Pediatric Systemic Lupus Erythematous in COVID-19 Era
Abstract
:1. Introduction
2. Epidemiology and Risk Factors for COVID-19
3. Pediatric SLE Onset following COVID-19
4. Pediatric SLE and COVID-19 Vaccines
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aringer, M.; Costenbader, K.; Daikh, D.; Brinks, R.; Mosca, M.; Ramsey-Goldman, R.; Smolen, J.S.; Wofsy, D.; Boumpas, D.T.; Kamen, D.L.; et al. 2019 European League Against Rheumatism/American College of Rheumatology Classification Criteria for Systemic Lupus Erythematosus. Arthritis Rheumatol. 2019, 71, 1400–1412. [Google Scholar] [CrossRef] [Green Version]
- Asseri, A.A.; Al-Murayeh, R.; Abudiah, A.M.; Elgebally, E.I.; Aljaser, A.M. A case report of pediatric systemic lupus erythematosus with diffuse alveolar hemorrhage following COVID-19 infection: Causation, association, or chance? Medicine 2022, 101, e30071. [Google Scholar] [CrossRef]
- Groot, N.; Shaikhani, D.; Teng, Y.K.O.; De Leeuw, K.; Bijl, M.; Dolhain, R.J.E.M.; Zirkzee, E.; Fritsch-Stork, R.; Bultink, I.E.M.; Kamphuis, S. Long-Term Clinical Outcomes in a Cohort of Adults with Childhood-Onset Systemic Lupus Erythematosus. Arthritis Rheumatol. 2019, 71, 290–301. [Google Scholar] [CrossRef]
- Tan, E.M.; Cohen, A.S.; Fries, J.F.; Masi, A.T.; Mcshane, D.J.; Rothfield, N.F.; Schaller, J.G.; Talal, N.; Winchester, R.J. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1982, 25, 1271–1277. [Google Scholar] [CrossRef]
- Vara, E.; Gilbert, M.; Ruth, N.M. Health disparities in outcomes of pediatric systemic lupus erythematosus. Front Pediatr. 2022, 10, 879208. [Google Scholar] [CrossRef]
- Novelli, L.; Motta, F.; De Santis, M.; Ansari, A.A.; Gershwin, M.E.; Selmi, C. The JANUS of chronic inflammatory and autoimmune diseases onset during COVID-19—A systematic review of the literature. J. Autoimmun. 2021, 117, 102592. [Google Scholar] [CrossRef]
- Sacchi, M.C.; Tamiazzo, S.; Stobbione, P.; Agatea, L.; De Gaspari, P.; Stecca, A.; Lauritano, E.C.; Roveta, A.; Tozzoli, R.; Guaschino, R. SARS-CoV-2 infection as a trigger of autoimmune response. Clin. Transl. Sci. 2021, 14, 898–907. [Google Scholar] [CrossRef]
- Nikolopoulou, G.B.; Maltezou, H.C. COVID-19 in Children: Where do we Stand? Arch. Med. Res. 2022, 53, 1–8. [Google Scholar] [CrossRef]
- Chaiyakulsil, C.; Sritipsukho, P.; Satdhabudha, A.; Bunjoungmanee, P.; Tangsathapornpong, A.; Sinlapamongkolkul, P.; Sritipsukho, N. An epidemiological study of pediatric COVID-19 in the era of the variant of concern. PLoS ONE 2022, 17, e0267035. [Google Scholar] [CrossRef]
- WHO Dashboard COVID-19 Cases and Deaths. Available online: https://app.powerbi.com/view?r=eyJrIjoiYWRiZWVkNWUtNmM0Ni00MDAwLTljYWMtN2EwNTM3YjQzYmRmIiwidCI6ImY2MTBjMGI3LWJkMjQtNGIzOS04MTBiLTNkYzI4MGFmYjU5MCIsImMiOjh9 (accessed on 25 November 2022).
- Dong, Y.; Mo, X.; Hu, Y.; Qi, X.; Jiang, F.; Jiang, Z.; Tong, S. Epidemiology of COVID-19 Among Children in China. Pediatrics 2020, 145, e20200702. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (2021) Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID 19). Available online: https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/people-with-medical-conditions.html. (accessed on 25 November 2022).
- Tay, M.Z.; Poh, C.M.; Rénia, L.; MacAry, P.A.; Ng, L.F.P. The trinity of COVID-19: Immunity, inflammation and intervention. Nat. Rev. Immunol. 2020, 20, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Ugarte-Gil, M.F.; Alarcón, G.S.; Izadi, Z.; Duarte-García, A.; Reátegui-Sokolova, C.; Clarke, A.E.; Wise, L.; Pons-Estel, G.J.; Santos, M.J.; Bernatsky, S.; et al. Characteristics associated with poor COVID-19 outcomes in individuals with systemic lupus erythematosus: Data from the COVID-19 Global Rheumatology Alliance. Ann. Rheum. Dis. 2022, 81, 970–978. [Google Scholar] [CrossRef] [PubMed]
- Udaondo, C.; Millán-Longo, C.; Permuy, C.; Valladares, L.; Falces-Romero, I.; Muñoz-Gómez, C.; Morales-Higuera, M.; Alcobendas, R.; Remesal, A.; Murias, S.; et al. Clinical course and seroprevalence of COVID-19 in children with rheumatic diseases-cross-sectional study from a reference centre in Spain. Clin. Rheumatol. 2022, 41, 1779–1784. [Google Scholar] [CrossRef] [PubMed]
- Mehta, P.; Gasparyan, A.Y.; Zimba, O.; Kitas, G.D. Systemic lupus erythematosus in the light of the COVID-19 pandemic: Infection, vaccination, and impact on disease management. Clin. Rheumatol. 2022, 41, 2893–2910. [Google Scholar] [CrossRef] [PubMed]
- Gianfrancesco, M.; Hyrich, K.L.; Al-Adely, S.; Carmona, L.; Danila, M.I.; Gossec, L.; Izadi, Z.; Jacobsohn, L.; Katz, P.; Lawson-Tovey, S.; et al. Characteristics associated with hospitalisation for COVID-19 in people with rheumatic disease: Data from the COVID-19 Global Rheumatology Alliance physician-reported registry. Ann. Rheum. Dis. 2020, 79, 859–866. [Google Scholar] [CrossRef]
- Kearsley-Fleet, L.; Chang, M.L.; Lawson-Tovey, S.; Costello, R.; Fingerhutová, Š.; Švestková, N.; Belot, A.; Aeschlimann, F.A.; Melki, I.; Koné-Paut, I.; et al. Outcomes of SARS-CoV-2 infection among children and young people with pre-existing rheumatic and musculoskeletal diseases. Ann. Rheum. Dis. 2021, 80, 872–873. [Google Scholar] [CrossRef]
- Quintero, E.T.; Pongutá, A.C.M.; da Silva, E.A.B.; Olivella, J.; Silvera, A.A.; Aragón, C.; Vásquez, L.; Collazos, E.; Vigles, K.O.; Martínez, K.; et al. SARS-CoV-2 y sındrome postcovid-19 en reumatologıa pediatrica: Una revision exploratoria. Rev. Colomb. Reumatol. 2022. [Google Scholar] [CrossRef]
- Haslak, F.; Ozbey, D.; Yildiz, M.; Adrovic, A.; Sahin, S.; Koker, O.; Aliyeva, A.; Guliyeva, V.; Yalcin, G.; Inanli, G.; et al. Asymptomatic SARS-CoV-2 seropositivity: Patients with childhood-onset rheumatic diseases versus healthy children. Clin. Rheumatol. 2022, 41, 1523–1533. [Google Scholar] [CrossRef]
- Zheng, Y.Q.; Li, H.J.; Chen, L.; Lin, S.P. Immunogenicity of inactivated COVID-19 vaccine in patients with autoimmune inflammatory rheumatic diseases. Sci. Rep. 2022, 12, 17955. [Google Scholar] [CrossRef]
- Gendebien, Z.; von Frenckell, C.; Ribbens, C.; André, B.; Thys, M.; Gangolf, M.; Seidel, L.; Malaise, M.G.; Malaise, O. Systematic analysis of COVID-19 infection and symptoms in a systemic lupus erythematosus population: Correlation with disease characteristics, hydroxychloroquine use and immunosuppressive treatments. Ann. Rheum. Dis. 2021, 80, e94. [Google Scholar] [CrossRef]
- Curtis, J.R.; Johnson, S.R.; Anthony, D.D.; Arasaratnam, R.J.; Baden, L.R.; Bass, A.R.; Calabrese, C.; Gravallese, E.M.; Harpaz, R.; Kroger, A.; et al. American College of Rheumatology Guidance for COVID-19 Vaccination in Patients with Rheumatic and Musculoskeletal Diseases: Version 4. Arthritis Rheumatol. 2022, 74, e21–e36. [Google Scholar] [CrossRef] [PubMed]
- Bachiller-Corral, J.; Boteanu, A.; Garcia-Villanueva, M.J.; de la Puente, C.; Revenga, M.; Diaz-Miguel, M.C.; Rodriguez-Garcia, A.; Morell-Hita, J.L.; Valero, M.; Larena, C.; et al. Risk of severe COVID-19 infection in patients with inflammatory rheumatic diseases. J. Rheumatol. 2021, 48, 1098–1102. [Google Scholar] [CrossRef] [PubMed]
- Filocamo, G.; Minoia, F.; Carbogno, S.; Costi, S.; Romano, M.; Cimaz, R. Pediatric Rheumatology Group of the Milan Area. Absence of severe complications from SARS-CoV-2 infection in children with rheumatic diseases treated with biologic drugs. J. Rheumatol. 2021, 48, 1343–1344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marques, C.D.L.; Kakehasi, A.M.; Pinheiro, M.M.; Mota, L.M.H.; Albuquerque, C.P.; Silva, C.R.; Santos, G.P.J.; Reis-Neto, E.T.; Matos, P.; Devide, G.; et al. High levels of immunosuppression are related to unfavourable outcomes in hospitalised patients with rheumatic diseases and COVID-19: First results of ReumaCoV Brasil registry. RMD Open 2021, 7, e001461. [Google Scholar] [CrossRef] [PubMed]
- Pimentel-Quiroz, V.R.; Ugarte-Gil, M.F.; Harvey, G.; Wojdyla, D.; Pons-Estel, G.; Quintana, R.; Esposto, A.; García, M.A.; Catoggio, L.J.; Cardiel, M.H.; et al. Factors predictive of serious infections over time in systemic lupus erythematosus patients: Data from a multi-ethnic, multi-national, Latin American lupus cohort. Lupus 2019, 28, 1101–1110. [Google Scholar] [CrossRef]
- Gupta, M.; Balachandran, H.; Louie, R.H.Y.; Li, H.; Agapiou, D.; Keoshkerian, E.; Christ, D.; Rawlinson, W.; Mina, M.M.; Post, J.J.; et al. High activation levels maintained in receptor-binding domain-specific memory B cells in people with severe coronavirus disease 2019. Immunol. Cell Biol. 2022. [Google Scholar] [CrossRef]
- Cordtz, R.; Kristensen, S.; Dalgaard, L.P.H.; Westermann, R.; Duch, K.; Lindhardsen, J.; Torp-Pedersen, C.; Dreyer, L. Incidence of COVID-19 Hospitalisation in Patients with Systemic Lupus Erythematosus: A Nationwide Cohort Study from Denmark. J. Clin. Med. 2021, 10, 3842. [Google Scholar] [CrossRef]
- Gautret, P.; Lagier, J.C.; Parola, P.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo, V.; Vieira, V.E.; Dupont, H.T.; et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents 2020, 57, 106243. [Google Scholar] [CrossRef]
- Kim, A.H.; Sparks, J.A.; Liew, J.W.; Putman, M.S.; Berenbaum, F.; Duarte-García, A.; Graef, E.R.; Korsten, P.; Sattui, S.E.; Sirotich, E.; et al. A rush to judgment? Rapid reporting and dissemination of results and its consequences regarding the use of hydroxychloroquine for COVID-19. Ann. Intern. Med. 2020, 172, 819–821. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, A.; Oliveira, E.S.A.; Bettencourt, P. Chronic treatment with hydroxychloroquine and SARS-CoV-2 infection. J. Med. Virol. 2021, 93, 755–759. [Google Scholar] [CrossRef]
- Cifuentes, F.T.; Callejo, Á.L.; Peláez, M.J.T.; Pulido, O.R.; Aragón, M.R.M.; Urrusuno, R.F.; Carreras, M.I.M.; Esteban, M.I.M.; Sánchez, V.M.; Bonilla, A.G.; et al. Incidence of COVID-19 in patients under chronic treatment with hydroxychloroquine. Med. Clin. 2021, 156, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Rentsch, C.T.; DeVito, N.J.; MacKenna, B.; Morton, C.E.; Bhaskaran, K.; Brown, J.P.; Schultze, A.; Hulme, W.J.; Croker, R.; Walker, A.J.; et al. Effect of pre-exposure use of hydroxychloroquine on COVID-19 mortality: A population-based cohort study in patients with rheumatoid arthritis or systemic lupus erythematosus using the OpenSAFELY platform. Lancet Rheumatol. 2021, 3, e19–e27. [Google Scholar] [CrossRef] [PubMed]
- Gracia-Ramos, A.E.; Martin-Nares, E.; Hernández-Molina, G. New Onset of Autoimmune Diseases Following COVID-19 Diagnosis. Cells 2021, 10, 3592. [Google Scholar] [CrossRef] [PubMed]
- Woodruff, M.C.; Ramonell, R.P.; Nguyen, D.C.; Cashman, K.S.; Saini, A.S.; Haddad, N.S.; Ley, A.M.; Kyu, S.; Howell, J.C.; Ozturk, T.; et al. Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in COVID-19. Nat. Immunol. 2020, 21, 1506–1516. [Google Scholar] [CrossRef]
- Chen, S.; Guan, F.; Candotti, F.; Benlagha, K.; Camara, N.O.S.; Herrada, A.A.; James, L.K.; Lei, J.; Miller, H.; Kubo, M.; et al. The role of B cells in COVID-19 infection and vaccination. Front. Immunol. 2022, 13, 988536. [Google Scholar] [CrossRef]
- Rönnblom, L. The type I interferon system in the etiopathogenesis of autoimmune diseases. Upsala J. Med. Sci. 2011, 116, 227–237. [Google Scholar] [CrossRef]
- Vista, E.S.; Weisman, M.H.; Ishimori, M.L.; Chen, H.; Bourn, R.L.; Bruner, B.F.; Hamijoyo, L.; Tanangunan, R.D.; Gal, N.J.; Robertson, J.M.; et al. Strong viral associations with SLE among Filipinos. Lupus Sci. Med. 2017, 4, e000214. [Google Scholar] [CrossRef] [Green Version]
- Mahroum, N.; Hejly, A.; Tiosano, S.; Gendelman, O.; Comaneshter, D.; Cohen, A.D.; Amital, H. Chronic hepatitis C viral infection among SLE patients: The significance of coexistence. Immunol. Res. 2017, 65, 477–481. [Google Scholar] [CrossRef]
- Bettiol, C.O.; Ntagerwa, J.; De Greef, A.; Tuerlinckx, D.; Boutsen, Y. Possible Case of Children Onset Systemic Lupus Erythematosus Triggered by Covid-19. Res Sq. 2020, 1–9. [Google Scholar] [CrossRef]
- Maram, K.P.; Paturi, V.R.R.; Alla, L.S.; Bhagavatula, M.K. COVID-19 triggered systemic lupus erythematosus in a child: A case report. Int. J. Contemp. Pediatr. 2021, 8, 1304–1306. [Google Scholar] [CrossRef]
- Rauf, A.; Thekkudan, S.F.; Mampilly, N.; Vijayan, A. Childhood-onset systemic lupus erythematosus, probably triggered by severe acute respiratory syndrome coronavirus 2 infection, presenting with autoimmune haemolytic anaemia. Curr. Med. Res. Pract. 2022, 12, 235. [Google Scholar] [CrossRef]
- Ramachandran, L.; Dontaraju, V.S.; Troyer, J.; Sahota, J. New onset systemic lupus erythematosus after COVID-19 infection: A case report. AME Case Rep. 2022, 6, 14. [Google Scholar] [CrossRef]
- Zamani, B.; Taba, S.-M.M.; Shayestehpour, M. Systemic lupus erythematosus manifestation following COVID-19: A case report. J. Med. Case Rep. 2021, 15, 29. [Google Scholar] [CrossRef] [PubMed]
- Bonometti, R.; Sacchi, M.C.; Stobbione, P.; Lauritano, E.C.; Tamiazzo, S.; Marchegiani, A.; Novara, E.; Molinaro, E.; Benedetti, I.; Massone, L.; et al. The first case of systemic lupus erythematosus (SLE) triggered by COVID-19 infection. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 9695–9697. [Google Scholar] [PubMed]
- CDC. COVID-19 Vaccine Recommendations for Children and Teens. Available online: https://www.cdc.gov/coronavirus/2019-ncov/vaccines/vaccines-children-teens.html (accessed on 25 November 2022).
- COVID-19 Vaccines for People Who Are Moderately or Severely Immunocompromised. Available online: https://www.cdc.gov/coronavirus/2019-ncov/vaccines/recommendations/immuno.html (accessed on 25 November 2022).
- World Health Organization (WHO) (2022) Coronavirus (COVID-19) Vaccine for Children Aged 5 to 15. Available online: https://www.nhs.uk/conditions/coronavirus-covid-19/coronavirus-vaccination/coronavirus-covid-19-vaccination-for-children/coronavirus-covid-19-vaccine-for-children-aged-5-to-15/ (accessed on 25 November 2022).
- National Institute for Health and Care Excellence (NICE). COVID-19 Vaccines. Available online: https://www.nice.org.uk/guidance/conditions-and-diseases/respiratory-conditions/covid19 (accessed on 25 November 2022).
- Paediatric Rheumatology European Association. Guidelines and Recommendations. PRES Update Regarding COVID-19 Vaccination in Children with Rheumatic Diseases. Available online: https://www.pres.eu/clinical-affairs/guidelines.html (accessed on 25 November 2022).
- Mason, A.; Anver, H.; Lwin, M.; Holroyd, C.; Faust, S.N.; Edwards, C.J. Lupus, vaccinations and COVID-19: What we know now. Lupus 2021, 30, 1541–1552. [Google Scholar] [CrossRef]
- Garcia-Cirera, S.; Calvet, J.; Berenguer-Llergo, A.; Pradenas, E.; Vilaltella, M.L.; Galisteo, C.; Blanco, J.; Masmitjà, J.G. Glucocorticoids’ treatment impairs the medium-term immunogenic response to SARS-CoV-2 mRNA vaccines in Systemic Lupus Erythematosus patients. Sci. Rep. 2022, 12, 14772. [Google Scholar] [CrossRef]
- Zheng, C.; Shao, W.; Chen, X.; Zhang, B.; Wang, G.; Zhang, W. Real-world effectiveness of COVID-19 vaccines: A literature review and meta-analysis. Int. J. Infect. Dis. 2022, 114, 252–260. [Google Scholar] [CrossRef]
- Embi, P.J.; Levy, M.E.; Naleway, A.L.; Patel, P.; Gaglani, M.; Natarajan, K.; Dascomb, K.; Ong, T.C.; Klein, N.P.; Liao, I.C.; et al. Effectiveness of 2-Dose Vaccination with mRNA COVID-19 Vaccines Against COVID-19-Associated Hospitalizations Among Immunocompromised Adults—Nine States, January-September 2021. Morb. Mortal. Wkly. Rep. 2021, 70, 1553–1559. [Google Scholar] [CrossRef]
- Luxi, N.; Giovanazzi, A.; Capuano, A.; Crisafulli, S.; Cutroneo, P.M.; Fantini, M.P.; Ferrajolo, C.; Moretti, U.; Poluzzi, E.; Raschi, E.; et al. COVID-19 Vaccination in Pregnancy, Paediatrics, Immunocompromised Patients, and Persons with History of Allergy or Prior SARS-CoV-2 Infection: Overview of Current Recommendations and Pre- and Post-Marketing Evidence for Vaccine Efficacy and Safety. Drug Saf. 2021, 44, 1247–1269. [Google Scholar] [CrossRef]
- Deepak, P.; Kim, W.; Paley, M.A.; Yang, M.; Carvidi, A.B.; Demissie, E.G.; El-Qunni, A.A.; Haile, A.; Huang, K.; Kinnett, B.; et al. Effect of Immunosuppression on the Immunogenicity of mRNA Vaccines to SARS-CoV-2: A Prospective Cohort Study. Ann. Intern. Med. 2021, 174, 1572–1585. [Google Scholar] [CrossRef]
- Marra MS, A.R.; Kobayashi, T.; Suzuki, H.; Alsuhaibani, M.; Tofaneto, B.M.; Bariani, L.M.; Auler, M.d.A.; Salinas, J.L.; Edmond, M.B.; Doll, M.; et al. Short-term effectiveness of COVID-19 vaccines in immunocompromised patients: A systematic literature review and meta-analysis. J. Infect. 2022, 84, 297–310. [Google Scholar] [CrossRef]
- Morgans, H.A.; Bradley, T.; Flebbe-Rehwaldt, L.; Selvarangan, R.; Bagherian, A.; Barnes, A.P.; Bass, J.; Cooper, A.M.; Fischer, R.; Kleiboeker, S.; et al. Humoral and cellular response to the COVID-19 vaccine in immunocompromised children. Pediatr. Res. 2022, 1–6. [Google Scholar] [CrossRef]
- Izmirly, P.M.; Kim, M.Y.; Samanovic, M.; Fernandez-Ruiz, R.; Ohana, S.; Deonaraine, K.K.; Engel, A.J.; Masson, M.; Xie, X.; Cornelius, A.R.; et al. Evaluation of Immune Response and Disease Status in Systemic Lupus Erythematosus Patients Following SARS-CoV-2 Vaccination. Arthritis Rheumatol. 2022, 74, 284–294. [Google Scholar] [CrossRef]
- Felten, R.; Kawka, L.; Dubois, M.; Ugarte-Gil, M.F.; Fuentes-Silva, Y.; Piga, M.; Arnaud, L. Tolerance of COVID-19 vaccination in patients with systemic lupus erythematosus: The international VACOLUP study. Lancet Rheumatol. 2021, 3, e613–e615. [Google Scholar] [CrossRef]
- Rider, L.G.; Parks, C.G.; Wilkerson, J.; Schiffenbauer, A.I.; Kwok, R.K.; Noroozi Farhadi, P.; Nazir, S.; Ritter, R.; Sirotich, E.; Kennedy, K.; et al. Baseline factors associated with self-reported disease flares following COVID-19 vaccination among adults with systemic rheumatic disease: Results from the COVID-19 global rheumatology alliance vaccine survey. Rheumatology 2022, 61, SI143–SI150. [Google Scholar] [CrossRef]
- Mok, C.C.; Chan, K.L.; Tse, S.M. Hesitancy for SARS-CoV-2 vaccines and post-vaccination flares in patients with systemic lupus erythematosus. Vaccine 2022, 40, 5959–5964. [Google Scholar] [CrossRef]
- Zavala-Flores, E.; Salcedo-Matienzo, J.; Quiroz-Alva, A.; Berrocal-Kasay, A. Side effects and flares risk after SARS-CoV-2 vaccination in patients with systemic lupus erythematosus. Clin. Rheumatol. 2022, 41, 1349–1357. [Google Scholar] [CrossRef]
- Sun, F.; Zhao, L.; Wang, H.; Zhang, D.; Chen, J.; Wang, X.; Li, T.; Ye, S. Risk factors of disease flares in a Chinese lupus cohort with low-grade disease activity. Lupus Sci. Med. 2022, 9, e000657. [Google Scholar] [CrossRef]
- Barbhaiya, M.; Levine, J.M.; Siegel, C.H.; Bykerk, V.P.; Jannat-Khah, D.; Mandl, L.A. Adverse events and disease flares after SARS-CoV-2 vaccination in patients with systemic lupus erythematosus. Clin. Rheumatol. 2022, 41, 1619–1622. [Google Scholar] [CrossRef]
- Heshin-Bekenstein, M.; Ziv, A.; Toplak, N.; Hagin, D.; Kadishevich, D.; Butbul, Y.A.; Saiag, E.; Kaufman, A.; Shefer, G.; Sharon, O.; et al. Safety and immunogenicity of BNT162b2 mRNA COVID-19 vaccine in adolescents with rheumatic diseases treated with immunomodulatory medications. Rheumatology 2022, 61, 4263–4272. [Google Scholar] [CrossRef]
- Akgün, Ö.; Çakmak, F.; Guliyeva, V.; Demirkan, F.G.; Tanatar, A.; Torun, S.H.; Çin, D.; Meşe, S.; Ağaçfidan, A.; Ayaz, N.A. Humoral response and safety of BNT162b2 mRNA vaccine in children with rheumatic diseases. Rheumatology 2022, 61, 4482–4490. [Google Scholar] [CrossRef]
- Sagy, I.; Zeller, L.; Raviv, Y.; Porges, T.; Bieber, A.; Abu-Shakra, M. New-onset systemic lupus erythematosus following BNT162b2 mRNA COVID-19 vaccine: A case series and literature review. Rheumatol. Int. 2022, 42, 2261–2266. [Google Scholar] [CrossRef]
- Hejazian, S.S.; Farnood, F.; Azar, S.A. Dysregulation of immunity in COVID-19 and SLE. Inflammopharmacology 2022, 30, 1517–1531. [Google Scholar] [CrossRef]
- Agmon-Levin, N.; Zafrir, Y.; Paz, Z.; Shilton, T.; Zandman-Goddard, G.; Shoenfeld, Y. Ten cases of systemic lupus erythematosus related to hepatitis B vaccine. Lupus 2009, 18, 1192–1197. [Google Scholar] [CrossRef]
- Gatto, M.; Agmon-Levin, N.; Soriano, A.; Manna, R.; Maoz-Segal, R.; Kivity, S.; Doria, A.; Shoenfeld, Y. Human papillomavirus vaccine and systemic lupus erythematosus. Clin. Rheumatol. 2013, 32, 1301–1307. [Google Scholar] [CrossRef]
References | Age/ Sex | COVID-19 Confirmation Test | Clinical Features | Laboratory Findings | Additional Testing | Treatment |
---|---|---|---|---|---|---|
Bettiol et al., 2020 [41] | 11/F | Negative RT-PCR, Ig M Ig G- 14 U/ml | Left palpebral oedema facial butterfly cutaneous eruption atypical papules on arms and forearms cervical adenopathy stiffness myalgia dysphagia ageusia anosmia abdominal pain pyrexia | Neutropenia Mild normocytic anemia Elevated ESR Hypergammaglobulinemia Positive ANA 1/320, anti-ds DNA ab, anti-nucleoprotein ab (nRNP/Sm, Sm, SS-A60, Ro-52, AMA M2, SRP, Rib P protein, histone, nucleosome), ANCA (1/160 dilution) Negative anti MPO, PR3 Low C3, C4 Negative hepatitis B, C, HIV, EBV, CMV, parvovirus B19, Herpes Zoster, measles, toxoplasmosis | Thoraco-abdominal CT scan: axillar and cervical adenopathy ECG: first-degree atrioventricular block Normal cardiac and abdominal ultrasound Normal cerebral CT scan Skin biopsy: connective tissue disease | IV MP one bolus-changed to Oral MP/daily HDQ daily |
Maram et al., 2021 [42] | 12/M | Positive RT-PCR 7 days before presentation | Facial puffiness pedal oedema Itchy, vesiculo-bullous skin eruption over the trunk | Gross urinary proteinuria elevated urine protein creatinine ratio Low serum albumin High cholesterol levels Positive ANA 1/80, anti-ds DNA 1/10 Low C3, C4 levels Normal ASO titer | Skin biopsy: sub-epidermal bullae with eosinophilic infiltrate | OS diuretics-poor response |
7 days later Renal biopsy: class V nephritis without tubular atrophy | 7 days later IV cyclophosphamide 750 mg/m2 every 2 weeks | |||||
Rauf et al., 2022 [43] | 12/F | Negative RT-PCR Positive IgG 21 days before presentation | Progressive fatigability Severe palor 12 h after admission Acute-onset headache, delirium, signs of meningeal irritation Swelling in the left knee joint with tenderness | Autoimmune haemolytic anaemia Peripheral smear: polychromasia with nucleated RBCs High levels of CRP, ESR, D-dimer Positive direct and indirect Coombs test with monospecific anti-human globulin card test showing anti-IgG and anti-C3d-positive | Cerebral fluid analysis: cells: 5 (all lymphocytes), glucose—100 mg/dL protein—20 mg/dL-bacterial meningitis Normal echocardiography | Neuroprotective measures antibiotics IV steroids (DXM 0.15 mg/kg/ dose 6 hourly) IV immunoglobulin (2 g/kg over 24 h) Aspirin (treatment protocol for MIS-C) One aliquot/unit of packed red blood cell transfusion |
2 days later Positive ANA, anti-ds DNA ab, anti-histone ab Low C3, C4 Negative anti-phospholipid ab, anticardiolipin and anti-beta2-glycoprotein ab | 2 days later Bone marrow smear: erythroid hyperplasia with lupus erythematosus (LE) | 2 days later IV steroids were changed to OS (prednisolone) HCQ | ||||
Asseri et al., 2022 [2] | 13/F | Positive RT-PRC 2 months before presentation | Acute respiratory failure | Anemia Negative direct Coombs test Positive indirect Coombs test Negative EBV, parvovirus B19, CMV, retroviruses, and HIV Positive ANA, anti-ds DNA ab Low C3, C4 Negative antiglomerular basement membrane ab, rheumatoid factor, antineutrophil cytoplasmic ab, proteinase-3 ab, anti-cardiolipin IgG ab, beta-2 glycoprotein ab, and anti-Smith ab | Chest X-ray: bilateral consolidation silhouetting bilateral hemidiaphragm and cardiac borders Chest CT scan: bilateral consolidation and ground-glass appearance Normal echocardiography Flexible bronchoscopy- BAL: blood-stained fluid and yielded abundant hemosiderin-laden macrophages | IV bolus MP broad-spectrum antibiotics supportive measures- poor outcome 6 sessions of plasma exchange with maintenance MP (2 mg/kg/d) Discharge: OS (prednisolone) HCQ AZA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lupu, A.; Miron, I.C.; Gavrilovici, C.; Raileanu, A.A.; Starcea, I.M.; Ioniuc, I.; Azoicai, A.; Mocanu, A.; Butnariu, L.I.; Dragan, F.; et al. Pediatric Systemic Lupus Erythematous in COVID-19 Era. Viruses 2023, 15, 272. https://doi.org/10.3390/v15020272
Lupu A, Miron IC, Gavrilovici C, Raileanu AA, Starcea IM, Ioniuc I, Azoicai A, Mocanu A, Butnariu LI, Dragan F, et al. Pediatric Systemic Lupus Erythematous in COVID-19 Era. Viruses. 2023; 15(2):272. https://doi.org/10.3390/v15020272
Chicago/Turabian StyleLupu, Ancuta, Ingrith Crenguta Miron, Cristina Gavrilovici, Anca Adam Raileanu, Iuliana Magdalena Starcea, Ileana Ioniuc, Alice Azoicai, Adriana Mocanu, Lacramioara Ionela Butnariu, Felicia Dragan, and et al. 2023. "Pediatric Systemic Lupus Erythematous in COVID-19 Era" Viruses 15, no. 2: 272. https://doi.org/10.3390/v15020272
APA StyleLupu, A., Miron, I. C., Gavrilovici, C., Raileanu, A. A., Starcea, I. M., Ioniuc, I., Azoicai, A., Mocanu, A., Butnariu, L. I., Dragan, F., & Lupu, V. V. (2023). Pediatric Systemic Lupus Erythematous in COVID-19 Era. Viruses, 15(2), 272. https://doi.org/10.3390/v15020272