplasmic transport as a therapeutic target of cancer. J. Hematol. Oncol. 2014, 7, 85. [Google Scholar] [CrossRef]
- Mathew, C.; Ghildyal, R. CRM1 Inhibitors for Antiviral Therapy. Front. Microbiol. 2017, 8, 1171. [Google Scholar] [CrossRef] [PubMed]
- García-Aguirre, I.; Alamillo-Iniesta, A.; Rodríguez-Pérez, R.; Vélez-Aguilera, G.; Amaro-Encarnación, E.; Jiménez-Gutiérrez, E.; Vásquez-Limeta, A.; Laredo-Cisneros, M.S.; Morales-Lázaro, S.L.; Tiburcio-Félix, R.; et al. Enhanced nuclear protein export in premature aging and rescue of the progeria phenotype by modulation of CRM1 activity. Aging Cell 2019, 18, e13002. [Google Scholar] [CrossRef]
- Gorostieta-Salas, E.; Moreno-Blas, D.; Gerónimo-Olvera, C.; Cisneros, B.; Court, F.A.; Castro-Obregón, S. Enhanced Activity of Exportin-1/CRM1 in Neurons Contributes to Autophagy Dysfunction and Senescent Features in Old Mouse Brain. Oxidative Med. Cell. Longev. 2021, 2021, 6682336. [Google Scholar] [CrossRef]
- Hamamoto, T.; Seto, H.; Beppu, T. Leptomycins A and B, new antifungal antibiotics. II. Structure elucidation. J. Antibiot. 1983, 36, 646–650. [Google Scholar] [CrossRef]
- Liu, X.; Chong, Y.; Liu, H.; Han, Y.; Niu, M. Novel reversible selective inhibitor of CRM1 for targeted therapy in ovarian cancer. J. Ovarian Res. 2015, 8, 35. [Google Scholar] [CrossRef]
- Sun, Q.; Carrasco, Y.P.; Hu, Y.; Guo, X.; Mirzaei, H.; MacMillan, J.; Chook, Y.M. Nuclear export inhibition through covalent conjugation and hydrolysis of Leptomycin B by CRM1. Proc. Natl. Acad. Sci. USA 2013, 110, 1303–1308. [Google Scholar] [CrossRef]
- Wang, A.Y.; Liu, H. The past, present, and future of CRM1/XPO1 inhibitors. Stem Cell Investig. 2019, 6, 6. [Google Scholar] [CrossRef] [PubMed]
- Tang, T.; Martin, P.; Somasundaram, N.; Lim, C.; Tao, M.; Poon, E.; Yunon, M.J.; Toh, S.Q.; Yan, S.X.; Farid, M.; et al. Phase I study of selinexor in combination with dexamethasone, ifosfamide, carboplatin, etoposide chemotherapy in patients with relapsed or refractory peripheral T-cell or natural-killer/T-cell lymphoma. Haematologica 2020, 106, 3170–3175. [Google Scholar] [CrossRef]
- Stephens, D.M.; Huang, Y.; Ruppert, A.S.; Walker, J.S.; Canfield, D.; Cempre, C.B.; Fu, Q.; Baker, S.; Hu, B.; Shah, H.; et al. Selinexor Combined with Ibrutinib Demonstrates Tolerability and Safety in Advanced B-Cell Malignancies: A Phase I Study. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2022, 28, 3242–3247. [Google Scholar] [CrossRef]
- Lassman, A.B.; Wen, P.Y.; Bent, M.J.v.D.; Plotkin, S.R.; Walenkamp, A.M.; Green, A.L.; Li, K.; Walker, C.J.; Chang, H.; Tamir, S.; et al. A Phase II Study of the Efficacy and Safety of Oral Selinexor in Recurrent Glioblastoma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2022, 28, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Kalakonda, N.; Maerevoet, M.; Cavallo, F.; Follows, G.; Goy, A.; Vermaat, J.S.P.; Casasnovas, O.; Hamad, N.; Zijlstra, J.M.; Bakhshi, S.; et al. Selinexor in patients with relapsed or refractory diffuse large B-cell lymphoma (SADAL): A single-arm, multinational, multicentre, open-label, phase 2 trial. Lancet Haematol. 2020, 7, e511–e522. [Google Scholar] [CrossRef] [PubMed]
- Chanukuppa, V.; Paul, D.; Taunk, K.; Chatterjee, T.; Sharma, S.; Kumar, S.; Santra, M.K.; Rapole, S. XPO1 is a critical player for bortezomib resistance in multiple myeloma: A quantitative proteomic approach. J. Proteomics 2019, 209, 103504. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.G.; Kashyap, T.; Dawson, J.L.; Gomez, J.; Bauer, A.A.; Grant, S.; Dai, Y.; Shain, K.H.; Meads, M.; Landesman, Y.; et al. XPO1 inhibitor combination therapy with bortezomib or carfilzomib induces nuclear localization of IκBα and overcomes acquired proteasome inhibitor resistance in human multiple myeloma. Oncotarget 2016, 7, 78896–78909. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Gui, H.; Feng, Z.; Xu, H.; Li, G.; Li, M.; Chen, T.; Wu, Y.; Huang, J.; Bai, Z.; et al. KPT-330, a potent and selective CRM1 inhibitor, exhibits anti-inflammation effects and protection against sepsis. Biochem. Biophys. Res. Commun. 2018, 503, 1773–1779. [Google Scholar] [CrossRef]
- Pickens, J.A.; Tripp, R.A. Verdinexor Targeting of CRM1 is a Promising Therapeutic Approach against RSV and Influenza Viruses. Viruses 2018, 10, 48. [Google Scholar] [CrossRef]
- Tajiri, N.; De La Peña, I.; Acosta, S.A.; Kaneko, Y.; Tamir, S.; Landesman, Y.; Carlson, R.; Shacham, S.; Borlongan, C.V. A Nuclear Attack on Traumatic Brain Injury: Sequestration of Cell Death in the Nucleus. CNS Neurosci. Ther. 2016, 22, 306–315. [Google Scholar] [CrossRef]
- Shaikhqasem, A.; Dickmanns, A.; Neumann, P.; Ficner, R. Characterization of Inhibition Reveals Distinctive Properties for Human and Saccharomyces cerevisiae CRM1. J. Med. Chem. 2020, 63, 7545–7558. [Google Scholar] [CrossRef] [PubMed]
- Walker, J.S.; Hing, Z.A.; Harrington, B.; Baumhardt, J.; Ozer, H.G.; Lehman, A.; Giacopelli, B.; Beaver, L.; Williams, K.; Skinner, J.N.; et al. Recurrent XPO1 mutations alter pathogenesis of chronic lymphocytic leukemia. J. Hematol. Oncol. 2021, 14, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Kudo, N.; Matsumori, N.; Taoka, H.; Fujiwara, D.; Schreiner, E.P.; Wolff, B.; Yoshida, M.; Horinouchi, S. Leptomycin B inactivates CRM1/exportin 1 by covalent modification at a cysteine residue in the central conserved region. Proc. Natl. Acad. Sci. USA 1999, 96, 9112–9117. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, T.; Murray, J.; Walker, C.J.; Chang, H.; Tamir, S.; Hou, B.; Shacham, S.; Kauffman, M.G.; Tripp, R.A.; Landesman, Y. Selinexor, a novel selective inhibitor of nuclear export, reduces SARS-CoV-2 infection and protects the respiratory system in vivo. Antivir. Res. 2021, 192, 105115. [Google Scholar] [CrossRef]
- Jorquera, P.A.; Mathew, C.; Pickens, J.; Williams, C.; Luczo, J.M.; Tamir, S.; Ghildyal, R.; Tripp, R.A. Verdinexor (KPT-335), a Selective Inhibitor of Nuclear Export, Reduces Respiratory Syncytial Virus Replication In Vitro. J. Virol. 2019, 93, e01684-18. [Google Scholar] [CrossRef]
- Perwitasari, O.; Johnson, S.; Yan, X.; Howerth, E.; Shacham, S.; Landesman, Y.; Baloglu, E.; McCauley, D.; Tamir, S.; Tompkins, S.M.; et al. Verdinexor, a Novel Selective Inhibitor of Nuclear Export, Reduces Influenza A Virus Replication In Vitro and In Vivo. J. Virol. 2014, 88, 10228–10243. [Google Scholar] [CrossRef]
- Widman, D.G.; Gornisiewicz, S.; Shacham, S.; Tamir, S. In vitro toxicity and efficacy of verdinexor, an exportin 1 inhibitor, on opportunistic viruses affecting immunocompromised individuals. PLoS ONE 2018, 13, e0200043. [Google Scholar] [CrossRef]
- Boons, E.; Vanstreels, E.; Jacquemyn, M.; Nogueira, T.C.; Neggers, J.E.; Vercruysse, T.; Oord, J.v.D.; Tamir, S.; Shacham, S.; Landesman, Y.; et al. Human Exportin-1 is a Target for Combined Therapy of HIV and AIDS Related Lymphoma. EBioMedicine 2015, 2, 1102–1113. [Google Scholar] [CrossRef]
- Kırlı, K.; Karaca, S.; Dehne, H.J.; Samwer, M.; Pan, K.T.; Lenz, C.; Urlaub, H.; Görlich, D. A deep proteomics perspective on CRM1-mediated nuclear export and nucleocytoplasmic partitioning. eLife 2015, 4, e11466. [Google Scholar] [CrossRef]
- Hautbergue, G.M.; Hung, M.-L.; Golovanov, A.P.; Lian, L.-Y.; Wilson, S.A. Mutually exclusive interactions drive handover of mRNA from export adaptors to TAP. Proc. Natl. Acad. Sci. USA 2008, 105, 5154–5159. [Google Scholar] [CrossRef]
- Bakheet, T.; Khabar, K.S.A.; Hitti, E.G. Differential upregulation of AU-rich element-containing mRNAs in COVID-19. Hum. Genom. 2022, 16, 59. [Google Scholar] [CrossRef] [PubMed]
- Lourou, N.; Gavriilidis, M.; Kontoyiannis, D.L. Lessons from studying the AU-rich elements in chronic inflammation and autoimmunity. J. Autoimmun. 2019, 104, 102334. [Google Scholar] [CrossRef]
- Brennan, C.M.; Gallouzi, I.-E.; Steitz, J.A. Protein Ligands to Hur Modulate Its Interaction with Target Mrnas in Vivo. J. Cell Biol. 2000, 151, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Jang, B.-C.; Muñoz-Najar, U.; Paik, J.-H.; Claffey, K.; Yoshida, M.; Hla, T. Leptomycin B, an Inhibitor of the Nuclear Export Receptor CRM1, Inhibits COX-2 Expression. J. Biol. Chem. 2003, 278, 2773–2776. [Google Scholar] [CrossRef] [PubMed]
- Schütz, S.; Chemnitz, J.; Spillner, C.; Frohme, M.; Hauber, J.; Kehlenbach, R.H. Stimulated Expression of mRNAs in Activated T Cells Depends on a Functional CRM1 Nuclear Export Pathway. J. Mol. Biol. 2006, 358, 997–1009. [Google Scholar] [CrossRef]
- Scott, D.D.; Aguilar, L.C.; Kramar, M.; Oeffinger, M. It’s Not the Destination, It’s the Journey: Heterogeneity in mRNA Export Mechanisms. Adv. Exp. Med. Biol. 2019, 1203, 33–81. [Google Scholar] [CrossRef]
- Osborne, M.J.; Borden, K.L.B. The eukaryotic translation initiation factor eIF4E in the nucleus: Taking the road less traveled. Immunol. Rev. 2015, 263, 210–223. [Google Scholar] [CrossRef]
- Culjkovic, B.; Topisirovic, I.; Skrabanek, L.; Ruiz-Gutierrez, M.; Borden, K.L. eIF4E is a central node of an RNA regulon that governs cellular proliferation. J. Cell Biol. 2006, 175, 415–426. [Google Scholar] [CrossRef]
- Culjkovic, B.; Topisirovic, I.; Borden, K.L. Controlling Gene Expression through RNA Regulons: The Role of the Eukaryotic Translation Initiation Factor eIF4E. Cell Cycle 2007, 6, 65–69. [Google Scholar] [CrossRef]
- Watkins, N.J.; Lemm, I.; Ingelfinger, D.; Schneider, C.; Hoßbach, M.; Urlaub, H.; Lührmann, R. Assembly and Maturation of the U3 SnoRNP in the Nucleoplasm in a Large Dynamic Multiprotein Complex. Mol. Cell 2004, 16, 789–798. [Google Scholar] [CrossRef]
- Li, M.W.; Sletten, A.C.; Lee, J.; Pyles, K.D.; Matkovich, S.J.; Ory, D.S.; Schaffer, J.E. Nuclear export factor 3 regulates localization of small nucleolar RNAs. J. Biol. Chem. 2017, 292, 20228–20239. [Google Scholar] [CrossRef] [PubMed]
- ElMaghraby, M.F.; Andersen, P.R.; Pühringer, F.; Hohmann, U.; Meixner, K.; Lendl, T.; Tirian, L.; Brennecke, J. A Heterochromatin-Specific RNA Export Pathway Facilitates piRNA Production. Cell 2019, 178, 964–979. [Google Scholar] [CrossRef] [PubMed]
- Ohno, M.; Segref, A.; Bachi, A.; Wilm, M.; Mattaj, I.W. PHAX, a Mediator of U snRNA Nuclear Export Whose Activity Is Regulated by Phosphorylation. Cell 2000, 101, 187–198. [Google Scholar] [CrossRef]
- Verheggen, C.; Bertrand, E. CRM1 plays a nuclear role in transporting snoRNPs to nucleoli in higher eukaryotes. Nucleus 2012, 3, 132–137. [Google Scholar] [CrossRef]
- Mouaikel, J.; Narayanan, U.; Verheggen, C.; Matera, A.G.; Bertrand, E.; Tazi, J.; Bordonné, R. Interaction between the small-nuclear-RNA cap hypermethylase and the spinal muscular atrophy protein, survival of motor neuron. EMBO Rep. 2003, 4, 616–622. [Google Scholar] [CrossRef] [PubMed]
- Pradet-Balade, B.; Girard, C.; Boulon, S.; Paul, C.; Azzag, K.; Bordonné, R.; Bertrand, E.; Verheggen, C. CRM1 controls the composition of nucleoplasmic pre-snoRNA complexes to licence them for nucleolar transport. EMBO J. 2011, 30, 2205–2218. [Google Scholar] [CrossRef]
- Boulon, S.; Verheggen, C.; Jady, B.E.; Girard, C.; Pescia, C.; Paul, C.; Ospina, J.K.; Kiss, T.; Matera, A.; Bordonné, R.; et al. PHAX and CRM1 Are Required Sequentially to Transport U3 snoRNA to Nucleoli. Mol. Cell 2004, 16, 777–787. [Google Scholar] [CrossRef]
- Okamura, M.; Inose, H.; Masuda, S. RNA Export through the NPC in Eukaryotes. Genes 2015, 6, 124–149. [Google Scholar] [CrossRef]
- Hutten, S.; Kehlenbach, R.H. CRM1-mediated nuclear export: To the pore and beyond. Trends Cell Biol. 2007, 17, 193–201. [Google Scholar] [CrossRef]
- Kimura, T.; Hashimoto, I.; Nishizawa, M.; Ito, S.; Yamada, H. Novel cis-active structures in the coding region mediate CRM1-dependent nuclear export of IFN-α 1 mRNA. Med. Mol. Morphol. 2010, 43, 145–157. [Google Scholar] [CrossRef]
- Kimura, T.; Hashimoto, I.; Nagase, T.; Fujisawa, J.-I. CRM1-dependent, but not ARE-mediated, nuclear export of IFN-α1 mRNA. J. Cell Sci. 2004, 117, 2259–2270. [Google Scholar] [CrossRef] [PubMed]
- Higa, M.; Oka, M.; Fujihara, Y.; Masuda, K.; Yoneda, Y.; Kishimoto, T. Regulation of inflammatory responses by dynamic subcellular localization of RNA-binding protein Arid5a. Proc. Natl. Acad. Sci. USA 2018, 115, E1214–E1220. [Google Scholar] [CrossRef] [PubMed]
- Malim, M.H.; Hauber, J.; Le, S.-Y.; Maizel, J.V.; Cullen, B.R. The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA. Nature 1989, 338, 254–257. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, J.; Jayaraman, B.; Frankel, A. The HIV-1 Rev response element: An RNA scaffold that directs the cooperative assembly of a homo-oligomeric ribonucleoprotein complex. RNA Biol. 2012, 9, 6–11. [Google Scholar] [CrossRef]
- Malim, M.H.; Cullen, B.R. HIV-1 structural gene expression requires the binding of multiple Rev monomers to the viral RRE: Implications for HIV-1 latency. Cell 1991, 65, 241–248. [Google Scholar] [CrossRef]
- Malim, M.H.; Böhnlein, S.; Hauber, J.; Cullen, B.R. Functional dissection of the HIV-1 Rev trans-activator—Derivation of a trans-dominant repressor of Rev function. Cell 1989, 58, 205–214. [Google Scholar] [CrossRef]
- Edgcomb, S.P.; Aschrafi, A.; Kompfner, E.; Williamson, J.R.; Gerace, L.; Hennig, M. Protein structure and oligomerization are important for the formation of export-competent HIV-1 Rev-RRE complexes. Protein Sci. Publ. Protein Soc. 2008, 17, 420–430. [Google Scholar] [CrossRef]
- Yedavalli, V.S.R.K.; Jeang, K.-T. Trimethylguanosine capping selectively promotes expression of Rev-dependent HIV-1 RNAs. Proc. Natl. Acad. Sci. USA 2010, 107, 14787–14792. [Google Scholar] [CrossRef]
- Singh, G.; Seufzer, B.; Song, Z.; Zucko, D.; Heng, X.; Boris-Lawrie, K. HIV-1 hypermethylated guanosine cap licenses specialized translation unaffected by mTOR. Proc. Natl. Acad. Sci. USA 2022, 119, e2105153118. [Google Scholar] [CrossRef]
- Nakano, K.; Watanabe, T. HTLV-1 Rex Tunes the Cellular Environment Favorable for Viral Replication. Viruses 2016, 8, 58. [Google Scholar] [CrossRef]
- Hakata, Y.; Umemoto, T.; Matsushita, S.; Shida, H. Involvement of Human CRM1 (Exportin 1) in the Export and Multimerization of the Rex Protein of Human T-Cell Leukemia Virus Type 1. J. Virol. 1998, 72, 6602–6607. [Google Scholar] [CrossRef] [PubMed]
- Hakata, Y.; Yamada, M.; Shida, H. A Multifunctional Domain in Human CRM1 (Exportin 1) Mediates RanBP3 Binding and Multimerization of Human T-Cell Leukemia Virus Type 1 Rex Protein. Mol. Cell. Biol. 2003, 23, 8751–8761. [Google Scholar] [CrossRef] [PubMed]
- Mertz, J.A.; Lozano, M.M.; Dudley, J.P. Rev and Rex proteins of human complex retroviruses function with the MMTV Rem-responsive element. Retrovirology 2009, 6, 10. [Google Scholar] [CrossRef] [PubMed]
- Elton, D.; Simpson-Holley, M.; Archer, K.; Medcalf, L.; Hallam, R.; McCauley, J.; Digard, P. Interaction of the Influenza Virus Nucleoprotein with the Cellular CRM1-Mediated Nuclear Export Pathway. J. Virol. 2001, 75, 408–419. [Google Scholar] [CrossRef]
- Watanabe, K.; Takizawa, N.; Katoh, M.; Hoshida, K.; Kobayashi, N.; Nagata, K. Inhibition of nuclear export of ribonucleoprotein complexes of influenza virus by leptomycin B. Virus Res. 2001, 77, 31–42. [Google Scholar] [CrossRef]
- O’Neill, R.E.; Talon, J.; Palese, P. The influenza virus NEP (NS2 protein) mediates the nuclear export of viral ribonucleoproteins. EMBO J. 1998, 17, 288–296. [Google Scholar] [CrossRef]
- Bui, M.; Wills, E.G.; Helenius, A.; Whittaker, G.R. Role of the Influenza Virus M1 Protein in Nuclear Export of Viral Ribonucleoproteins. J. Virol. 2000, 74, 1781–1786. [Google Scholar] [CrossRef]
- Cao, S.; Liu, X.; Yu, M.; Li, J.; Jia, X.; Bi, Y.; Sun, L.; Gao, G.F.; Liu, W. A Nuclear Export Signal in the Matrix Protein of Influenza A Virus Is Required for Efficient Virus Replication. J. Virol. 2012, 86, 4883–4891. [Google Scholar] [CrossRef]
- Bodem, J.; Schied, T.; Gabriel, R.; Rammling, M.; Rethwilm, A. Foamy Virus Nuclear RNA Export Is Distinct from That of Other Retroviruses. J. Virol. 2011, 85, 2333–2341. [Google Scholar] [CrossRef]
- Sokolowski, M.; Tan, W.; Jellne, M.; Schwartz, S. mRNA Instability Elements in the Human Papillomavirus Type 16 L2 Coding Region. J. Virol. 1998, 72, 1504–1515. [Google Scholar] [CrossRef]
- Schwartz, S. Cis-Acting Negative RNA Elements on Papillomavirus Late mRNAs. Semin. Virol. 1998, 8, 291–300. [Google Scholar] [CrossRef]
- Sokolowski, M.; Zhao, C.; Tan, W.; Schwartz, S. AU-rich mRNA instability elements on human papillomavirus type 1 late mRNAs and c-fos mRNAs interact with the same cellular factors. Oncogene 1997, 15, 2303–2319. [Google Scholar] [CrossRef] [PubMed]
- Sokolowski, M.; Furneaux, H.; Schwartz, S. The Inhibitory Activity of the AU-Rich RNA Element in the Human Papillomavirus Type 1 Late 3′ Untranslated Region Correlates with Its Affinity for the elav-Like HuR Protein. J. Virol. 1999, 73, 1080–1091. [Google Scholar] [CrossRef]
- Carlsson, A.; Schwartz, S. Inhibitory activity of the human papillomavirus type 1 AU-rich element correlates inversely with the levels of the elav-like HuR protein in the cell cytoplasm. Arch. Virol. 2000, 145, 491–503. [Google Scholar] [CrossRef]
- Mougel, M.; Akkawi, C.; Chamontin, C.; Feuillard, J.; Pessel-Vivares, L.; Socol, M.; Laine, S. NXF1 and CRM1 nuclear export pathways orchestrate nuclear export, translation and packaging of murine leukaemia retrovirus unspliced RNA. RNA Biol. 2020, 17, 528–538. [Google Scholar] [CrossRef]
- Chen, I.-H.B.; Sciabica, K.S.; Sandri-Goldin, R.M. ICP27 Interacts with the RNA Export Factor Aly/REF To Direct Herpes Simplex Virus Type 1 Intronless mRNAs to the TAP Export Pathway. J. Virol. 2002, 76, 12877–12889. [Google Scholar] [CrossRef]
- Johnson, L.A.; Li, L.; Sandri-Goldin, R.M. The Cellular RNA Export Receptor TAP/NXF1 Is Required for ICP27-Mediated Export of Herpes Simplex Virus 1 RNA, but the TREX Complex Adaptor Protein Aly/REF Appears To Be Dispensable. J. Virol. 2009, 83, 6335–6346. [Google Scholar] [CrossRef]
- Sandri-Goldin, R.M. ICP27 mediates HSV RNA export by shuttling through a leucine-rich nuclear export signal and binding viral intronless RNAs through an RGG motif. Genes Dev. 1998, 12, 868–879. [Google Scholar] [CrossRef]
- Mears, W.E.; Lam, V.; Rice, S.A. Identification of nuclear and nucleolar localization signals in the herpes simplex virus regulatory protein ICP27. J. Virol. 1995, 69, 935–947. [Google Scholar] [CrossRef]
- Mears, W.E.; Rice, S.A. The RGG box motif of the herpes simplex virus ICP27 protein mediates an RNA-binding activity and determines in vivo methylation. J. Virol. 1996, 70, 7445–7453. [Google Scholar] [CrossRef]
- Soliman, T.M.; Sandri-Goldin, R.M.; Silverstein, S.J. Shuttling of the herpes simplex virus type 1 regulatory protein ICP27 between the nucleus and cytoplasm mediates the expression of late proteins. J. Virol. 1997, 71, 9188–9197. [Google Scholar] [CrossRef] [PubMed]
- Soliman, T.M.; Silverstein, S.J. Identification of an Export Control Sequence and a Requirement for the KH Domains in ICP27 from Herpes Simplex Virus Type 1. J. Virol. 2000, 74, 7600–7609. [Google Scholar] [CrossRef] [PubMed]
- Yatherajam, G.; Huang, W.; Flint, S.J. Export of Adenoviral Late mRNA from the Nucleus Requires the Nxf1/Tap Export Receptor. J. Virol. 2011, 85, 1429–1438. [Google Scholar] [CrossRef] [PubMed]
- Schmid, M.; Gonzalez, R.A.; Dobner, T. CRM1-Dependent Transport Supports Cytoplasmic Accumulation of Adenoviral Early Transcripts. J. Virol. 2012, 86, 2282–2292. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.-C.; Chang, C.-H.; Chen, H.-L.; Chou, M.-C.; Jhou, R.-S.; Huang, E.-Y.; Li, H.-C.; Suen, C.-S.; Hwang, M.-J.; Shih, C. CRM1-spike-mediated nuclear export of hepatitis B virus encapsidated viral RNA. Cell Rep. 2022, 38, 110472. [Google Scholar] [CrossRef]
- Strunze, S.; Trotman, L.C.; Boucke, K.; Greber, U.F. Nuclear Targeting of Adenovirus Type 2 Requires CRM1-mediated Nuclear Export. Mol. Biol. Cell 2005, 16, 2999–3009. [Google Scholar] [CrossRef]
- Wang, I.-H.; Burckhardt, C.J.; Yakimovich, A.; Morf, M.K.; Greber, U.F. The nuclear export factor CRM1 controls juxta-nuclear microtubule-dependent virus transport. J. Cell Sci. 2017, 130, 2185–2195. [Google Scholar] [CrossRef]
- Lagadec, F.; Carlon-Andres, I.; Ragues, J.; Port, S.; Wodrich, H.; Kehlenbach, R.H. CRM1 Promotes Capsid Disassembly and Nuclear Envelope Translocation of Adenovirus Independently of Its Export Function. J. Virol. 2022, 96, e0127321. [Google Scholar] [CrossRef]
- Prochasson, L.; Mghezzi-Habellah, M.; Roisin, A.; Palma, M.; Robin, J.P.; de Bossoreille, S.; Sareoua, L.; Cluet, D.; Mouehli, M.; Decimo, D.; et al. HTLV-1 Rex hijacks UPF1 in a CRM1 dependent manner, leading to NMD inhibition and revealing unexpected proviral roles of UPF1. Mol. Biol. 2023; preprint. [Google Scholar] [CrossRef]
- Ajamian, L.; Abel, K.; Rao, S.; Vyboh, K.; García-De-Gracia, F.; Soto-Rifo, R.; Kulozik, A.E.; Gehring, N.H.; Mouland, A.J. HIV-1 Recruits UPF1 but Excludes UPF2 to Promote Nucleocytoplasmic Export of the Genomic RNA. Biomolecules 2015, 5, 2808–2839. [Google Scholar] [CrossRef]
- Balakrishnan, K.; Munusami, P.; Mohareer, K.; Priyakumar, U.D.; Banerjee, A.; Luedde, T.; Mande, S.C.; Münk, C.; Banerjee, S. Staufen-2 functions as a cofactor for enhanced Rev-mediated nucleocytoplasmic trafficking of HIV -1 genomic RNA via the CRM1 pathway. FEBS J. 2022, 289, 6731–6751. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Benjamin, R.; Balakrishnan, K.; Ghosh, P.; Banerjee, S. Human protein Staufen-2 promotes HIV-1 proliferation by positively regulating RNA export activity of viral protein Rev. Retrovirology 2014, 11, 18. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Kubota, S.; Yang, B.; Zhou, N.; Zhang, H.; Godbout, R.; Pomerantz, R.J. A DEAD box protein facilitates HIV-1 replication as a cellular co-factor of Rev. Virology 2004, 330, 471–480. [Google Scholar] [CrossRef]
- Robertson-Anderson, R.M.; Wang, J.; Edgcomb, S.P.; Carmel, A.B.; Williamson, J.R.; Millar, D.P. Single-Molecule Studies Reveal that DEAD Box Protein DDX1 Promotes Oligomerization of HIV-1 Rev on the Rev Response Element. J. Mol. Biol. 2011, 410, 959–971. [Google Scholar] [CrossRef] [PubMed]
- Edgcomb, S.P.; Carmel, A.B.; Naji, S.; Ambrus-Aikelin, G.; Reyes, J.R.; Saphire, A.C.; Gerace, L.; Williamson, J.R. DDX1 Is an RNA-Dependent ATPase Involved in HIV-1 Rev Function and Virus Replication. J. Mol. Biol. 2012, 415, 61–74. [Google Scholar] [CrossRef] [PubMed]
- Yasuda-Inoue, M.; Kuroki, M.; Ariumi, Y. DDX3 RNA helicase is required for HIV-1 Tat function. Biochem. Biophys. Res. Commun. 2013, 441, 607–611. [Google Scholar] [CrossRef]
- Zhou, X.; Luo, J.; Mills, L.; Wu, S.; Pan, T.; Geng, G.; Zhang, J.; Luo, H.; Liu, C.; Zhang, H. DDX5 Facilitates HIV-1 Replication as a Cellular Co-Factor of Rev. PLoS ONE 2013, 8, e65040. [Google Scholar] [CrossRef]
- Bevec, D.; Jaksche, H.; Oft, M.; Wöhl, T.; Himmelspach, M.; Pacher, A.; Schebesta, M.; Koettnitz, K.; Dobrovnik, M.; Csonga, R.; et al. Inhibition of HIV-1 Replication in Lymphocytes by Mutants of the Rev Cofactor eIF-5A. Science 1996, 271, 1858–1860. [Google Scholar] [CrossRef]
- Kaminski, R.; Darbinian, N.; Sawaya, B.E.; Slonina, D.; Amini, S.; Johnson, E.M.; Rappaport, J.; Khalili, K.; Darbinyan, A. Purα as a cellular co-factor of Rev/RRE-mediated expression of HIV-1 intron-containing mRNA. J. Cell. Biochem. 2008, 103, 1231–1245. [Google Scholar] [CrossRef]
- Serquiña, A.K.P.; Das, S.R.; Popova, E.; Ojelabi, O.A.; Roy, C.K.; Göttlinger, H.G. UPF1 Is Crucial for the Infectivity of Human Immunodeficiency Virus Type 1 Progeny Virions. J. Virol. 2013, 87, 8853–8861. [Google Scholar] [CrossRef]
- Zhang, M.; Gong, P.; Ge, L.; Li, Y.; Chang, Z.; Qiao, R.; Zhou, X.; Wang, A.; Li, F. Nuclear Exportin 1 (XPO1) Binds to the Nuclear Localization/Export Signal of the Turnip Mosaic Virus NIb to Promote Viral Infection. Front. Microbiol. 2021, 12, 780724. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Gong, P.; Ge, L.; Chang, Z.; Cheng, X.; Zhou, X.; Wang, A.; Li, F. Nuclear exportin 1 facilitates turnip mosaic virus infection by exporting the sumoylated viral replicase and by repressing plant immunity. New Phytol. 2021, 232, 1382–1398. [Google Scholar] [CrossRef]
- Ghildyal, R.; Ho, A.; Dias, M.; Soegiyono, L.; Bardin, P.G.; Tran, K.C.; Teng, M.N.; Jans, D.A. The Respiratory Syncytial Virus Matrix Protein Possesses a Crm1-Mediated Nuclear Export Mechanism. J. Virol. 2009, 83, 5353–5362. [Google Scholar] [CrossRef] [PubMed]
- Gordon, D.E.; Jang, G.M.; Bouhaddou, M.; Xu, J.; Obernier, K.; White, K.M.; O’Meara, M.J.; Rezelj, V.V.; Guo, J.Z.; Swaney, D.L.; et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 2020, 583, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-G.; Huang, W.; Lee, H.; van de Leemput, J.; Kane, M.A.; Han, Z. Characterization of SARS-CoV-2 proteins reveals Orf6 pathogenicity, subcellular localization, host interactions and attenuation by Selinexor. Cell Biosci. 2021, 11, 58. [Google Scholar] [CrossRef] [PubMed]
- Bacot-Davis, V.R.; Ciomperlik, J.J.; Basta, H.A.; Cornilescu, C.C.; Palmenberg, A.C. Solution structures of Mengovirus Leader protein, its phosphorylated derivatives, and in complex with nuclear transport regulatory protein, RanGTPase. Proc. Natl. Acad. Sci. USA 2014, 111, 15792–15797. [Google Scholar] [CrossRef]
- Ciomperlik, J.J.; Basta, H.A.; Palmenberg, A.C. Cardiovirus Leader proteins bind exportins: Implications for virus replication and nucleocytoplasmic trafficking inhibition. Virology 2016, 487, 19–26. [Google Scholar] [CrossRef]
- Lizcano-Perret, B.; Michiels, T. Nucleocytoplasmic Trafficking Perturbation Induced by Picornaviruses. Viruses 2021, 13, 1210. [Google Scholar] [CrossRef]
- Kaminski, A.; Jackson, R.J. The polypyrimidine tract binding protein (PTB) requirement for internal initiation of translation of cardiovirus RNAs is conditional rather than absolute. RNA 1998, 4, 626–638. [Google Scholar] [CrossRef]
- Sherman, M.P.; de Noronha, C.M.C.; Eckstein, L.A.; Hataye, J.; Mundt, P.; Williams, S.A.F.; Neidleman, J.A.; Goldsmith, M.A.; Greene, W.C. Nuclear Export of Vpr Is Required for Efficient Replication of Human Immunodeficiency Virus Type 1 in Tissue Macrophages. J. Virol. 2003, 77, 7582–7589. [Google Scholar] [CrossRef]
- Alefantis, T.; Barmak, K.; Harhaj, E.W.; Grant, C.; Wigdahl, B. Characterization of a Nuclear Export Signal within the Human T Cell Leukemia Virus Type I Transactivator Protein Tax. J. Biol. Chem. 2003, 278, 21814–21822. [Google Scholar] [CrossRef]
- Bogerd, H.P.; Fridell, R.A.; Benson, R.E.; Hua, J.; Cullen, B.R. Protein Sequence Requirements for Function of the Human T-Cell Leukemia Virus Type 1 Rex Nuclear Export Signal Delineated by a Novel In Vivo Randomization-Selection Assay. Mol. Cell. Biol. 1996, 16, 4207–4214. [Google Scholar] [CrossRef]
- Mukai, R.; Ohshima, T. HTLV-1 HBZ positively regulates the mTOR signaling pathway via inhibition of GADD34 activity in the cytoplasm. Oncogene 2014, 33, 2317–2328. [Google Scholar] [CrossRef] [PubMed]
- Byun, H.; Halani, N.; Gou, Y.; Nash, A.K.; Lozano, M.M.; Dudley, J.P. Requirements for Mouse Mammary Tumor Virus Rem Signal Peptide Processing and Function. J. Virol. 2012, 86, 214–225. [Google Scholar] [CrossRef] [PubMed]
- Hall, R.; Guedán, A.; Yap, M.W.; Young, G.R.; Harvey, R.; Stoye, J.P.; Bishop, K.N. SARS-CoV-2 ORF6 disrupts innate immune signalling by inhibiting cellular mRNA export. PLOS Pathog. 2022, 18, e1010349. [Google Scholar] [CrossRef] [PubMed]
- Freundt, E.C.; Yu, L.; Park, E.; Lenardo, M.J.; Xu, X.-N. Molecular Determinants for Subcellular Localization of the Severe Acute Respiratory Syndrome Coronavirus Open Reading Frame 3b Protein. J. Virol. 2009, 83, 6631–6640. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Åkerström, S.; Sharma, A.K.; Chow, V.T.K.; Teow, S.; Abrenica, B.; Booth, S.A.; Booth, T.F.; Mirazimi, A.; Lal, S.K. SARS-CoV 9b Protein Diffuses into Nucleus, Undergoes Active Crm1 Mediated Nucleocytoplasmic Export and Triggers Apoptosis When Retained in the Nucleus. PLoS ONE 2011, 6, e19436. [Google Scholar] [CrossRef]
- Atasheva, S.; Fish, A.; Fornerod, M.; Frolova, E.I. Venezuelan Equine Encephalitis Virus Capsid Protein Forms a Tetrameric Complex with CRM1 and Importin α/β That Obstructs Nuclear Pore Complex Function. J. Virol. 2010, 84, 4158–4171. [Google Scholar] [CrossRef]
- Montgomery, S.A.; Johnston, R.E. Nuclear Import and Export of Venezuelan Equine Encephalitis Virus Nonstructural Protein 2. J. Virol. 2007, 81, 10268–10279. [Google Scholar] [CrossRef]
- Cerutti, A.; Maillard, P.; Minisini, R.; Vidalain, P.-O.; Roohvand, F.; Pecheur, E.-I.; Pirisi, M.; Budkowska, A. Identification of a Functional, CRM-1-Dependent Nuclear Export Signal in Hepatitis C Virus Core Protein. PLoS ONE 2011, 6, e25854. [Google Scholar] [CrossRef]
- Rawlinson, S.M.; Pryor, M.J.; Wright, P.J.; Jans, D.A. CRM1-mediated Nuclear Export of Dengue Virus RNA Polymerase NS5 Modulates Interleukin-8 Induction and Virus Production. J. Biol. Chem. 2009, 284, 15589–15597. [Google Scholar] [CrossRef] [PubMed]
- De Jesús-González, L.A.; Palacios-Rápalo, S.N.; Reyes-Ruiz, J.M.; Osuna-Ramos, J.F.; Farfán-Morales, C.N.; Cordero-Rivera, C.D.; Cisneros, B.; Gutiérrez-Escolano, A.L.; del Ángel, R.M. Nucleo-Cytoplasmic Transport of ZIKV Non-Structural 3 Protein Is Mediated by Importin-α/β and Exportin CRM-1. J. Virol. 2023, 97, e0177322. [Google Scholar] [CrossRef]
- Thomas, S.; Rai, J.; John, L.; Schaefer, S.; Pützer, B.M.; Herchenröder, O. Chikungunya virus capsid protein contains nuclear import and export signals. Virol. J. 2013, 10, 269. [Google Scholar] [CrossRef] [PubMed]
- Bardina, M.V.; Lidsky, P.V.; Sheval, E.V.; Fominykh, K.V.; van Kuppeveld, F.J.M.; Polyakov, V.Y.; Agol, V.I. Mengovirus-Induced Rearrangement of the Nuclear Pore Complex: Hijacking Cellular Phosphorylation Machinery. J. Virol. 2009, 83, 3150–3161. [Google Scholar] [CrossRef] [PubMed]
- Ferré, C.A.; Davezac, N.; Thouard, A.; Peyrin, J.-M.; Belenguer, P.; Miquel, M.-C.; Gonzalez-Dunia, D.; Szelechowski, M. Manipulation of the N-terminal sequence of the Borna disease virus X protein improves its mitochondrial targeting and neuroprotective potential. FASEB J. 2016, 30, 1523–1533. [Google Scholar] [CrossRef]
- Ohtsuka, J.; Matsumoto, Y.; Ohta, K.; Fukumura, M.; Tsurudome, M.; Nosaka, T.; Nishio, M. Nucleocytoplasmic shuttling of the human parainfluenza virus type 2 phosphoprotein. Virology 2019, 528, 54–63. [Google Scholar] [CrossRef]
- Huang, S.; Chen, J.; Chen, Q.; Wang, H.; Yao, Y.; Chen, J.; Chen, Z. A Second CRM1-Dependent Nuclear Export Signal in the Influenza A Virus NS2 Protein Contributes to the Nuclear Export of Viral Ribonucleoproteins. J. Virol. 2013, 87, 767–778. [Google Scholar] [CrossRef]
- Zhao, L.; Xia, H.; Huang, J.; Zheng, Y.; Liu, C.; Su, J.; Ping, J. Features of Nuclear Export Signals of NS2 Protein of Influenza D Virus. Viruses 2020, 12, 1100. [Google Scholar] [CrossRef]
- Becke, S.; Fabre-Mersseman, V.; Aue, S.; Auerochs, S.; Sedmak, T.; Wolfrum, U.; Strand, D.; Marschall, M.; Plachter, B.; Reyda, S. Modification of the major tegument protein pp65 of human cytomegalovirus inhibits virus growth and leads to the enhancement of a protein complex with pUL69 and pUL97 in infected cells. J. Gen. Virol. 2010, 91 Pt 10, 2531–2541. [Google Scholar] [CrossRef]
- Lischka, P.; Rauh, C.; Mueller, R.; Stamminger, T. Human Cytomegalovirus UL84 Protein Contains Two Nuclear Export Signals and Shuttles between the Nucleus and the Cytoplasm. J. Virol. 2006, 80, 10274–10280. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Z.; Zhao, X.; Wei, H.; Deng, J.; Cui, Z.; Zhang, X.-E. Human cytomegalovirus UL94 is a nucleocytoplasmic shuttling protein containing two NLSs and one NES. Virus Res. 2012, 166, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Fontela, C.; Collado, M.; Rodriguez, E.; García, M.; Alvarez-Barrientos, A.; Arroyo, J.; Nombela, C.; Rivas, C. Identification of a nuclear export signal in the KSHV latent protein LANA2 mediating its export from the nucleus. Exp. Cell Res. 2005, 311, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Fontela, C.; Rodríguez, E.; Nombela, C.; Arroyo, J.; Rivas, C. Characterization of the bipartite nuclear localization signal of protein LANA2 from Kaposi’s sarcoma-associated herpesvirus. Biochem. J. 2003, 374 Pt 2, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhu, F. Identification of the Nuclear Export and Adjacent Nuclear Localization Signals for ORF45 of Kaposi’s Sarcoma-Associated Herpesvirus. J. Virol. 2009, 83, 2531–2539. [Google Scholar] [CrossRef]
- Williams, P.; Verhagen, J.; Elliott, G. Characterization of a CRM1-Dependent Nuclear Export Signal in the C Terminus of Herpes Simplex Virus Type 1 Tegument Protein UL47. J. Virol. 2008, 82, 10946–10952. [Google Scholar] [CrossRef]
- Mears, W.E.; Rice, S.A. The Herpes Simplex Virus Immediate-Early Protein ICP27 Shuttles between Nucleus and Cytoplasm. Virology 1998, 242, 128–137. [Google Scholar] [CrossRef]
- Phelan, A.; Clements, J.B. Herpes simplex virus type 1 immediate early protein IE63 shuttles between nuclear compartments and the cytoplasm. J. Gen. Virol. 1997, 78 Pt 12, 3327–3331. [Google Scholar] [CrossRef]
- Cheng, G.; Brett, M.-E.; He, B. Signals That Dictate Nuclear, Nucleolar, and Cytoplasmic Shuttling of the γ 1 34.5 Protein of Herpes Simplex Virus Type 1. J. Virol. 2002, 76, 9434–9445. [Google Scholar] [CrossRef]
- Ding, Q.; Guo, H.; Lin, F.; Pan, W.; Ye, B.; Zheng, A.C. Characterization of the nuclear import and export mechanisms of bovine herpesvirus-1 infected cell protein 27. Virus Res. 2010, 149, 95–103. [Google Scholar] [CrossRef]
- Dobbelstein, M.; Roth, J.; Kimberly, W.T.; Levine, A.J.; Shenk, T. Nuclear export of the E1B 55-kDa and E4 34-kDa adenoviral oncoproteins mediated by a rev-like signal sequence. EMBO J. 1997, 16, 4276–4284. [Google Scholar] [CrossRef]
- Jiang, H.; Olson, M.V.; Medrano, D.R.; Lee, O.; Xu, J.; Piao, Y.; Alonso, M.M.; Gomez-Manzano, C.; Hung, M.; Yung, W.K.A.; et al. A novel CRM1-dependent nuclear export signal in adenoviral E1A protein regulated by phosphorylation. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2006, 20, 2603–2605. [Google Scholar] [CrossRef]
- Higashino, F.; Aoyagi, M.; Takahashi, A.; Ishino, M.; Taoka, M.; Isobe, T.; Kobayashi, M.; Totsuka, Y.; Kohgo, T.; Shindoh, M. Adenovirus E4orf6 targets pp32/LANP to control the fate of ARE-containing mRNAs by perturbing the CRM1-dependent mechanism. J. Cell Biol. 2005, 170, 15–20. [Google Scholar] [CrossRef]
- Kuroshima, T.; Aoyagi, M.; Yasuda, M.; Kitamura, T.; Jehung, J.P.; Ishikawa, M.; Kitagawa, Y.; Totsuka, Y.; Shindoh, M.; Higashino, F. Viral-mediated stabilization of AU-rich element containing mRNA contributes to cell transformation. Oncogene 2011, 30, 2912–2920. [Google Scholar] [CrossRef] [PubMed]
- Forgues, M.; Marrogi, A.J.; Spillare, E.A.; Wu, C.-G.; Yang, Q.; Yoshida, M.; Wang, X.W. Interaction of the Hepatitis B Virus X Protein with the Crm1-dependent Nuclear Export Pathway. J. Biol. Chem. 2001, 276, 22797–22803. [Google Scholar] [CrossRef] [PubMed]
- Fradet-Turcotte, A.; Moody, C.; Laimins, L.A.; Archambault, J. Nuclear Export of Human Papillomavirus Type 31 E1 Is Regulated by Cdk2 Phosphorylation and Required for Viral Genome Maintenance. J. Virol. 2010, 84, 11747–11760. [Google Scholar] [CrossRef] [PubMed]
- McKee, C.H.; Onder, Z.; Ashok, A.; Cardoso, R.; Moroianu, J. Characterization of the transport signals that mediate the nucleocytoplasmic traffic of low risk HPV11 E7. Virology 2013, 443, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Knapp, A.A.; McManus, P.M.; Bockstall, K.; Moroianu, J. Identification of the nuclear localization and export signals of high risk HPV16 E7 oncoprotein. Virology 2009, 383, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Onder, Z.; Chang, V.; Moroianu, J. Nuclear export of cutaneous HPV8 E7 oncoprotein is mediated by a leucine-rich nuclear export signal via a CRM1 pathway. Virology 2015, 474, 28–33. [Google Scholar] [CrossRef]
- Bodendorf, U.; Cziepluch, C.; Jauniaux, J.-C.; Rommelaere, J.; Salomé, N. Nuclear Export Factor CRM1 Interacts with Nonstructural Proteins NS2 from Parvovirus Minute Virus of Mice. J. Virol. 1999, 73, 7769–7779. [Google Scholar] [CrossRef]
- Cheng, J.-H.; Lai, G.-H.; Lien, Y.-Y.; Sun, F.-C.; Hsu, S.-L.; Chuang, P.-C.; Lee, M.-S. Identification of nuclear localization signal and nuclear export signal of VP1 from the chicken anemia virus and effects on VP2 shuttling in cells. Virol. J. 2019, 16, 45. [Google Scholar] [CrossRef]
- Boson, B.; Mialon, C.; Schichl, K.; Denolly, S.; Cosset, F.-L. Nup98 Is Subverted from Annulate Lamellae by Hepatitis C Virus Core Protein to Foster Viral Assembly. Mbio 2022, 13, e0292321. [Google Scholar] [CrossRef] [PubMed]
- Schneider, W.M.; Chevillotte, M.D.; Rice, C.M. Interferon-Stimulated Genes: A Complex Web of Host Defenses. Annu. Rev. Immunol. 2014, 32, 513–545. [Google Scholar] [CrossRef] [PubMed]
- Kawai, T.; Akira, S. The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors. Nat. Immunol. 2010, 11, 373–384. [Google Scholar] [CrossRef]
- Sun, S.-C.; Chang, J.-H.; Jin, J. Regulation of nuclear factor-κB in autoimmunity. Trends Immunol. 2013, 34, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.P.; McBride, K.M.; Weaver, B.K.; Dingwall, C.; Reich, N.C. Regulated Nuclear-Cytoplasmic Localization of Interferon Regulatory Factor 3, a Subunit of Double-Stranded RNA-Activated Factor 1. Mol. Cell. Biol. 2000, 20, 4159–4168. [Google Scholar] [CrossRef]
- Kashyap, T.; Argueta, C.; Aboukameel, A.; Unger, T.J.; Klebanov, B.; Mohammad, R.M.; Muqbil, I.; Azmi, A.S.; Drolen, C.; Senapedis, W.; et al. Selinexor, a Selective Inhibitor of Nuclear Export (SINE) compound, acts through NF-κB deactivation and combines with proteasome inhibitors to synergistically induce tumor cell death. Oncotarget 2016, 7, 78883–78895. [Google Scholar] [CrossRef]
- Lim, K.-H.; Choi, H.S.; Park, Y.K.; Park, E.-S.; Shin, G.C.; Kim, D.H.; Ahn, S.H.; Kim, K.-H. HBx-Induced NF-κB Signaling in Liver Cells Is Potentially Mediated by the Ternary Complex of HBx with p22-FLIP and NEMO. PLoS ONE 2013, 8, e57331. [Google Scholar] [CrossRef]
- Guven-Maiorov, E.; Tsai, C.-J.; Nussinov, R. Oncoviruses Can Drive Cancer by Rewiring Signaling Pathways Through Interface Mimicry. Front. Oncol. 2019, 9, 1236. [Google Scholar] [CrossRef]
- Forgues, M.; Difilippantonio, M.; Linke, S.; Ried, T.; Nagashima, K.; Feden, J.; Valerie, K.; Fukasawa, K.; Wang, X. Involvement of Crm1 in Hepatitis B Virus X Protein-Induced Aberrant Centriole Replication and Abnormal Mitotic Spindles. Mol. Cell. Biol. 2003, 23, 5282–5292. [Google Scholar] [CrossRef]
- Godinho, S.A.; Pellman, D. Causes and consequences of centrosome abnormalities in cancer. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20130467. [Google Scholar] [CrossRef]
- Forbes, D.J.; Travesa, A.; Nord, M.S.; Bernis, C. Nuclear transport factors: Global regulation of mitosis. Curr. Opin. Cell Biol. 2015, 35, 78–90. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Zhang, H.; Han, Z.; Mi, X.; Zhang, W.; Lv, M. HBx interacted with Smad4 to deprive activin a growth inhibition function in hepatocyte HL7702 on CRM1 manner. Tumor Biol. J. Int. Soc. Oncodevelopmental Biol. Med. 2016, 37, 3405–3415. [Google Scholar] [CrossRef] [PubMed]
- Dosch, T.; Horn, F.; Schneider, G.; Krätzer, F.; Dobner, T.; Hauber, J.; Stauber, R.H. The Adenovirus Type 5 E1B-55K Oncoprotein Actively Shuttles in Virus-Infected Cells, Whereas Transport of E4orf6 Is Mediated by a CRM1-Independent Mechanism. J. Virol. 2001, 75, 5677–5683. [Google Scholar] [CrossRef]
- Kindsmüller, K.; Groitl, P.; Härtl, B.; Blanchette, P.; Hauber, J.; Dobner, T. Intranuclear targeting and nuclear export of the adenovirus E1B-55K protein are regulated by SUMO1 conjugation. Proc. Natl. Acad. Sci. USA 2007, 104, 6684–6689. [Google Scholar] [CrossRef] [PubMed]
- Schmid, M.; Kindsmüller, K.; Wimmer, P.; Groitl, P.; Gonzalez, R.A.; Dobner, T. The E3 Ubiquitin Ligase Activity Associated with the Adenoviral E1B-55K–E4orf6 Complex Does Not Require CRM1-Dependent Export. J. Virol. 2011, 85, 7081–7094. [Google Scholar] [CrossRef]
- Endter, C.; Härtl, B.; Spruss, T.; Hauber, J.; Dobner, T. Blockage of CRM1-dependent nuclear export of the adenovirus type 5 early region 1B 55-kDa protein augments oncogenic transformation of primary rat cells. Oncogene 2005, 24, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Perwitasari, O.; Johnson, S.; Yan, X.; Register, E.; Crabtree, J.; Gabbard, J.; Howerth, E.; Shacham, S.; Carlson, R.; Tamir, S.; et al. Antiviral Efficacy of Verdinexor In Vivo in Two Animal Models of Influenza A Virus Infection. PLoS ONE 2016, 11, e0167221. [Google Scholar] [CrossRef]
- Uddin, H.; Zonder, J.A.; Azmi, A.S. Exportin 1 inhibition as antiviral therapy. Drug Discov. Today 2020, 25, 1775–1781. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mghezzi-Habellah, M.; Prochasson, L.; Jalinot, P.; Mocquet, V. Viral Subversion of the Chromosome Region Maintenance 1 Export Pathway and Its Consequences for the Cell Host. Viruses 2023, 15, 2218. https://doi.org/10.3390/v15112218
Mghezzi-Habellah M, Prochasson L, Jalinot P, Mocquet V. Viral Subversion of the Chromosome Region Maintenance 1 Export Pathway and Its Consequences for the Cell Host. Viruses. 2023; 15(11):2218. https://doi.org/10.3390/v15112218
Chicago/Turabian StyleMghezzi-Habellah, Makram, Léa Prochasson, Pierre Jalinot, and Vincent Mocquet. 2023. "Viral Subversion of the Chromosome Region Maintenance 1 Export Pathway and Its Consequences for the Cell Host" Viruses 15, no. 11: 2218. https://doi.org/10.3390/v15112218
APA StyleMghezzi-Habellah, M., Prochasson, L., Jalinot, P., & Mocquet, V. (2023). Viral Subversion of the Chromosome Region Maintenance 1 Export Pathway and Its Consequences for the Cell Host. Viruses, 15(11), 2218. https://doi.org/10.3390/v15112218