Genomic High Plains Wheat Mosaic Virus Sequences from Australia: Their Phylogenetics and Evidence for Emaravirus Recombination and Reassortment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Origins and Sequencing
2.2. Sequence Analysis
3. Results
3.1. Sample Origins
3.2. Recombination
3.3. Phylogeny
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shiferaw, B.; Prasanna, B.M.; Hellin, J.; Bänziger, M. Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Secur. 2011, 3, 307–327. [Google Scholar] [CrossRef] [Green Version]
- Bockus, W.W.; Bowden, R.L.; Hunger, R.M.; Morrill, W.L.; Murray, T.D.; Smiley, R.W. (Eds.) Compendium of Wheat Diseases and Pests; American Phytopathological Society: St Paul, MN, USA, 2010; Volume 3. [Google Scholar]
- Walker, P.J.; Siddell, S.G.; Lefkowitz, E.J.; Mushegian, A.R.; Adriaenssens, E.M.; Alfenas-Zerbini, P.; Dempsey, D.M.; Dutilh, B.E.; García, M.L.; Curtis Hendrickson, R.; et al. Recent changes to virus taxonomy ratified by the International Committee on Taxonomy of Viruses (2022). Arch. Virol. 2022, 167, 2429–2440. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, T.; Hein, G.L.; Jensen, S.G. Mixed infection of hard red winter wheat with high plains virus and wheat streak mosaic virus from wheat curl mites in Nebraska. Plant Dis. 1998, 82, 311–315. [Google Scholar] [CrossRef] [Green Version]
- Seifers, D.L.; Harvey, T.L.; Louie, R.; Gordon, D.T.; Martin, T.J. Differential transmission of isolates of the High Plains virus by different sources of wheat curl mites. Plant Dis. 2002, 86, 138–142. [Google Scholar] [CrossRef] [Green Version]
- Burrows, M.; Franc, G.; Rush, C.; Blunt, T.; Ito, D.; Kinzer, K.; Olson, J.; O’Mara, J.; Price, J.; Tande, C. Occurrence of viruses in wheat in the Great Plains region, 2008. Plant Health Prog. 2009, 10, 14. [Google Scholar] [CrossRef] [Green Version]
- Byamukama, E.; Seifers, D.L.; Hein, G.L.; De Wolf, E.; Tisserat, N.A.; Langham, M.A.C.; Osborne, L.E.; Timmerman, A.; Wegulo, S.N. Occurrence and distribution of Triticum mosaic virus in the central Great Plains. Plant Dis. 2013, 97, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Byamukama, E.; Wegulo, S.N.; Tatineni, S.; Hein, G.L.; Graybosch, R.A.; Baenziger, P.S.; French, R. Quantification of yield loss caused by Triticum mosaic virus and Wheat streak mosaic virus in winter wheat under field conditions. Plant Dis. 2014, 98, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Byamukama, E.; Tatineni, S.; Hein, G.L.; McMechan, A.J.; Wegulo, S.N. Incidence of Wheat streak mosaic virus, Triticum mosaic virus, and Wheat mosaic virus in wheat curl mites recovered from maturing winter wheat spikes. Plant Dis. 2016, 100, 318–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redila, C.D.; Phipps, S.; Nouri, S. Full genome evolutionary studies of wheat streak mosaic-associated viruses using high-throughput sequencing. Front. Microbiol. 2021, 12, 699078. [Google Scholar] [CrossRef]
- Rotenberg, D.; Bockus, W.W.; Whitfield, A.E.; Hervey, K.; Baker, K.D.; Ou, Z.; Laney, A.G.; De Wolf, E.D.; Appel, J.A. Occurrence of viruses and associated grain yields of paired symptomatic and nonsymptomatic tillers in Kansas winter wheat fields. Phytopathology 2016, 106, 202–210. [Google Scholar] [CrossRef]
- Pozhylov, I.; Snihur, H.; Shevchenko, T.; Budzanivska, I.; Liu, W.; Wang, X.; Shevchenko, O. Occurrence and characterization of wheat streak mosaic virus found in mono- and mixed infection with high plains wheat mosaic virus in winter wheat in Ukraine. Viruses 2022, 14, 1220. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.A.C. Global plant virus disease pandemics and epidemics. Plants 2021, 10, 233. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Wegulo, S.N.; Skoracka, A.; Kundu, J.K. Wheat streak mosaic virus: A century old virus with rising importance worldwide. Mol. Plant Pathol. 2018, 19, 2193–2206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, R.A.C.; Sharman, M.; Trębicki, P.; Maina, S.; Congdon, B.S. Virus diseases of cereal and oilseed crops in Australia: Current position and future challenges. Viruses 2021, 13, 2051. [Google Scholar] [CrossRef]
- Jones, R.A.C.; Vazquez-Iglesias, I.; Hajizadeh, M.; McGreig, S.; Fox, A.; Gibbs, A.J. Phylogenetics and evolution of wheat streak mosaic virus: Its global origin and the source of the Australian epidemic. Plant Pathol. 2022, 71, 1660–1673. [Google Scholar] [CrossRef]
- Stewart, L.R.; Paul, P.A.; Qu, F.; Redinbaugh, M.G.; Miao, H.; Todd, J.; Jones, M. Wheat mosaic virus (WMoV), the causal agent of High Plains disease, is present in Ohio wheat fields. Plant Dis. 2013, 97, 1125. [Google Scholar] [CrossRef]
- Tatineni, S.; Hein, G.L. High Plains wheat mosaic virus: An enigmatic disease of wheat and corn causing the High Plains disease. Mol. Plant Pathol. 2021, 22, 1167–1179. [Google Scholar] [CrossRef]
- Abdullahi, I.; Bennypaul, H.; Phelan, J.; Aboukhaddour, R.; Harding, M. First report of High Plains wheat mosaic emaravirus infecting foxtail barley and wheat in Canada. Plant Dis. 2020, 104, 3272. [Google Scholar] [CrossRef]
- Snihur, H.; Pozhylov, I.; Budzanivska, I.; Shevchenko, O. First report of High Plains wheat mosaic virus on different hosts in Ukraine. J. Plant Pathol. 2020, 102, 545–546. [Google Scholar] [CrossRef]
- Alemandri, V.; Mattio, M.F.; Rodriguez, S.M.; Truol, G. Geographical distribution and first molecular detection of an Emaravirus, High Plains wheat mosaic virus, in Argentina. Eur. J. Plant Pathol. 2017, 149, 743–750. [Google Scholar] [CrossRef]
- Coutts, B.A.; Hammond, N.; Kehoe, M.; Jones, R.A.C. Finding Wheat streak mosaic virus in south-west Australia. Aust. J. Agric. Res. 2008, 59, 836–843. [Google Scholar] [CrossRef]
- Coutts, B.A.; Cox, B.A.; Thomas, G.J.; Jones, R.A.C. First report of Wheat mosaic virus infecting wheat in Western Australia. Plant Dis. 2014, 98, 285. [Google Scholar] [CrossRef] [PubMed]
- Milgate, A.; Adorada, D.; Chambers, G.; Terras, M.A. Occurrence of winter cereal viruses in New South Wales, Australia, 2006 to 2014. Plant Dis. 2016, 100, 313–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forster, R.L.; Seifers, D.L.; Strausbaugh, C.A.; Jensen, S.G.; Ball, E.M.; Harvey, T.L. Seed transmission of the High Plains virus in sweet corn. Plant Dis. 2001, 85, 696–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nischwitz, C. Seed-transmitted wheat mosaic virus in sweet corn in Utah. Plant Health Prog. 2020, 21, 212–213. [Google Scholar] [CrossRef]
- Staples, R.; Allington, W. Streak Mosaic of Wheat in Nebraska and Its Control; University of Nebraska Agricultural Experiment Station Research Bulletin No. 178, University of Nebraska: Omaha, NE, USA, 1956. [Google Scholar]
- Jones, R.A.C.; Barbetti, M.J. Influence of climate change on plant disease infections and epidemics caused by viruses and bacteria. CABI Rev. 2012, 7, 1–33. [Google Scholar] [CrossRef]
- Jones, R.A.C. Plant virus emergence and evolution: Origins, new encounter scenarios, factors driving emergence, effects of changing world conditions, and prospects for control. Virus Res. 2009, 141, 113–130. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.A.C. Future scenarios for plant virus pathogens as climate change progresses. Adv. Virus Res. 2016, 95, 87–147. [Google Scholar]
- Jensen, S.G.; Lane, L.C.; Seifers, D.L. A new disease of maize and wheat in the High Plains. Plant Dis. 1996, 80, 1387–1390. [Google Scholar] [CrossRef]
- Ahn, K.K.; Kim, K.S.; Gergerich, R.C.; Jensen, S.G. High plains disease of corn and wheat: Ultrastructural and serological aspects. J. Submicrosc. Cytol. Pathol. 1998, 30, 563–571. [Google Scholar]
- Skare, J.M.; Wijkamp, I.; Denham, I.; Rezende, J.A.; Kitajima, E.W.; Park, J.-W.; Desvoyes, B.; Rush, C.M.; Michels, G.; Scholthof, K.B.G. A new eriophyid mite-borne membrane-enveloped virus-like complex isolated from plants. Virology 2006, 347, 343–353. [Google Scholar] [CrossRef] [Green Version]
- Mielke-Ehret, N.; Mühlbach, H.P. Emaravirus: A novel genus of multipartite, negative strand RNA plant viruses. Viruses 2012, 4, 1515–1536. [Google Scholar] [CrossRef]
- Tatineni, S.; McMechan, A.J.; Wosula, E.N.; Wegulo, S.N.; Graybosch, R.A.; French, R.; Hein, G.L. An eriophyid mite-transmitted plant virus contains eight genomic RNA segments with unusual heterogeneity in the nucleocapsid protein. J. Virol. 2014, 88, 11834–11845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, A.K.; Hein, G.L.; Graybosch, R.A.; Tatineni, S. Octapartite negative-sense RNA genome of High Plains wheat mosaic virus encodes two suppressors of RNA silencing. Virology 2018, 518, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Stewart, L.R. Sequence diversity of wheat mosaic virus isolates. Virus Res. 2016, 213, 299–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seifers, D.L.; Martin, T.J.; Harvey, T.L.; Haber, S.; Krokhin, O.; Spicer, V.; Ying, S.; Standing, K.G. Identification of variants of the High Plains virus infecting wheat in Kansas. Plant Dis. 2009, 93, 1265–1274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EPPO. Emaravirus tritici. EPPO Global Database. 2021. Available online: https://gd.eppo.int/taxon/WHPV00 (accessed on 10 October 2022).
- Fowkes, A.R.; McGreig, S.; Pufal, H.; Duffy, S.; Howard, B.; Adams, I.P.; Macarthur, R.; Weekes, R.; Fox, A. Integrating high throughput sequencing into survey design reveals turnip yellows virus and soybean dwarf virus in pea (Pisum Sativum) in the United Kingdom. Viruses 2021, 13, 2530. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Martin, D.P.; Varsani, A.; Roumagnac, P.; Botha, G.; Maslamoney, S.; Schwab, T.; Kelz, Z.; Kumar, V.; Murrell, B. RDP5: A computer program for analyzing recombination in, and removing signals of recombination from, nucleotide sequence datasets. Virus Evol. 2021, 7, veaa087. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.M. Analyzing the mosaic structure of genes. J. Mol. Evol. 1992, 34, 126–129. [Google Scholar] [CrossRef]
- Holmes, E.C.; Worobey, M.; Rambaut, A. Phylogenetic evidence for recombination in dengue virus. Mol. Biol. Evol. 1999, 16, 405–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padidam, M.; Sawyer, S.; Fauquet, C.M. Possible emergence of new geminiviruses by frequent recombination. Virology 1999, 265, 218–225. [Google Scholar] [CrossRef]
- Gibbs, M.J.; Armstrong, J.S.; Gibbs, A.J. Sister-scanning: A Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics 2000, 16, 573–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, D.P.; Rybicki, E. RDP: Detection of recombination amongst aligned sequences. Bioinformatics 2000, 16, 562–563. [Google Scholar] [CrossRef] [Green Version]
- McGuire, G.; Wright, F. TOPAL 2.0: Improved detection of mosaic sequences within multiple alignments. Bioinformatics 2000, 16, 130–134. [Google Scholar] [CrossRef] [Green Version]
- Posada, D.; Crandall, K.A. Evaluation of methods for detecting recombination from DNA sequences: Computer simulations. Proc. Natl. Acad. Sci. USA 2001, 98, 13757–13762. [Google Scholar] [CrossRef] [Green Version]
- Martin, D.P.; Posada, D.; Crandall, K.A.; Williamson, C. A modified bootscan algorithm for automated identification of recombinant sequences and recombination breakpoints. J. Virol. 2005, 95, 98–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boni, M.F.; Posada, D.; Feldman, M.W. An exact nonparametric method for inferring mosaic structure in sequence triplets. Genetics 2007, 176, 1035–1047. [Google Scholar] [CrossRef] [Green Version]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Tamura, K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+ C-content biases. Mol. Biol. Evol. 1992, 9, 678–687. [Google Scholar]
- Le, S.Q.; Gascuel, O. An improved general amino acid replacement matrix. Mol. Biol. Evol. 2008, 25, 1307–1320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeanmougin, F.; Thompson, J.D.; Gouy, M.; Higgins, D.G.; Gibson, T.J. Multiple sequence alignment with Clustal X. Trends Biochem. Sci. 1998, 23, 403–405. [Google Scholar] [CrossRef] [PubMed]
- Guindon, S.; Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 2003, 52, 696–704. [Google Scholar] [CrossRef] [PubMed]
- Shimodaira, H.; Hasegawa, M. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol. Biol. Evol. 1999, 16, 1114. [Google Scholar] [CrossRef] [Green Version]
- Dwyer, G.I.; Gibbs, M.J.; Gibbs, A.J.; Jones, R.A.C. Wheat streak mosaic virus in Australia: Relationship to isolates from the Pacific Northwest of the USA and its dispersion via seed transmission. Plant Dis. 2007, 91, 164–170. [Google Scholar] [CrossRef] [Green Version]
- Ilyas, M.; Avelar, S.; Schuch, U.; Brown, J.K. First report of an emaravirus associated with witches’ broom disease and eriophyid mite infestations of the blue palo verde tree in Arizona. Plant Dis. 2018, 102, 1863. [Google Scholar] [CrossRef]
- Olmedo-Velarde, A.; Park, A.C.; Sugano, J.; Uchida, J.Y.; Kawate, M.; Borth, W.B.; Hu, J.S.; Melzer, M.J. Characterization of Ti ringspot-associated virus, a novel emaravirus associated with an emerging ringspot disease of Cordyline fruticosa. Plant Dis. 2019, 103, 2345–2352. [Google Scholar] [CrossRef]
- Rehanek, M.; von Bargen, S.; Bandte, M.; Karlin, D.G.; Büttner, C. A novel emaravirus comprising five RNA segments is associated with ringspot disease in oak. Arch. Virol. 2021, 166, 987–990. [Google Scholar] [CrossRef]
- Boni, M.F.; Zhou, Y.; Taubenberger, J.K.; Holmes, E.C. Homologous recombination is very rare or absent in human influenza A virus. J. Virol. 2008, 82, 4807–4811. [Google Scholar] [CrossRef]
Sample (Isolate) | Virus(es) Found A |
Isolation Year | Location Sampled | Wheat Cultivar | HPWoMV Sequences | Sequences Obtained | HPWoMV Accession No. | Original Sample/Isolate Reference |
---|---|---|---|---|---|---|---|---|
BCWS5 (WA-Ku12A) | HPWMoV + WSMV | 2012 | Kulin | cv. Mace | Partial | RNA3A, RNA3B, RNA6 | OM302302-4 | Coutts et al. [23] |
BCHPV1 (WA-Ku12) | HPWMoV + WSMV | 2012 | Kulin | cv. Mace | Complete coding sequences | RNA1, RNA2, RNA3A, RNA3B, RNA4, RNA5, RNA6, RNA7, RNA8 | OM302293-301 | Coutts et al. [23] |
BCHPV2 (WA-CG12) | HPWMoV | 2012 | Corrigin | cv. Yitpi | Complete | RNA1, RNA2, RNA3A, RNA3B, RNA4, RNA5, RNA6, RNA7, RNA8 | OM302284-92 | Coutts et al. [23] |
HP1G (WA-GM-13) | HPWMoV + WSMV | 2013 | Goomalling | cv. Mace | Partial | RNA2, RNA3A, RNA3B, RNA4, RNA5, RNA6, RNA7, RNA8 | OM302276-83 | Jones et al. [16] |
HP2W (WA-WH-13) | HPWMoV + WSMV | 2013 | Wongan Hills | cv. Mace | Partial | RNA3A, RNA3B, RNA4, RNA6, RNA7, RNA8 | OM302270-75 | Jones et al. [16] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jones, R.A.C.; Vazquez-Iglesias, I.; McGreig, S.; Fox, A.; Gibbs, A.J. Genomic High Plains Wheat Mosaic Virus Sequences from Australia: Their Phylogenetics and Evidence for Emaravirus Recombination and Reassortment. Viruses 2023, 15, 401. https://doi.org/10.3390/v15020401
Jones RAC, Vazquez-Iglesias I, McGreig S, Fox A, Gibbs AJ. Genomic High Plains Wheat Mosaic Virus Sequences from Australia: Their Phylogenetics and Evidence for Emaravirus Recombination and Reassortment. Viruses. 2023; 15(2):401. https://doi.org/10.3390/v15020401
Chicago/Turabian StyleJones, Roger A. C., Ines Vazquez-Iglesias, Sam McGreig, Adrian Fox, and Adrian J. Gibbs. 2023. "Genomic High Plains Wheat Mosaic Virus Sequences from Australia: Their Phylogenetics and Evidence for Emaravirus Recombination and Reassortment" Viruses 15, no. 2: 401. https://doi.org/10.3390/v15020401
APA StyleJones, R. A. C., Vazquez-Iglesias, I., McGreig, S., Fox, A., & Gibbs, A. J. (2023). Genomic High Plains Wheat Mosaic Virus Sequences from Australia: Their Phylogenetics and Evidence for Emaravirus Recombination and Reassortment. Viruses, 15(2), 401. https://doi.org/10.3390/v15020401