A Combined Approach for Detection of Ovine Small Ruminant Retrovirus Co-Infections
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Tissue Samples
2.2. Tissue Processing and DNA Extraction
2.3. Nested Real-Time PCR for the Proviral Detection of the Exogenous JSRV (exJSRV), CAEV and MVV
2.4. Histopathology
2.5. Immunohistochemistry (IHC)
2.6. Protein Sequence Analysis and Production of Polyclonal Antibody against the Envelope Proteins of exJSRV, CAEV and MVV
2.7. Macroscopic Examination
2.8. Histologic Categorization of Lesions
2.9. Statistical Analysis
3. Results
3.1. Macroscopic Examination
3.2. Histologic Examination
3.3. Nested Real-Time PCR for JSRV and SRLV (MVV/CAEV)
3.4. Immunohistochemical Investigations
3.4.1. JSRV
3.4.2. SRLV
3.5. Statistical Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martineau, H.M.; Cousens, C.; Imlach, S.; Dagleish, M.P.; Griffiths, D.J. Jaagsiekte Sheep Retrovirus Infects Multiple Cell Types in the Ovine Lung. J. Virol. 2011, 85, 3341–3355. [Google Scholar] [CrossRef] [Green Version]
- Gayo, E.; Polledo, L.; Balseiro, A.; Martínez, C.P.; García Iglesias, M.J.; Preziuso, S.; Rossi, G.; García Marín, J.F. Inflammatory Lesion Patterns in Target Organs of Visna/Maedi in Sheep and Their Significance in the Pathogenesis and Diagnosis of the Infection. J. Comp. Pathol. 2018, 159, 49–56. [Google Scholar] [CrossRef]
- Leroux, C.; Chastang, J.; Greenland, T.; Mornex, J.F. Genomic Heterogeneity of Small Ruminant Lentiviruses: Existence of Heterogeneous Populations in Sheep and of the Same Lentiviral Genotypes in Sheep and Goats. Arch. Virol. 1997, 142, 1125–1137. [Google Scholar] [CrossRef]
- Germain, K.; Valas, S. Distribution and Heterogeneity of Small Ruminant Lentivirus Envelope Subtypes in Naturally Infected French Sheep. Virus Res. 2006, 120, 156–162. [Google Scholar] [CrossRef]
- Pisoni, G.; Bertoni, G.; Boettcher, P.; Ponti, W.; Moroni, P. Phylogenetic Analysis of the Gag Region Encoding the Matrix Protein of Small Ruminant Lentiviruses: Comparative Analysis and Molecular Epidemiological Applications. Virus Res. 2006, 116, 159–167. [Google Scholar] [CrossRef]
- Da Cruz, J.C.M.; Singh, D.K.; Lamara, A.; Chebloune, Y. Small Ruminant Lentiviruses (SRLVs) Break the Species Barrier to Acquire New Host Range. Viruses 2013, 5, 1867–1884. [Google Scholar] [CrossRef] [Green Version]
- Anderson, L.W.; Klevjer-Anderson, P.; Liggitif, H.D. Susceptibility of Blood-Derived Monocytes and Macrophages to Caprine Arthritis-Encephalitis Virus. Infect. Immun. 1983, 41, 837–840. [Google Scholar] [CrossRef] [Green Version]
- Narayan, O.; Kennedy-Stoskopf, S.; Sheffer, D.; Griffin, D.E.; Clements, J.E. Activation of Caprine Arthritis-Encephalitis Virus Expression During Maturation of Monocytes to Macrophages. Infect. Immun. 1983, 41, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Narayan, O.; Wolinsky, J.S.; Clements, J.E.; Strandberg, J.D.; Griffin, D.E.; Cork, L.C. Slow Virus Replication: The Role of Macrophages in the Persistence and Expression of Visna Viruses of Sheep and Goats. J. Gen. Virol. 1982, 59, 345–356. [Google Scholar] [CrossRef]
- Gendelman, H.E.; Narayan, O.; Kennedy-Stoskopf, S.; Kennedy, P.G.E.; Ghotbi, Z.; Clements, J.E.; Stanley, J.; Pezeshkpour, G. Tropism of Sheep Lentiviruses for Monocytes: Susceptibility to Infection and Virus Gene Expression Increase during Maturation of Monocytes to Macrophages. J. Virol. 1986, 58, 67–74. [Google Scholar] [CrossRef]
- Ryan, S.; Tiley, L.; Mcconnell, I.; Blacklaws, B. Infection of Dendritic Cells by the Maedi-Visna Lentivirus. J. Virol. 2000, 74, 10096–10103. [Google Scholar] [CrossRef] [Green Version]
- Zink, M.C.; Yager, J.A.; Myers, J.D. Pathogenesis of Caprine Arthritis Encephalitis Virus Cellular Localization of Viral Transcripts in Tissues of Infected Goats. Am. J. Pathol. 1990, 136, 843–854. [Google Scholar]
- Lerondelle, C.; Godet, M.; Mornex, J.F. Infection of Primary Cultures of Mammary Epithelial Cells by Small Ruminant Lentiviruses. Vet. Res. 1999, 30, 467–474. [Google Scholar]
- Blacklaws, B.A.; Berriatua, E.; Torsteinsdottir, S.; Watt, N.J.; de Andres, D.; Klein, D.; Harkiss, G.D. Transmission of Small Ruminant Lentiviruses. Vet. Microbiol. 2004, 101, 199–208. [Google Scholar] [CrossRef]
- McNeilly, T.N.; Tennant, P.; Luján, L.; Pérez, M.; Harkiss, G.D. Differential Infection Efficiencies of Peripheral Lung and Tracheal Tissues in Sheep Infected with Visnal/Maedi Virus via the Respiratory Tract. J. Gen. Virol. 2007, 88, 670–679. [Google Scholar] [CrossRef]
- Niesalla, H.; McNeilly, T.N.; Ross, M.; Rhind, S.M.; Harkiss, G.D. Experimental Infection of Sheep with Visna/Maedi Virus via the Conjunctival Space. J. Gen. Virol. 2008, 89, 1329–1337. [Google Scholar] [CrossRef]
- McNeilly, T.N.; Baker, A.; Brown, J.K.; Collie, D.; MacLachlan, G.; Rhind, S.M.; Harkiss, G.D. Role of Alveolar Macrophages in Respiratory Transmission of Visna/Maedi Virus. J. Virol. 2008, 82, 1526–1536. [Google Scholar] [CrossRef] [Green Version]
- Peterhans, E.; Greenland, T.; Badiola, J.; Harkiss, G.; Bertoni, G.; Amorena, B.; Eliaszewicz, M.; Juste, R.A.; Kraßnig, R.; Lafont, J.P.; et al. Routes of Transmission and Consequences of Small Ruminant Lentiviruses (SRLVs) Infection and Eradication Schemes. Vet. Res. 2004, 35, 257–274. [Google Scholar] [CrossRef] [Green Version]
- Benavides, J.; García-Pariente, C.; Fuertes, M.; Ferreras, M.C.; García-Marín, J.F.; Juste, R.A.; Pérez, V. Maedi-Visna: The Meningoencephalitis in Naturally Occurring Cases. J. Comp. Pathol. 2009, 140, 1–11. [Google Scholar] [CrossRef]
- Minguijón, E.; Reina, R.; Pérez, M.; Polledo, L.; Villoria, M.; Ramírez, H.; Leginagoikoa, I.; Badiola, J.J.; García-Marín, J.F.; de Andrés, D.; et al. Small Ruminant Lentivirus Infections and Diseases. Vet. Microbiol. 2015, 181, 75–89. [Google Scholar] [CrossRef]
- Jeff, L.; Caswell, K.J.W. Respiratory System. In Jubb, Kennedy & Palmer’s Pathology of Domestic Animals; Elsevier: Amsterdam, The Netherlands, 2007; Volume 2, pp. 558–560. [Google Scholar]
- Salvatori, D.; González, L.; Dewar, P.; Cousens, C.; de las Heras, M.; Dalziel, R.G.; Sharp, J.M. Successful Induction of Ovine Pulmonary Adenocarcinoma in Lambs of Different Ages and Detection of Viraemia during the Preclinical Period. J. Gen. Virol. 2004, 85, 3319–3324. [Google Scholar] [CrossRef] [PubMed]
- Caporale, M.; Centorame, P.; Giovannini, A.; Sacchini, F.; di Ventura, M.; de Las Heras, M.; Palmarini, M. Infection of Lung Epithelial Cells and Induction of Pulmonary Adenocarcinoma Is Not the Most Common Outcome of Naturally Occurring JSRV Infection during the Commercial Lifespan of Sheep. Virology 2005, 338, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Grego, E.; de Meneghi, D.; Álvarez, V.; Benito, A.A.; Minguijón, E.; Ortín, A.; Mattoni, M.; Moreno, B.; Pérez de Villarreal, M.; Alberti, A.; et al. Colostrum and Milk Can Transmit Jaagsiekte Retrovirus to Lambs. Vet. Microbiol. 2008, 130, 247–257. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, D.J.; Martineau, H.M.; Cousens, C. Pathology and Pathogenesis of Ovine Pulmonary Adenocarcinoma. J. Comp. Pathol. 2010, 142, 260–283. [Google Scholar] [CrossRef] [PubMed]
- Holland, M.J.; Palmarini, M.; Garcia-Goti, M.; Gonzalez, L.; McKendrick, I.; de las Heras, M.; Sharp, J.M. Jaagsiekte Retrovirus Is Widely Distributed Both in T and B Lymphocytes and in Mononuclear Phagocytes of Sheep with Naturally and Experimentally Acquired Pulmonary Adenomatosis. J. Virol. 1999, 73, 4004–4008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, P.; Griffiths, D.; Cousens, C. Diagnosis and Control of Ovine Pulmonary Adenocarcinoma (Jaagsiekte). Practice 2013, 35, 382–397. [Google Scholar] [CrossRef]
- Mishra, S.; Kumar, P.; Dar, J.A.; George, N.; Singh, V.; Singh, R. Differential Immunohistochemical Expression of JSRV Capsid Antigen and Tumour Biomarkers in Classical and Atypical OPA: A Comparative Study. Biol. Rhythm Res. 2021, 52, 946–956. [Google Scholar] [CrossRef]
- Michiels, R.; van Mael, E.; Quinet, C.; Adjadj, N.R.; Cay, A.B.; de Regge, N. Comparative Analysis of Different Serological and Molecular Tests for the Detection of Small Ruminant Lentiviruses (Srlvs) in Belgian Sheep and Goats. Viruses 2018, 10, 696. [Google Scholar] [CrossRef] [Green Version]
- Michiels, R.; Adjadj, N.R.; de Regge, N. Phylogenetic Analysis of Belgian Small Ruminant Lentiviruses Supports Cross Species Virus Transmission and Identifies New Subtype B5 Strains. Pathogens 2020, 9, 183. [Google Scholar] [CrossRef] [Green Version]
- Thomann, B.; Falzon, L.C.; Bertoni, G.; Vogt, H.R.; Schüpbach-Regula, G.; Magouras, I. A Census to Determine the Prevalence and Risk Factors for Caprine Arthritis-Encephalitis Virus and Visna/Maedi Virus in the Swiss Goat Population. Prev. Vet. Med. 2017, 137, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Schaer, J.; Cvetnic, Z.; Sukalic, T.; Dörig, S.; Grisiger, M.; Iscaro, C.; Feliziani, F.; Pfeifer, F.; Origgi, F.; Zanoni, R.G.; et al. Evaluation of Serological Methods and a New Real-Time Nested PCR for Small Ruminant Lentiviruses. Pathogens 2022, 11, 129. [Google Scholar] [CrossRef] [PubMed]
- Palmarini, M.; Holland, M.J.; Cousens, C.; Dalziel, R.G.; Sharp, J.M. Jaagsiekte Retrovirus Establishes a Disseminated Infection of the Lymphoid Tissues of Sheep Affected by Pulmonary Adenomatosis. J. Gen. Virol. 1996, 77, 2991–2998. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.-L.; Miller, A.D. Oncogenic Transformation by the Jaagsiekte Sheep Retrovirus Envelope Protein. Oncogene 2007, 26, 789–801. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Kong, H.; Liu, Y.; Shang, Y.; Wu, B.; Liu, X. Diagnosis and Phylogenetic Analysis of Ovine Pulmonary Adenocarcinoma in China. Virus Genes 2014, 48, 64–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahari, A.; Ghannad, M.S.; Dezfoulian, O.; Rezazadeh, F.; Sadeghi-Nasab, A. Detection of Jaagsiekte Sheep Retrovirus in Apparently Healthy Sheep by Real-Time TaqMan PCR in Comparison with Histopathological Findings. J. Vet. Res. 2016, 60, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhang, Y.F.; Sun, X.L.; Liu, S.Y. Detection of Jaagsiekte Sheep Retrovirus in the Peripheral Blood during the Pre-Clinical Period of Ovine Pulmonary Adenomatosis. Genet. Mol. Res. 2016, 15, gmr.15038521. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.M.; Wolfe, A.; Cassidy, J.P.; Messam, L.M.V.L.; Moriarty, J.P.; O’Neill, R.; Fahy, C.; Connaghan, E.; Cousens, C.; Dagleish, M.P.; et al. First Confirmation by PCR of Jaagsiekte Sheep Retrovirus in Ireland and Prevalence of Ovine Pulmonary Adenocarcinoma in Adult Sheep at Slaughter. Ir. Vet. J. 2017, 70, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeMartini, J.C.; Bishop, J.V.; Allen, T.E.; Jassim, F.A.; Sharp, J.M.; de las Heras, M.; Voelker, D.R.; Carlson, J.O. Jaagsiekte Sheep Retrovirus Proviral Clone JSRV(JS7), Derived from the JS7 Lung Tumor Cell Line, Induces Ovine Pulmonary Carcinoma and Is Integrated into the Surfactant Protein A Gene. J. Virol. 2001, 75, 4239–4246. [Google Scholar] [CrossRef] [Green Version]
- Payne, A.L.; Verwoerd, D.W. A Scanning and Transmission Electron Microscopy Study of Jaagsiekte Lesions. Onderstepoort. J. Vet. Res. 1984, 51, 1–13. [Google Scholar]
- Kumar, K.; Kumar, P.; Sindhoora, K.; Valecha, S.; Kumar, R.; Singh, V.; Singh, R. Detection and Immune Cell Response of Natural Maedi Visna Virus (MVV) Infection in Indian Sheep and Goats. Microb. Pathog. 2022, 165, 105467. [Google Scholar] [CrossRef]
- Storset, A.K.; Evensen, Ø.; Rimstad, E. Immunohistochemical Identification of Caprine Arthritis-Encephalitis Virus in Paraffin-Embedded Specimens from Naturally Infected Goats. Vet. Pathol. 1997, 34, 180–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blacklaws, B.A. Small Ruminant Lentiviruses: Immunopathogenesis of Visna-Maedi and Caprine Arthritis and Encephalitis Virus. Comp. Immunol. Microbiol. Infect. Dis. 2012, 35, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Ali Al Ahmad, M.Z.; Dubreil, L.; Chatagnon, G.; Khayli, Z.; Theret, M.; Martignat, L.; Chebloune, Y.; Fieni, F. Goat Uterine Epithelial Cells Are Susceptible to Infection with Caprine Arthritis Encephalitis Virus (CAEV) in Vivo. Vet. Res. 2012, 43, 5. [Google Scholar] [CrossRef] [PubMed]
- Trier, N.; Hansen, P.; Houen, G. Peptides, Antibodies, Peptide Antibodies and More. Int. J. Mol. Sci. 2019, 20, 6289. [Google Scholar] [CrossRef] [Green Version]
- Bergamaschi, G.; Fassi, E.M.A.; Romanato, A.; D’Annessa, I.; Odinolfi, M.T.; Brambilla, D.; Damin, F.; Chiari, M.; Gori, A.; Colombo, G.; et al. Computational Analysis of Dengue Virus Envelope Protein (E) Reveals an Epitope with Flavivirus Immunodiagnostic Potential in Peptide Microarrays. Int. J. Mol. Sci. 2019, 20, 1921. [Google Scholar] [CrossRef] [Green Version]
- Pisoni, G.; Bertoni, G.; Puricelli, M.; Maccalli, M.; Moroni, P. Demonstration of Coinfection with and Recombination by Caprine Arthritis-Encephalitis Virus and Maedi-Visna Virus in Naturally Infected Goats. J. Virol. 2007, 81, 4948–4955. [Google Scholar] [CrossRef] [Green Version]
- Ramírez, H.; Reina, R.; Amorena, B.; Andrés, D.; Martínez, H. Small Ruminant Lentiviruses: Genetic Variability, Tropism and Diagnosis. Viruses 2013, 5, 1175–1207. [Google Scholar] [CrossRef] [Green Version]
- Leroux, C.; Cruz, J.C.M.; Mornex, J.-F. SRLVs: A Genetic Continuum of Lentiviral Species in Sheep and Goats with Cumulative Evidence of Cross Species Transmission. Curr. HIV Res. 2010, 8, 94–100. [Google Scholar] [CrossRef]
- Dhanda, S.K.; Vaughan, K.; Schulten, V.; Grifoni, A.; Weiskopf, D.; Sidney, J.; Peters, B.; Sette, A. Development of a Novel Clustering Tool for Linear Peptide Sequences. Immunology 2018, 155, 331–345. [Google Scholar] [CrossRef]
Antibody | Company/Item Number | Dilution | Pretreatment |
---|---|---|---|
PCK 26 1 | Novus Biologicals, USA/NB120-6401 | 1:10,000 | Pressure cooker pH9 |
Synaptophysin | Agilent Dako, USA/M077601 | 1:50 | Pressure cooker pH9 |
Iba1 | FUJIFILM Wako Pure Chemical Corporation, USA/ 019-19741 | 1:1000 | Pressure cooker pH6 |
SF-C 2 | Abcam, UK/Ab40879 | 1:4000 | Pressure cooker pH9 |
CD3 | Agilent Dako, USA/M725401 | 1:50 | Pressure cooker pH9 |
CD20 | Thermo Fisher Scientific, USA/RB-9013-P | 1:100 | Pressure cooker pH9 |
Polyclonal rabbit anti-JSRV 3 | Thermo Fisher Scientific, USA/AB3994 (customized antibody) | 1:500 | none |
Polyclonal rabbit anti-MVV 4 | Thermo Fisher Scientific, USA/AB 3989 (customized antibody) | 1:100 | Pressure cooker pH6 |
Polyclonal rabbit anti-CAEV 5 | Thermo Fisher Scientific, USA/AB3992 (customized antibody) | 1:200 | Pressure cooker pH6 |
Detection of | Number of Animals (N = 97) |
---|---|
JSRV only | 37 |
MVV only | 5 |
CAEV only | 0 |
JSRV/MVV | 6 |
JSRV/CAEV | 1 |
MVV/CAEV | 3 |
negative | 45 |
Marker | Cell Population | Small Ruminant Retrovirus Cases 1 |
---|---|---|
PCK 26 | Epithelial cells | Infected cell population in JSRV (+++), MVV (+) and CAEV (++); lymph node metastases in OPA |
Synaptophysin | Neuroendocrine cells | Not infected |
Iba1 | Macrophages | Infected cell population in JSRV (++), MVV (++) and CAEV (+) |
SP-C | Type II pneumocytes | Infected cell population in JSRV (+), MVV (+), CAEV (+) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosato, G.; Abril, C.; Hilbe, M.; Seehusen, F. A Combined Approach for Detection of Ovine Small Ruminant Retrovirus Co-Infections. Viruses 2023, 15, 376. https://doi.org/10.3390/v15020376
Rosato G, Abril C, Hilbe M, Seehusen F. A Combined Approach for Detection of Ovine Small Ruminant Retrovirus Co-Infections. Viruses. 2023; 15(2):376. https://doi.org/10.3390/v15020376
Chicago/Turabian StyleRosato, Giuliana, Carlos Abril, Monika Hilbe, and Frauke Seehusen. 2023. "A Combined Approach for Detection of Ovine Small Ruminant Retrovirus Co-Infections" Viruses 15, no. 2: 376. https://doi.org/10.3390/v15020376
APA StyleRosato, G., Abril, C., Hilbe, M., & Seehusen, F. (2023). A Combined Approach for Detection of Ovine Small Ruminant Retrovirus Co-Infections. Viruses, 15(2), 376. https://doi.org/10.3390/v15020376