Rapid System to Detect Variants of SARS-CoV-2 in Nasopharyngeal Swabs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Primers and Probes
2.3. PCR Conditions
2.4. Sequence Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boni, M.F.; Lemey, P.; Jiang, X.; Lam, T.T.-Y.; Perry, B.W.; Castoe, T.A.; Rambaut, A.; Robertson, D.L. Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. Nat. Microbiol. 2020, 5, 1408–1417. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.-W.; Wang, S.-F. SARS-CoV-2 Entry Related Viral and Host Genetic Variations: Implications on COVID-19 Severity, Immune Escape, and Infectivity. Int. J. Mol. Sci. 2021, 22, 3060. [Google Scholar] [CrossRef]
- Tillett, R.; Sevinsky, J.; Hartley, P.; Kerwin, H.; Crawford, N.; Gorzalski, A.; Laverdure, C.; Verma, S.; Rossetto, C.; Jackson, D.; et al. Genomic evidence for reinfection with SARS-CoV-2: A case study. Lancet Infect. Dis. 2020, 21, 52–58. [Google Scholar] [CrossRef]
- Amicone, A.; Borges, V.; Alves, M.J.; Isidro, J.; Zé-Zé, L.; Duarte, S.; Vieira, L.; Guiomar, R.; Gomes, J.P.; Gordo, I. Mutation rate of SARS-CoV-2 and emergence of mutators during experimental evolution. Evol. Med. Public Health 2022, 10, 142–155. [Google Scholar] [CrossRef]
- Abdool Karim, S.S.; de Oliveira, T. New SARS-CoV-2 Variants—Clinical, Public Health, and Vaccine Implications. N. Engl. J. Med. 2021, 384, 1866–1868. [Google Scholar] [CrossRef] [PubMed]
- Bakhshandeh, B.; Jahanafrooz, Z.; Abbasi, A.; Goli, M.B.; Sadeghi, M.; Mottaqi, M.S.; Zamani, M. Mutations in SARS-CoV-2; Consequences in structure, function, and pathogenicity of the virus. Microb. Pathog. 2021, 154, 104831. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control (ECDC). SARS-CoV-2-Increased Circulation of Variants of Concern and Vaccine Rollout in the EU/EEA, 14th Update; ECDC: Stockholm, Sweden, 2021. [Google Scholar]
- European Centre for Disease Prevention and Control (ECDC). SARS-CoV-2 Variants of Concern; ECDC: Stockholm, Sweden, 2021. [Google Scholar]
- PANGO Lineages. Lineage B.1.617. PANGO Lineages. 2021. Available online: https://cov-lineages.org/lineages/lineage_B.1.617.html (accessed on 20 September 2022).
- GISAID Tracking of Variants: G/452R (B.1.617+). Available online: https://www.gisaid.org/hcov19-variants/ (accessed on 25 July 2022).
- Davidson, A.D.; Williamson, M.K.; Lewis, S.; Shoemark, D.; Carroll, M.W.; Heesom, K.J.; Zambon, M.; Ellis, J.; Lewis, P.A.; Hiscox, J.A.; et al. Characterisation of the transcriptome and proteome of SARS-CoV-2 reveals a cell passage induced in-frame deletion of the furin-like cleavage site from the spike glycoprotein. Genome Med. 2020, 12, 68. [Google Scholar] [CrossRef] [PubMed]
- Lauring, A.S.; Hodcroft, E.B. Genetic Variants of SARS-CoV-2—What Do They Mean? JAMA 2021, 325, 529–531. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control (ECDC). Emergence of SARS-CoV-2 B.1.617 Variants in India and Situation in the EU/EEA. May 2021. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/Emergence-of-SARS-CoV-2-B.1.617-variants-in-India-and-situation-in-the-EUEEA.pdf (accessed on 10 February 2022).
- European Centre for Disease Prevention and Control (ECDC). Risk Assessment: Risk Related to the Spread of New SARS-CoV-2 Variants of Concern in the EU/EEA—First Update Jan 2021. Available online: https://www.ecdc.europa.eu/en/publications-data/covid-19-risk-assessment-spread-new-variants-concern-eueea-first-update (accessed on 24 February 2022).
- Chekol Abebe, E.; Tiruneh, G.; Medhin, M.; Behaile, T.; Mariam, A.; Asmamaw Dejenie, T.; Mengie Ayele, T.; Tadele Admasu, F.; Tilahun Muche, Z.; Asmare Adela, G. Mutational Pattern, Impacts and Potential Preventive Strategies of Omicron SARS-CoV-2 Variant Infection. Infect. Drug Resist. 2022, 15, 1871–1887. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Karuppanan, K.; Subramaniam, G. Omicron (BA.1) and sub-variants (BA.1.1, BA.2, and BA.3) of SARS-CoV-2 spike infectivity and pathogenicity: A comparative sequence and structural-based computational assessment. J. Med. Virol. 2022, 94, 4780–4791. [Google Scholar] [CrossRef] [PubMed]
- Desingu, P.A.; Nagarajan, K. The emergence of Omicron lineages BA.4 and BA.5, and the global spreading trend. J. Med. Virol. 2022, 94, 5077–5079. [Google Scholar] [CrossRef] [PubMed]
- Qu, P.; Evans, J.P.; Faraone, J.; Zheng, Y.M.; Carlin, C.; Anghelina, M.; Stevens, P.; Fernandez, S.; Jones, D.; Lozanski, G.; et al. Distinct Neutralizing Antibody Escape of SARS-CoV-2 Omicron Subvariants BQ.1, BQ.1.1, BA.4.6, BF.7 and BA.2.75.2. bioRxiv 2022. preprint. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. SARS-CoV-2 Variants of Concern as of 8 December 2022; ECDC: Stockholm, Sweden, 2022. [Google Scholar]
- European Centre for Disease Prevention and Control. Sequencing of SARS-CoV-2. 23 December 2020; ECDC: Stockholm, Sweden, 23 December 2020. [Google Scholar]
- Oude Munnink, B.B.; Nieuwenhuijse, D.F.; Stein, M.; O’Toole, Á.; Haverkate, M.; Mollers, M.; Kamga, S.K.; Schapendonk, C.; Pronk, M.; Lexmond, P.; et al. Rapid SARS-CoV-2 whole-genome sequencing and analysis for informed public health decision-making in the Netherlands. Nat. Med. 2020, 26, 1405–1410. [Google Scholar] [CrossRef] [PubMed]
- Maljkovic Berry, I.; Melendrez, M.C.; Bishop-Lilly, K.A.; Rutvisuttinunt, W.; Pollett, S.; Talundzic, E.; Morton, L.; Jarman, R.G. Next Generation Sequencing and Bioinformatics Methodologies for Infectious Disease Research and Public Health: Approaches, Applications, and Considerations for Development of Laboratory Capacity. J. Infect. Dis. 2019, 221, S292–S307. [Google Scholar] [CrossRef] [PubMed]
- WHO. Sequencing of SARS-CoV-2A Guide to Implementation for Maximum Impact on Public Health, 8 January 2021. Available online: https://www.who.int/publications/i/item/9789240018440 (accessed on 25 July 2022).
- Lambisia, A.W.; Mohammed, K.S.; Makori, T.O.; Ndwiga, L.; Mburu, M.W.; Morobe, J.M.; Moraa, E.O.; Musyoki, J.; Murunga, N.; Mwangi, J.N.; et al. Optimization of the SARS-CoV-2 ARTIC Network V4 Primers and Whole Genome Sequencing Protocol. Front. Med. 2022, 9, 836728. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Gu, W.; Federman, S.; du Plessis, L.; Pybus, O.G.; Faria, N.R.; Wang, C.; Yu, G.; Bushnell, B.; Pan, C.Y.; et al. Genomic surveillance reveals multiple introductions of SARS-CoV-2 into Northern California. Science 2020, 31, 582–587. [Google Scholar] [CrossRef] [PubMed]
- Mei, H.; Kosakovsky Pond, S.; Nekrutenko, A. Stepwise Evolution and Exceptional Conservation of ORF1a/b Overlap in Coronaviruses. Mol. Biol. Evol. 2021, 38, 5678–5684. [Google Scholar] [CrossRef] [PubMed]
- Favaro, M.; Mattina, W.; Pistoia, E.S.; Gaziano, R.; Di Francesco, P.; Middleton, S.; D’Angelo, S.; Altarozzi, T.; Fontana, C. A new system in qualitative RT-PCR detecting SARS-CoV-2 in biological samples: An Italian experience. Sci. Rep. 2021, 11, 18955. [Google Scholar] [CrossRef]
- Detection of SARS-CoV-2 Omicron BA.4/BA.5 Subvariants through Real-Time PCR. NIH, V1. Available online: https://www.nih.org.pk/wp-content/uploads/2022/07/Detection-of-Omicron-BA.4-BA.5-through-real-time-PCR.pdf (accessed on 3 July 2022).
- Implications of the Emergence and Spread of the SARS-CoV-2 Variants of Concern BA.4 and BA.5 for the EU/EEA. Available online: https://www.ecdc.europa.eu/en/news-events/implications-emergence-spread-sars-cov-2-variants-concern-ba4-and-ba5 (accessed on 3 July 2022).
- da Silva Francisco, R., Jr.; Benites, L.F.; Lamarca, A.P.; de Almeida, L.G.; Hansen, A.W.; Gularte, J.S.; Demoliner, M.; Gerber, A.L.; de CGuimarães, A.P.; Antunes, A.K.; et al. Pervasive transmission of E484K and emergence of VUI-NP13L with evidence of SARS-CoV-2 co-infection events by two different lineages in Rio Grande do Sul, Brazil. Virus Res. 2021, 296, 198345. [Google Scholar] [CrossRef]
- Davies, N.G.; Abbott, S.; Barnard, R.C.; Jarvis, C.I.; Kucharski, A.J.; Munday, J.D.; Pearson, C.A.B.; Russell, T.W.; Tully, D.C.; Washburne, A.D.; et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science 2021, 372, eabg3055. [Google Scholar] [CrossRef]
- Ferguson, N.; Laydon, D.; Nedjati Gilani, G.; Imai, N.; Ainslie, K.; Baguelin, M.; Bhatia, S.; Boonyasiri, A.; Cucunuba Perez, Z.; Cuomo-Dannenburg, G.; et al. Impact of Non-Pharmaceutical Interventions (NPIs) to Reduce COVID-19 Mortality and Healthcare Demand; Imperial College COVID-19 Response Team: London, UK, 2020. [Google Scholar] [CrossRef]
- Tang, J.W.; Toovey, O.; Harvey, K.N.; Hui, D. Introduction of the South African SARS-CoV-2 variant 501Y.V2 into the UK. J. Infect. 2021, 82, e8–e10. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Wu, C.; Li, X.; Song, Y.; Yao, X.; Wu, X.; Duan, Y.; Zhang, H.; Wang, Y.; Qian, Z.; et al. On the origin and continuing evolution of SARS-CoV-2. Natl. Sci. Rev. 2020, 7, 1012–1023. [Google Scholar] [CrossRef] [PubMed]
- Epidemiological Update: SARS-CoV-2 Omicron Sub-Lineages BA.4 and BA.5. Epidemiological Update 13 May 2022. Available online: https://www.ecdc.europa.eu/en/news-events/epidemiological-update-sars-cov-2-omicron-sub-lineages-ba4-and-ba5 (accessed on 14 July 2022).
- New Omicron Sub-Lineage Likely to Cause Further Increase in COVID-19 Cases. Available online: https://www.ecdc.europa.eu/en/news-events/new-omicron-sub-lineage-likely-cause-further-increase-covid-19-cases (accessed on 25 October 2022).
Primers | Sequences | Concentration of Primer and Probe in Each Reaction |
---|---|---|
Forward D 69–70 (Alpha) | 5′ GTT CCA TGC TMT CTC TGG G 3′ | 16 picomoli/µL |
Reverse 69–70 | 5′ GTG GTA AAC ACC CAA AAA TG 3′ | 8 picomoli/µL |
Forward D 25–27 (Omicron) | 5′ AAC CAG AAC TCA ATC ATA CAC 3′ | 16 picomoli/µL |
Reverse 25–27 | 5′ GTA TAG CAT GGA ACC AAG TA 3′ | 8 picomoli/µL |
Forward D 241–243 (Beta) | 5′ GGT TTC AAA CTT TAC ATA G 3′ | 4 picomoli/µL |
Reverse 241–243 | 5′ ACC AGC TGT CCA ACC TGA AG 3′ | 2 picomoli/µL |
Forward Δ 3675–3677(Alpha/Beta/Gamma) | 5′ GGT TGA TAC TAG TTT GAA GC 3′ | 0.28 picomoli/µL |
Reverse 3675–3677 | 5′ ACT CTC CTA GCA CCA TCA TCA 3′ | 0.28 picomoli/µL |
Forward D 157–158 (Delta) | 5′ AGT TGG ATG GAA AGT GGA GTT TAT | 0.56 picomoli/µL |
Reverse 157–158 | 5′ ACC CTG AGG GAG ATC ACG C | 0.56 picomoli/µL |
beta-actin F | 5′ GAG GGT GAA CCC TGC AAA AG | 2.5 picomoli/µL |
beta-actin R | 5′ CCC TCT AAG GCT GCT CAA TG | 2.5 picomoli/µL |
Probes | Labeling fluorophores | |
Alpha/Beta/Gamma probe | 5′ Cy5,5 TGC CTG CTA GTT GGG TGA TGC GT 3′ BHQ3 | 0.175 picomoli/µL |
Alpha probe | 5′ FAM TTG GTA CTA CTT TAG ATT CGA AGA3′BHQ 1 | 2.52 picomoli/µL |
Delta probe | 5′ Cy5 CTA GTG CGC CTA ATT GCA CTT TTGA 3′ BHQ3 | 0.28 picomoli/µL |
Beta probe | 5′ TxRed GTT ATT TGA CTC CTG GTG ATT 3′ BHQ2 | 2.0 picomoli/µL |
Omicron probe | 5′ FAM CAC ACG TGG TGT TTA TTA CCC TGA C 3′ BHQ1 | 4 picomoli/µL |
beta-actin probe | 5′ HEX GGT GGG GCA GTG GGG GCC ACC TTGT 3′ BHQ1 | 3 picomoli/µL |
Fluorophores | FAM | ROX | Cy5 | Cy5.5 | HEX | Variant Detected |
---|---|---|---|---|---|---|
Interpretation | Δ 69/70 and 25/27 | S Δ 241/243 | S Δ 157/158 | ORF1a Δ 3675–3677 | IC | |
Signals on each channel | POS | NEG | NEG | POS | POS | ALPHA |
NEG | POS | NEG | POS | POS | BETA | |
NEG | NEG | NEG | POS | POS | GAMMA | |
NEG | NEG | POS | NEG | POS | DELTA | |
POS | NEG | NEG | NEG | POS | OMICRON | |
NEG | NEG | NEG | NEG | POS | Wild Type or unknown variant |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Favaro, M.; Zampini, P.; Pistoia, E.S.; Gaziano, R.; Grelli, S.; Fontana, C. Rapid System to Detect Variants of SARS-CoV-2 in Nasopharyngeal Swabs. Viruses 2023, 15, 353. https://doi.org/10.3390/v15020353
Favaro M, Zampini P, Pistoia ES, Gaziano R, Grelli S, Fontana C. Rapid System to Detect Variants of SARS-CoV-2 in Nasopharyngeal Swabs. Viruses. 2023; 15(2):353. https://doi.org/10.3390/v15020353
Chicago/Turabian StyleFavaro, Marco, Paola Zampini, Enrico Salvatore Pistoia, Roberta Gaziano, Sandro Grelli, and Carla Fontana. 2023. "Rapid System to Detect Variants of SARS-CoV-2 in Nasopharyngeal Swabs" Viruses 15, no. 2: 353. https://doi.org/10.3390/v15020353
APA StyleFavaro, M., Zampini, P., Pistoia, E. S., Gaziano, R., Grelli, S., & Fontana, C. (2023). Rapid System to Detect Variants of SARS-CoV-2 in Nasopharyngeal Swabs. Viruses, 15(2), 353. https://doi.org/10.3390/v15020353