An In Silico Analysis of PCR-Based Monkeypox Virus Detection Assays: A Case Study for Ongoing Clinical Surveillance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Primer and Probe Information
2.2. MPXV Genome Extraction and Lineage Assignments
2.3. Primer Alignment Evaluations
2.4. Inverted Regions and Low Mappability Region Identification
2.5. Conserved Region Identification
3. Results
3.1. MPXV Genomic Dataset Overview
3.2. In silico Evaluation of MPXV PCR-Based Assays
3.3. Mismatch Primer-Genome Classification
3.4. Consensus Region Identification
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Mpox (Monkeypox). Available online: https://www.who.int/news-room/fact-sheets/detail/monkeypox (accessed on 18 June 2023).
- Ladnyj, I.; Ziegler, P.; Kima, E. A Human Infection Caused by Monkeypox Virus in Basankusu Territory, Democratic Republic of the Congo. Bull. World Health Organ. 1972, 46, 593. [Google Scholar] [PubMed]
- World Health Organization. WHO Recommends New Name for Monkeypox Disease; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Centers for Disease Control and Prevention (CDC). Update: Multistate Outbreak of Monkeypox—Illinois, Indiana, Kansas, Missouri, Ohio, and Wisconsin, 2003. Morb. Mortal. Wkly. Rep. 2003, 52, 561–564. [Google Scholar]
- Erez, N.; Achdout, H.; Milrot, E.; Schwartz, Y.; Wiener-Well, Y.; Paran, N.; Politi, B.; Tamir, H.; Israely, T.; Weiss, S. Diagnosis of Imported Monkeypox, Israel, 2018. Emerg. Infect. Dis. 2019, 25, 980. [Google Scholar] [CrossRef] [PubMed]
- Yong, S.E.F.; Ng, O.T.; Ho, Z.J.M.; Mak, T.M.; Marimuthu, K.; Vasoo, S.; Yeo, T.W.; Ng, Y.K.; Cui, L.; Ferdous, Z. Imported Monkeypox, Singapore. Emerg. Infect. Dis. 2020, 26, 1826. [Google Scholar] [CrossRef]
- World Health Organization Multi-Country Monkeypox Outbreak in Non-Endemic Countries. Available online: https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON385 (accessed on 24 June 2023).
- World Health Organization 2022–2023 Mpox (Monkeypox) Outbreak: Global Trends. Available online: https://worldhealthorg.shinyapps.io/mpx_global/ (accessed on 18 June 2023).
- Centers for Disease Control and Prevention 2022 Mpox Outbreak Global Map. Available online: https://www.cdc.gov/poxvirus/mpox/response/2022/world-map.html (accessed on 7 June 2023).
- Peck, K.M.; Lauring, A.S. Complexities of Viral Mutation Rates. J. Virol. 2018, 92, e01031-17. [Google Scholar] [CrossRef]
- American Society for Microbiology Mpox vs. COVID-19. Available online: https://asm.org/Articles/2022/August/Monkeypox-vs-COVID-19 (accessed on 18 June 2023).
- Dobrovolná, M.; Brázda, V.; Warner, E.F.; Bidula, S. Inverted Repeats in the Monkeypox Virus Genome Are Hot Spots for Mutation. J. Med. Virol. 2023, 95, E28322. [Google Scholar] [CrossRef] [PubMed]
- Isidro, J.; Borges, V.; Pinto, M.; Sobral, D.; Santos, J.D.; Nunes, A.; Mixão, V.; Ferreira, R.; Santos, D.; Duarte, S. Phylogenomic Characterization and Signs of Microevolution in the 2022 Multi-Country Outbreak of Monkeypox Virus. Nat. Med. 2022, 28, 1569–1572. [Google Scholar] [CrossRef]
- Hadfield, J.; Megill, C.; Bell, S.M.; Huddleston, J.; Potter, B.; Callender, C.; Sagulenko, P.; Bedford, T.; Neher, R.A. Nextstrain: Real-Time Tracking of Pathogen Evolution. Bioinformatics 2018, 34, 4121–4123. [Google Scholar] [CrossRef]
- Aksamentov, I.; Roemer, C.; Hodcroft, E.B.; Neher, R.A. Nextclade: Clade Assignment, Mutation Calling and Quality Control for Viral Genomes. J. Open Source Softw. 2021, 6, 3773. [Google Scholar] [CrossRef]
- Happi, C.; Adetifa, I.; Mbala, P.; Njouom, R.; Nakoune, E.; Happi, A.; Ndodo, N.; Ayansola, O.; Mboowa, G.; Bedford, T. Urgent Need for a Non-Discriminatory and Non-Stigmatizing Nomenclature for Monkeypox Virus. PLoS Biol. 2022, 20, e3001769. [Google Scholar] [CrossRef]
- Li, Y.; Olson, V.A.; Laue, T.; Laker, M.T.; Damon, I.K. Detection of Monkeypox Virus with Real-Time PCR Assays. J. Clin. Virol. 2006, 36, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhao, H.; Wilkins, K.; Hughes, C.; Damon, I.K. Real-Time PCR Assays for the Specific Detection of Monkeypox Virus West African and Congo Basin Strain DNA. J. Virol. Methods 2010, 169, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Shchelkunov, S.N.; Shcherbakov, D.N.; Maksyutov, R.A.; Gavrilova, E.V. Species-Specific Identification of Variola, Monkeypox, Cowpox, and Vaccinia Viruses by Multiplex Real-Time PCR Assay. J. Virol. Methods 2011, 175, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Wawina-Bokalanga, T.; Sklenovska, N.; Vanmechelen, B.; Bloemen, M.; Vergote, V.; Laenen, L.; André, E.; Van Ranst, M.; Muyembe-Tamfum, J.-J.; Maes, P. An Accurate and Rapid Real-Time PCR Approach for Human Monkeypox Virus Diagnosis. medRxiv. 2022. Available online: https://www.medrxiv.org/content/10.1101/2022.06.23.22276033v1 (accessed on 2 June 2023).
- Maksyutov, R.A.; Gavrilova, E.V.; Shchelkunov, S.N. Species-Specific Differentiation of Variola, Monkeypox, and Varicella-Zoster Viruses by Multiplex Real-Time PCR Assay. J. Virol. Methods 2016, 236, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Stellberger, T.; Stockmar, I.; Haase, M.; Meyer, H.; Zoeller, G.; Pavlovic, M.; Büttner, M.; Konrad, R.; Lang, H.; Tischer, K.; et al. Multiplex Real-Time PCR Assay for the Detection and Differentiation of Poxviruses and Poxvirus Vectors. Appl. Biosaf. 2015, 20, 192–200. [Google Scholar] [CrossRef]
- Schroeder, K.; Nitsche, A. Multicolour, Multiplex Real-Time PCR Assay for the Detection of Human-Pathogenic Poxviruses. Mol. Cell Probe 2010, 24, 110–113. [Google Scholar] [CrossRef]
- Kulesh, D.A.; Loveless, B.M.; Norwood, D.; Garrison, J.; Whitehouse, C.A.; Hartmann, C.; Mucker, E.; Miller, D.; Wasieloski, L.P.; Huggins, J.; et al. Monkeypox Virus Detection in Rodents Using Real-Time 3′-Minor Groove Binder TaqMan® Assays on the Roche LightCycler. Lab. Investig. 2004, 84, 1200–1208. [Google Scholar] [CrossRef]
- Reynolds, M.G.; Carroll, D.S.; Olson, V.A.; Hughes, C.; Galley, J.; Likos, A.; Montgomery, J.M.; Suu-Ire, R.; Kwasi, M.O.; Root, J.J. A Silent Enzootic of an Orthopoxvirus in Ghana, West Africa: Evidence for Multi-Species Involvement in the Absence of Widespread Human Disease. Am. J. Trop. Med. Hyg. 2010, 82, 746. [Google Scholar] [CrossRef]
- Kuo, S.-C.; Wang, Y.-M. Identification of Pan-Orthopoxvirus, Monkeypox-Specific and Smallpox-Specific DNAs by Real-Time PCR Assay. J. Med. Sci. 2013, 33, 293–303. [Google Scholar] [CrossRef]
- Ropp, S.L.; Jin, Q.; Knight, J.C.; Massung, R.F.; Esposito, J.J. PCR Strategy for Identification and Differentiation of Small Pox and Other Orthopoxviruses. J. Clin. Microbiol. 1995, 33, 2069–2076. [Google Scholar] [CrossRef]
- Meyer, H.; Ropp, S.L.; Esposito, J.J. Gene for A-Type Inclusion Body Protein Is Useful for a Polymerase Chain Reaction Assay to Differentiate Orthopoxviruses. J. Virol. Methods 1997, 64, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Boyle, B.; Dallaire, N.; MacKay, J. Evaluation of the Impact of Single Nucleotide Polymorphisms and Primer Mismatches on Quantitative PCR. BMC Biotechnol. 2009, 9, 75. [Google Scholar] [CrossRef] [PubMed]
- Bru, D.; Martin-Laurent, F.; Philippot, L. Quantification of the Detrimental Effect of a Single Primer-Template Mismatch by Real-Time PCR Using the 16S rRNA Gene as an Example. Appl. Environ. Microb. 2008, 74, 1660–1663. [Google Scholar] [CrossRef]
- Wu, F.; Oghuan, J.; Gitter, A.; Mena, K.D.; Brown, E.L. Wide Mismatches in the Sequences of Primers and Probes for Monkeypox Virus Diagnostic Assays. J. Med. Virol. 2023, 95, e28395. [Google Scholar] [CrossRef] [PubMed]
- Ledeker, B.M.; De Long, S.K. The Effect of Multiple Primer–Template Mismatches on Quantitative PCR Accuracy and Development of a Multi-Primer Set Assay for Accurate Quantification of pcrA Gene Sequence Variants. J. Microbiol. Meth. 2013, 94, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Sipos, R.; Székely, A.J.; Palatinszky, M.; Révész, S.; Márialigeti, K.; Nikolausz, M. Effect of Primer Mismatch, Annealing Temperature and PCR Cycle Number on 16S rRNA Gene-Targetting Bacterial Community Analysis: PCR Parameters Influencing Quantitative Bias. FEMS Microbiol. Ecol. 2007, 60, 341–350. [Google Scholar] [CrossRef]
- Brister, J.R.; Ako-adjei, D.; Bao, Y.; Blinkova, O. NCBI Viral Genomes Resource. Nucleic Acids Res. 2015, 43, D571–D577. [Google Scholar] [CrossRef]
- Jang, Y.R.; Lee, M.; Shin, H.; Kim, J.-W.; Choi, M.; Kim, Y.M.; Lee, M.J.; Kim, J.; Na, H.K.; Kim, J.Y. The First Case of Monkeypox in the Republic of Korea. J. Korean Med. Sci. 2022, 37, e224. [Google Scholar] [CrossRef]
- Damaso, C.R.; Esposito, J.J.; Condit, R.C.; Moussatché, N. An Emergent Poxvirus from Humans and Cattle in Rio de Janeiro State: Cantagalo Virus May Derive from Brazilian Smallpox Vaccine. Virology 2000, 277, 439–449. [Google Scholar] [CrossRef]
- Pan American Health Organization; World Health Organization. Laboratory Guidelines for the Detection and Diagnosis of Monkeypox Virus Infection. 2022. Pan American Health Organization; World Health Organization. Available online: https://www.paho.org/en/documents/laboratory-guidelines-detection-and-diagnosis-monkeypox-virus-infection-2-september-2022 (accessed on 2 June 2023).
- Centers for Disease Control & Prevention Poxvirus & Rabies Branch (PRB). Test Procedure: Monkeypox Virus Generic Real-Time PCR Test; Centers for Disease Control & Prevention Poxvirus & Rabies Branch (PRB); 2022. Available online: https://www.cdc.gov/poxvirus/mpox/pdf/PCR-Diagnostic-Protocol-508.pdf (accessed on 1 July 2023).
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A Versatile Open Source Tool for Metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef]
- Team, R.D.C. A Language and Environment for Statistical Computing. 2009. Available online: http://www.r-project.org (accessed on 21 October 2022).
- Brázda, V.; Kolomazník, J.; Lýsek, J.; Hároníková, L.; Coufal, J.; Št’astný, J. Palindrome Analyser—A New Web-Based Server for Predicting and Evaluating Inverted Repeats in Nucleotide Sequences. Biochem. Bioph. Res. Commu. 2016, 478, 1739–1745. [Google Scholar] [CrossRef] [PubMed]
- Pockrandt, C.; Alzamel, M.; Iliopoulos, C.S.; Reinert, K. GenMap: Ultra-Fast Computation of Genome Mappability. Bioinformatics 2020, 36, 3687–3692. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Venter, E.; Yooseph, S.; Stockwell, T.B.; Eckerle, L.D.; Denison, M.R.; Spiro, D.J.; Methé, B.A. ANDES: Statistical Tools for the ANalyses of DEep Sequencing. BMC Res. Notes 2010, 3, 199. [Google Scholar] [CrossRef]
- Esposito, J.J.; Knight, J.C. Orthopoxvirus DNA: A Comparison of Restriction Profiles and Maps. Virology 1985, 143, 230–251. [Google Scholar] [CrossRef] [PubMed]
- Nakazawa, Y.; Mauldin, M.; Emerson, G.; Reynolds, M.; Lash, R.; Gao, J.; Zhao, H.; Li, Y.; Muyembe, J.-J.; Kingebeni, P.; et al. A Phylogeographic Investigation of African Monkeypox. Viruses 2015, 7, 2168–2184. [Google Scholar] [CrossRef] [PubMed]
- Gener, A.R. Just Saiyan: Tail-Trimming Human Monkeypox Virus Assemblies Emphasizes Resolvable Regions in Inverted Terminal Repeats to Improve the Resolution of Reference and Production Genomes for Genomic Surveillance. medRxiv. 2022. Available online: https://www.medrxiv.org/content/10.1101/2022.09.06.22279633v1 (accessed on 2 July 2023).
- Gubser, C.; Smith, G.L. The Sequence of Camelpox Virus Shows It Is Most Closely Related to Variola Virus, the Cause of Smallpox. J. Gen. Virol. 2002, 83, 855–872. [Google Scholar] [CrossRef]
- Garrigues, J.M.; Hemarajata, P.; Lucero, B.; Alarcón, J.; Ransohoff, H.; Marutani, A.N.; Kim, M.; Marlowe, E.M.; Realegeno, S.E.; Kagan, R.M.; et al. Identification of Human Monkeypox Virus Genome Deletions That Impact Diagnostic Assays. J. Clin. Microbiol. 2022, 60, e01655-22. [Google Scholar] [CrossRef]
- Peiró-Mestres, A.; Fuertes, I.; Camprubí-Ferrer, D.; Marcos, M.Á.; Vilella, A.; Navarro, M.; Rodriguez-Elena, L.; Riera, J.; Català, A.; Martínez, M.J.; et al. Frequent Detection of Monkeypox Virus DNA in Saliva, Semen, and Other Clinical Samples from 12 Patients, Barcelona, Spain, May to June 2022. Eurosurveillance 2022, 27, 2200503. [Google Scholar] [CrossRef]
- Gigante, C.M.; Plumb, M.; Ruprecht, A.; Zhao, H.; Wicker, V.; Wilkins, K.; Matheny, A.; Khan, T.; Davidson, W.; Sheth, M.; et al. Genomic Deletions and Rearrangements in Monkeypox Virus from the 2022 Outbreak, USA. Genomics. 2022. Available online: https://www.biorxiv.org/content/10.1101/2022.09.16.508251v1 (accessed on 3 July 2023).
Primer Name; Target Gene Name | Orthopoxvirus Genes (OPG) | Primer Length | GC Content † | Amplicon Length * | ||
---|---|---|---|---|---|---|
Forward | Reverse | Probe | ||||
E9L; DNA polymerase | OPG071 | 23 | 28 | 32 | 37.25% | 101 |
B6R; EEV type-I membrane glycoprotein | OPG190 | 28 | 23 | 14 | 37.25% | 83 |
G2R_G; Crm-B secreted TNF-alpha-receptor-like protein | OPG002 | 26 | 24 | 30 | 38.00% | 90 |
G2R_WA; Crm-B secreted TNF-alpha-receptor-like protein | OPG002 | 20 | 23 | 26 | 46.51% | 82/85 |
C3L; Complement control protein | OPG032 | 24 | 24 | 30 | 39.58% | 100/N/A |
B7R; Ankyrin-like protein | OPG191 | 22 | 23 | 28 | 40.00% | 99 |
O2L; NFkB inhibitor | OPG038 | 20 | 22 | 25 | 50.00% | 96 |
F3L_M; Double-stranded RNA binding protein | OPG065 | 25 | 23 | 25 | 43.75% | 79 |
B2R_S; Schlafen | OPG188 | 19 | 22 | 27 | 34.15% | 130 |
OPV; Viral core cysteine proteinase | OPG083 | 24 | 26 | 20 | 36.00% | 129 |
F3L_K; Double-stranded RNA binding protein | OPG065 | 22 | 21 | 20 | 48.84% | 107/106 |
N3R; Brix domain protein | OPG016 | 26 | 25 | 21 | 37.25% | 139 |
OPX; DNA polymerase | OPG071 | 22 | 26 | 29 | 33.33% | 52/87 |
A4L; A5L protein-like | OPG130 | 19 | 18 | 29 | 59.46% | 115/217 |
A39R; IEV transmembrane phosphoprotein | OPG164 | 22 | 19 | N/A | 48.78% | 70 |
B2R_R; Schlafen | OPG188 | 17 | 17 | N/A | 38.24% | 406 |
ATI; No overlapping gene | No overlapping | 16 | 18 | N/A | 32.35% | 1067/ 1545 |
HA; Hemagglutinin | OPG185 | 21 | 20 | N/A | 36.59% | 1176/ 1175 |
Primer | Perfect Alignment | Partial Alignments (≤3 bp Mismatches) | Predominant Partial Mismatch Position | Total Mismatches | Partial Alignment (>3 bp Forward, Reverse, or Probe Mismatches) | FWD or REV Alignment Containing Ambiguous Nucleotides | Missing Acceptable Alignments from Either FWD or REV | Missing Acceptable Alignments from PROBE |
---|---|---|---|---|---|---|---|---|
A39R | 52 | 4135 | 19th position on the forward primer | 1023 | 1 | 724 | 298 | - |
A4L | - | 5178 | 1st position of the reverse primer | 32 | - | 16 | 11 | 5 |
ATI | - | 5190 | 1st position on the reverse primer | 20 | 14 | 1 | 5 | - |
B2R_R | 79 | 4987 | 14th position on the forward primer | 144 | 2 | 79 | 63 | - |
B2R_S | - | 5199 | 16th position of the probe | 11 | - | 5 | 5 | 1 |
B6R | 52 | 5104 | 1st position of the probe | 54 | - | 18 | 34 | 2 |
B7R | 78 | 5114 | 10th position of the probe | 18 | - | 2 | 16 | - |
C3L | 51 | - | N/A | 5159 | - | 47 | 5100 | 12 |
E9L | 5163 | 1 | N/A | 46 | - | 13 | 26 | 7 |
F3L_K | 51 | 5146 | 1st position of the reverse primer | 13 | 1 | 7 | 4 | 1 |
F3L_M | 5182 | 17 | N/A | 11 | - | 6 | 5 | - |
G2R_G | 52 | 4951 | 6th position of the forward primer 17th position of the reverse primer | 207 | 9 | 114 | 68 | 16 |
G2R_WA | 5012 | 2 | N/A | 196 | - | - | 90 | 106 |
HA | 5029 | 29 | N/A | 152 | 1 | 57 | 94 | - |
N3R | 72 | 4695 | 12th position of the probe | 443 | - | 72 | 367 | 4 |
O2L | 52 | 5126 | 18th position of the probe | 32 | 18 | 3 | 7 | 4 |
OPV | 163 | 5003 | 26th position of the reverse primer | 44 | 1 | 16 | 14 | 13 |
OPX | - | 5196 | 11th position of the forward primer 12th position of the reverse primer | 14 | - | 10 | 2 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, K.; Brochu, H.N.; Zhang, Q.; Williams, J.D.; Iyer, L.K. An In Silico Analysis of PCR-Based Monkeypox Virus Detection Assays: A Case Study for Ongoing Clinical Surveillance. Viruses 2023, 15, 2327. https://doi.org/10.3390/v15122327
Song K, Brochu HN, Zhang Q, Williams JD, Iyer LK. An In Silico Analysis of PCR-Based Monkeypox Virus Detection Assays: A Case Study for Ongoing Clinical Surveillance. Viruses. 2023; 15(12):2327. https://doi.org/10.3390/v15122327
Chicago/Turabian StyleSong, Kuncheng, Hayden N. Brochu, Qimin Zhang, Jonathan D. Williams, and Lakshmanan K. Iyer. 2023. "An In Silico Analysis of PCR-Based Monkeypox Virus Detection Assays: A Case Study for Ongoing Clinical Surveillance" Viruses 15, no. 12: 2327. https://doi.org/10.3390/v15122327
APA StyleSong, K., Brochu, H. N., Zhang, Q., Williams, J. D., & Iyer, L. K. (2023). An In Silico Analysis of PCR-Based Monkeypox Virus Detection Assays: A Case Study for Ongoing Clinical Surveillance. Viruses, 15(12), 2327. https://doi.org/10.3390/v15122327