Short and Long-Term Cardiovascular Sequelae after SARS-CoV-2 Infection: A Narrative Review Focusing on Athletes
Abstract
:1. Introduction
2. Methods
3. Discussion
3.1. COVID-19 and the Cardiovascular System
3.2. COVID-19 and Cardiovascular Involvement in Athletes
3.3. COVID-19 and Cardiovascular Involvement in Athletes: RTP Protocols
3.4. Short- and Long-Term Follow-up
3.5. Limitations and Quality of the Involved Studies
3.6. Practical Implications and Need for Future Research
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BMI | body mass index |
BNP | brain natriuretic peptide |
CMR | cardiac magnetic resonance |
COVID-19 | coronavirus disease 2019 |
CPET | cardio-pulmonary exercise test |
CRP | C reactive protein |
CT | computed tomography |
cTn | cardiac troponin |
CT-PE | computed tomography |
ECG | electrocardiogram |
GLS | global longitudinal strain |
Hs-Tn | high sensitive cardiac troponin |
IgG | immunoglobulin G |
IQR | interquartile range |
LGE | late gadolinium enhancement |
NP | naso-pharyngeal |
ORCCA | outcome registry for cardiac conditions in athletes |
PCR | polymerase chain reaction |
PE | physical examination |
PVCs | premature ventricular complexes |
RTP | return to play |
SARS-CoV-2 | severe acute respiratory syndrome coronavirus 2 |
TTE | transthoracic echocardiography |
References
- Mirmoeeni, S.; Jafari, A.A.; Hashemi, S.Z.; Taghavi, E.A.; Azani, A.; Ghasrsaz, H.; Taghavi, A.A.; Niksima, S.H.; Rashidi, S.; Kazemi, E.; et al. Cardiovascular manifestations in COVID-19 patients: A systematic review and meta-analysis. J. Cardiovasc. Thorac. Res. 2021, 13, 181–189. [Google Scholar] [CrossRef]
- Shafi, A.M.A.; Shaikh, S.A.; Shirke, M.M.; Iddawela, S.; Harky, A. Cardiac manifestations in COVID-19 patients—A systematic review. J. Card. Surg. 2020, 35, 1988–2008. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.T.; Toh, H.S.; Liao, C.T.; Yu, W.L. Cardiac Involvement of COVID-19: A Comprehensive Review. Am. J. Med. Sci. 2021, 361, 14–22. [Google Scholar] [CrossRef]
- Basso, C.; Leone, O.; Rizzo, S.; De Gaspari, M.; Van Der Wal, A.C.; Aubry, M.C.; Bois, M.C.; Lin, P.T.; Maleszewski, J.J.; Stone, J.R. Pathological features of COVID-19-associated myocardial injury: A multicentre cardiovascular pathology study. Eur. Heart J. 2020, 41, 3827–3835. [Google Scholar] [CrossRef] [PubMed]
- Zaim, S.; Chong, J.H.; Sankaranarayanan, V.; Harky, A. COVID-19 and Multiorgan Response. Curr. Probl. Cardiol. 2020, 45, 100618. [Google Scholar] [CrossRef] [PubMed]
- Mohamed Abdel Shafi, A.; Hewage, S.; Harky, A. The impact of COVID-19 on the provision of cardiac surgical services. J. Card. Surg. 2020, 35, 1295. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069. [Google Scholar] [CrossRef] [PubMed]
- Maestrini, V.; Birtolo, L.I.; Francone, M.; Galardo, G.; Galea, N.; Severino, P.; Alessandri, F.; Colaiacomo, M.C.; Cundari, G.; Chimenti, C.; et al. Cardiac involvement in consecutive unselected hospitalized COVID-19 population: In-hospital evaluation and one-year follow-up. Int. J. Cardiol. 2021, 339, 235–242. [Google Scholar] [CrossRef]
- Puntmann, V.O.; Carerj, M.L.; Wieters, I.; Fahim, M.; Arendt, C.; Hoffmann, J.; Shchendrygina, A.; Escher, F.; Vasa-Nicotera, M.; Zeiher, A.M.; et al. Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered from Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020, 5, 1265–1273. [Google Scholar] [CrossRef]
- Wu, Z.; McGoogan, J.M. Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72,314 Cases from the Chinese Center for Disease Control and Prevention. JAMA 2020, 323, 1239–1242. [Google Scholar] [CrossRef]
- Ruan, Q.; Yang, K.; Wang, W.; Jiang, L.; Song, J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020, 46, 846–848. [Google Scholar] [CrossRef]
- Chen, T.; Wu, D.; Chen, H.; Yan, W.; Yang, D.; Chen, G.; Ma, K.; Xu, D.; Yu, H.; Wang, H.; et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: Retrospective study. BMJ 2020, 368, m1091. [Google Scholar] [CrossRef] [PubMed]
- Cenko, E.; Badimon, L.; Bugiardini, R.; Claeys, M.J.; De Luca, G.; De Wit, C.; Derumeaux, G.; Dorobantu, M.; Duncker, D.J.; Eringa, E.C.; et al. Cardiovascular disease and COVID-19: A consensus paper from the ESC Working Group on Coronary Pathophysiology & Microcirculation, ESC Working Group on Thrombosis and the Association for Acute CardioVascular Care (ACVC), in collaboration with the European Heart Rhythm Association (EHRA). Cardiovasc. Res. 2021, 117, 2705–2729. [Google Scholar] [CrossRef]
- Salabei, J.K.; Asnake, Z.T.; Ismail, Z.H.; Charles, K.; Stanger, G.T.; Abdullahi, A.H.; Abraham, A.T.; Okonoboh, P. COVID-19 and the cardiovascular system: An update. Am. J. Med. Sci. 2022, 364, 139–147. [Google Scholar] [CrossRef]
- Nishiga, M.; Wang, D.W.; Han, Y.; Lewis, D.B.; Wu, J.C. COVID-19 and cardiovascular disease: From basic mechanisms to clinical perspectives. Nat. Rev. Cardiol. 2020, 17, 543–558. [Google Scholar] [CrossRef] [PubMed]
- Rajpal, S.; Tong, M.S.; Borchers, J.; Zareba, K.M.; Obarski, T.P.; Simonetti, O.P.; Daniels, C.J. Cardiovascular Magnetic Resonance Findings in Competitive Athletes Recovering from COVID-19 Infection. JAMA Cardiol. 2021, 6, 116–118. [Google Scholar] [CrossRef]
- Brito, D.; Meester, S.; Yanamala, N.; Patel, H.B.; Balcik, B.J.; Casaclang-Verzosa, G.; Seetharam, K.; Riveros, D.; Beto, R.J.; Balla, S.; et al. High Prevalence of Pericardial Involvement in College Student Athletes Recovering from COVID-19. JACC. Cardiovasc. Imaging 2021, 14, 541–555. [Google Scholar] [CrossRef] [PubMed]
- Peidro, R.; Argemi, R.; Batista, J.; Logioco, L.; Perez De Arenaza, D.; Bortman, G. Cardiac magnetic resonance and follow up of professional soccer players recovering from COVID-19. Medicina 2021, 81, 491–495. [Google Scholar] [PubMed]
- Vago, H.; Szabo, L.; Dohy, Z.; Merkely, B. Cardiac Magnetic Resonance Findings in Patients Recovered From COVID-19: Initial Experiences in Elite Athletes. JACC. Cardiovasc. Imaging 2021, 14, 1279–1281. [Google Scholar] [CrossRef] [PubMed]
- Małek, Ł.A.; Marczak, M.; Miłosz-Wieczorek, B.; Konopka, M.; Braksator, W.; Drygas, W.; Krzywański, J. Cardiac involvement in consecutive elite athletes recovered from Covid-19: A magnetic resonance study. J. Magn. Reson. Imaging 2021, 53, 1723–1729. [Google Scholar] [CrossRef]
- Gervasi, S.F.; Pengue, L.; Damato, L.; Monti, R.; Pradella, S.; Pirronti, T.; Bartoloni, A.; Epifani, F.; Saggese, A.; Cuccaro, F.; et al. Is extensive cardiopulmonary screening useful in athletes with previous asymptomatic or mild SARS-CoV-2 infection? Br. J. Sports Med. 2021, 55, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Guevarra, C.C.; Murray, N.; Cipriani, D.; Mailland, K.; Char, A.; Coffman, K.; Davis, C.; Truong, F.; Danielian, A.; Barnes, G.; et al. Cardiovascular involvement among collegiate athletes following COVID-19 infection. J. Clin. Transl. Res. 2022, 8, 1. [Google Scholar] [PubMed]
- Mascia, G.; Pescetelli, F.; Baldari, A.; Gatto, P.; Seitun, S.; Sartori, P.; Pieroni, M.; Calò, L.; Della Bona, R.; Porto, I. Interpretation of elevated high-sensitivity cardiac troponin I in elite soccer players previously infected by severe acute respiratory syndrome coronavirus 2. Int. J. Cardiol. 2021, 326, 248–251. [Google Scholar] [CrossRef] [PubMed]
- Hendrickson, B.S.; Stephens, R.E.; Chang, J.V.; Amburn, J.M.; Pierotti, L.L.; Johnson, J.L.; Hyden, J.C.; Johnson, J.N.; Philip, R.R. Cardiovascular Evaluation after COVID-19 in 137 Collegiate Athletes: Results of an Algorithm-Guided Screening. Circulation 2021, 143, 1926–1928. [Google Scholar] [CrossRef]
- Starekova, J.; Bluemke, D.A.; Bradham, W.S.; Eckhardt, L.L.; Grist, T.M.; Kusmirek, J.E.; Purtell, C.S.; Schiebler, M.L.; Reeder, S.B. Evaluation for Myocarditis in Competitive Student Athletes Recovering from Coronavirus Disease 2019 with Cardiac Magnetic Resonance Imaging. JAMA Cardiol. 2021, 6, 945–950. [Google Scholar] [CrossRef]
- Szabó, L.; Juhász, V.; Dohy, Z.; Fogarasi, C.; Kovács, A.; Lakatos, B.K.; Kiss, O.; Sydó, N.; Csulak, E.; Suhai, F.I.; et al. Is cardiac involvement prevalent in highly trained athletes after SARS-CoV-2 infection? A cardiac magnetic resonance study using sex-matched and age-matched controls. Br. J. Sports Med. 2022, 56, 553–560. [Google Scholar] [CrossRef]
- Clark, D.E.; Parikh, A.; Dendy, J.M.; Diamond, A.B.; George-Durrett, K.; Fish, F.A.; Slaughter, J.C.; Fitch, W.; Hughes, S.G.; Soslow, J.H. COVID-19 Myocardial Pathology Evaluation in Athletes with Cardiac Magnetic Resonance (COMPETE CMR). Circulation 2021, 143, 609–612. [Google Scholar] [CrossRef]
- Maestrini, V.; Filomena, D.; Birtolo, L.I.; Serdoz, A.; Fiore, R.; Tatangelo, M.; Lemme, E.; Squeo, M.R.; Mango, R.; Di Gioia, G.; et al. Systematic Cardiovascular Screening in Olympic Athletes before and after SARS-CoV-2 Infection. J. Clin. Med. 2022, 11, 3499. [Google Scholar] [CrossRef]
- Maestrini, V.; Penza, M.; Filomena, D.; Birtolo, L.I.; Monosilio, S.; Lemme, E.; Squeo, M.R.; Mango, R.; Di Gioia, G.; Serdoz, A.; et al. Low prevalence of cardiac abnormalities in competitive athletes at return-to-play after COVID-19. J. Sci. Med. Sport 2022, 26, 8–13. [Google Scholar] [CrossRef]
- Cavigli, L.; Frascaro, F.; Turchini, F.; Mochi, N.; Sarto, P.; Bianchi, S.; Parri, A.; Carraro, N.; Valente, S.; Focardi, M.; et al. A prospective study on the consequences of SARS-CoV-2 infection on the heart of young adult competitive athletes: Implications for a safe return-to-play. Int. J. Cardiol. 2021, 336, 130–136. [Google Scholar] [CrossRef]
- Erickson, J.L.; Poterucha, J.T.; Gende, A.; McEleney, M.; Wencl, C.M.; Castaneda, M.; Gran, L.; Luedke, J.; Collum, J.; Fischer, K.M.; et al. Use of Electrocardiographic Screening to Clear Athletes for Return to Sports Following COVID-19 Infection. Mayo Clin. Proc. Innov. Qual. Outcomes 2021, 5, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Moulson, N.; Petek, B.J.; Drezner, J.A.; Harmon, K.G.; Kliethermes, S.A.; Patel, M.R.; Baggish, A.L. SARS-CoV-2 Cardiac Involvement in Young Competitive Athletes. Circulation 2021, 144, 256–266. [Google Scholar] [CrossRef] [PubMed]
- Daniels, C.J.; Rajpal, S.; Greenshields, J.T.; Rosenthal, G.L.; Chung, E.H.; Terrin, M.; Jeudy, J.; Mattson, S.E.; Law, I.H.; Borchers, J.; et al. Prevalence of Clinical and Subclinical Myocarditis in Competitive Athletes with Recent SARS-CoV-2 Infection: Results from the Big Ten COVID-19 Cardiac Registry. JAMA Cardiol. 2021, 6, 1078–1087. [Google Scholar] [CrossRef] [PubMed]
- Martinez, M.W.; Tucker, A.M.; Bloom, O.J.; Green, G.; DiFiori, J.P.; Solomon, G.; Phelan, D.; Kim, J.H.; Meeuwisse, W.; Sills, A.K.; et al. Prevalence of Inflammatory Heart Disease Among Professional Athletes With Prior COVID-19 Infection Who Received Systematic Return-to-Play Cardiac Screening. JAMA Cardiol. 2021, 6, 745–752. [Google Scholar] [CrossRef] [PubMed]
- Chevalier, L.; Cochet, H.; Mahida, S.; Benard, A.; Cariou, T.; Sridi-Cheniti, S.; Benhenda, S.; Doutreleau, S.; Cade, S.; Guerard, S.; et al. Resuming Training in High-Level Athletes after Mild COVID-19 Infection: A Multicenter Prospective Study (ASCCOVID-19). Sport. Med.—Open 2022, 8, 83. [Google Scholar] [CrossRef]
- Casasco, M.; Iellamo, F.; Scorcu, M.; Parisi, A.; Tavcar, I.; Brugin, E.; Martini, B.; Fossati, C.; Pigozzi, F. Return to Play after SARS-CoV-2 Infection in Competitive Athletes of Distinct Sport Disciplines in Italy: A FMSI (Italian Federation of Sports Medicine) Study. J. Cardiovasc. Dev. Dis. 2022, 9, 59. [Google Scholar] [CrossRef] [PubMed]
- Hédon, C.; Schnell, F.; Sosner, P.; Chagué, F.; Schuster, I.; Julia, M.; Duparc, A.; Guy, J.M.; Molinari, N.; Michaux, L.; et al. Cardiac screening before returning to elite sport after SARS-CoV-2 infection. Arch. Cardiovasc. Dis. 2022, 115, 562–570. [Google Scholar] [CrossRef]
- Moulson, N.; Gustus, S.K.; Scirica, C.; Petek, B.J.; Vanatta, C.; Churchill, T.W.; Guseh, J.S.; Baggish, A.; Wasfy, M.M. Diagnostic evaluation and cardiopulmonary exercise test findings in young athletes with persistent symptoms following COVID-19. Br. J. Sports Med. 2022, 56, 927–932. [Google Scholar] [CrossRef]
- Petek, B.J.; Moulson, N.; Baggish, A.L.; Kliethermes, S.A.; Patel, M.R.; Churchill, T.W.; Harmon, K.G.; Drezner, J.A. Prevalence and clinical implications of persistent or exertional cardiopulmonary symptoms following SARS-CoV-2 infection in 3597 collegiate athletes: A study from the Outcomes Registry for Cardiac Conditions in Athletes (ORCCA). Br. J. Sports Med. 2022, 56, 913–918. [Google Scholar] [CrossRef]
- Petek, B.J.; Moulson, N.; Drezner, J.A.; Harmon, K.G.; Kliethermes, S.A.; Churchill, T.W.; Patel, M.R.; Baggish, A.L. Cardiovascular Outcomes in Collegiate Athletes after SARS-CoV-2 Infection: 1-Year Follow-Up from the Outcomes Registry for Cardiac Conditions in Athletes. Circulation 2022, 145, 1690–1692. [Google Scholar] [CrossRef]
- Cavigli, L.; Cillis, M.; Mochi, V.; Frascaro, F.; Mochi, N.; Hajdarevic, A.; Roselli, A.; Capitani, M.; Alvino, F.; Giovani, S.; et al. SARS-CoV-2 infection and return to play in junior competitive athletes: Is systematic cardiac screening needed? Br. J. Sports Med. 2022, 56, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, R.T.; Marwaha, S.; Malhotra, A.; Iqbal, Z.; Hughes, C.; Börjesson, M.; Niebauer, J.; Pelliccia, A.; Schmied, C.; Serratosa, L.; et al. Exercise in the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) era: A Question and Answer session with the experts Endorsed by the section of Sports Cardiology & Exercise of the European Association of Preventive Cardiology (EAPC). Eur. J. Prev. Cardiol. 2020, 27, 1242–1251. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.G.; Hull, J.H.; Rogers, J.; Pollock, N.; Dodd, M.; Haines, J.; Harris, S.; Loosemore, M.; Malhotra, A.; Pieles, G.; et al. Cardiorespiratory considerations for return-to-play in elite athletes after COVID-19 infection: A practical guide for sport and exercise medicine physicians. Br. J. Sports Med. 2020, 54, 1157–1161. [Google Scholar] [CrossRef] [PubMed]
- Phelan, D.; Kim, J.H.; Chung, E.H. A Game Plan for the Resumption of Sport and Exercise after Coronavirus Disease 2019 (COVID-19) Infection. JAMA Cardiol. 2020, 5, 1085–1086. [Google Scholar] [CrossRef]
- Kim, J.H.; Levine, B.D.; Phelan, D.; Emery, M.S.; Martinez, M.W.; Chung, E.H.; Thompson, P.D.; Baggish, A.L. Coronavirus Disease 2019 and the Athletic Heart: Emerging Perspectives on Pathology, Risks, and Return to Play. JAMA Cardiol. 2021, 6, 219–227. [Google Scholar] [CrossRef]
- Gluckman, T.J.; Bhave, N.M.; Allen, L.A.; Chung, E.H.; Spatz, E.S.; Ammirati, E.; Baggish, A.L.; Bozkurt, B.; Cornwell, W.K.; Harmon, K.G.; et al. 2022 ACC Expert Consensus Decision Pathway on Cardiovascular Sequelae of COVID-19 in Adults: Myocarditis and Other Myocardial Involvement, Post-Acute Sequelae of SARS-CoV-2 Infection, and Return to Play: A Report of the American College of Cardiology Solution Set Oversight Committee. J. Am. Coll. Cardiol. 2022, 79, 1717–1756. [Google Scholar] [CrossRef]
- D’Ascenzi, F.; Castelletti, S.; Adami, P.E.; Cavarretta, E.; Sanz-de la Garza, M.; Maestrini, V.; Biffi, A.; Kantor, P.; Pieles, G.; Verhagen, E.; et al. Cardiac screening prior to return to play after SARS-CoV-2 infection: Focus on the child and adolescent athlete: A Clinical Consensus Statement of the Task Force for Childhood Health of the European Association of Preventive Cardiology. Eur. J. Prev. Cardiol. 2022, 29, 2120–2124. [Google Scholar] [CrossRef]
First Author, Journal, Year | Type of Study | Population | Methods | Timing of Evaluation | Follow-Up | Main Findings |
---|---|---|---|---|---|---|
Single-Center Studies | ||||||
Rajpal et al. JAMA Cardiology, 2021 [16] | Prospective observational study | 26 unselected athletes (mean age 27 ± 1.5 years, 57.7% male). |
| COVID-19 diagnosis-CMR: (11–53 days). | - |
|
Brito et al. Journal of American college of cardiology, 2021 [17] | Cross-sectional study | 54 collegiate athletes (mean age 19 years; 85% male). |
| COVID-19 diagnosis-CMR: 27 days (range of 22 to 33 days). | - |
|
Peidro et al. Medicina, 2021 [18] | Prospective observational study | 24 international level professional soccer players (median age 27 years, 20–36). |
| - | 4 months with participation in national and international competitions |
|
Vago et al. Journal of American college of cardiology, 2021 [19] | Observational study | 12 professional elite athletes (median age 23 years, 20–23; 10 females). |
| COVID-19 diagnosis-CMR: 17 (IQR 17–19). | - |
|
Malek et al. Journal of magnetic resonance imaging, 2021 [20] | Retrospective cohort study | 26 consecutive elite athletes (median age 24 years, 21–27; 81% female). |
| COVID-19 diagnosis-CMR: 32 days (IQR 22–62 days). | - |
|
Gervasi et al. Br J Sports Med, 2021 [21] | Prospective cohort study | 30 professional soccer players returning to play after the lockdown period [COVID-19-positive group, age 22 (21–27 years]; COVID-19-negative group age 25 (19.5–26.5 years)]. |
| - | - |
|
Guevarra et al. Journal of Clinical and Translational Research, 2022 [22] | Retrospective cohort study | 99 collegiate athletes (mean age 19.9 ± 1.7 years, 68% male). |
| COVID-19 diagnosis-evaluation: 15 days. | - |
|
Mascia et al. International Journal of Cardiology, 2021 [23] | Retrospective cohort study | 58 male soccer players |
| COVID-19 diagnosis-CMR: 27–41 days. | - |
|
Hendrikson et al. Circulation, 2021 [24] | Retrospective cohort study | 137 collegiate (median age 20 years, 18–27; 68% male) |
| COVID-19 diagnosis-evaluation: 10 days. | Clinical follow-up: 143 days, IQR 113–239. |
|
Starekova et al. JAMA, 2021 [25] | Retrospective study | 145 competitive student athletes (mean age 20 years, 17–23; 37% female). |
| COVID-19 diagnosis-CMR: 15 days (IQR 11–194). | Athletes diagnosed with myocarditis had a clinical and CMR follow-up after 1 month. |
|
Szabo’ et al. Br J Sports Med., 2021 [26] | Prospective observational study | 147 highly trained athletes (median age 23 years, IQR 20–28 years; 94% male) |
| COVID-19 diagnosis-CMR: median 32 days; other examinations recorded at a median of 1 day prior to CMR. | Clinical follow-up at a median of 232 days after the infection. |
|
Clark et al. Circulation, 2021 [27] | Retrospective study | 59 collegiate athletes (median age 20 years, 19–21; 63% female) |
| COVID-19 diagnosis-CMR: 21.5 days (IQR 13-37). | - |
|
Maestrini et al. Journal of clinical medicine, 2021 [28] | Prospective observational study | 47 consecutive enrolled Olympic athletes (mean age 26 ± 4 years, 68% male) |
| Negative swab-evaluation: 9 days (6–13). | Athletes with cardiac abnormalities were evaluated after 3 months of sport withdrawal. |
|
Maestrini et al. Journal of Science and Medicine in Sport, 2022 [29] | Cross sectional study | 219 consecutive athletes (median age 23 years, IQR 19–27; 59% male) |
| Negative swab-evaluation: 10 days (IQR 6–17). COVID-19 diagnosis-CMR: 16 days (IQR 13–24). | Athletes with cardiac abnormalities were evaluated after 3 months of sport withdrawal. |
|
Cavigli et al. International Journal of Cardiology, 2021 [30] | Prospective study | 90 professional and non-professional competitive athletes (mean age 24 ± 10 years, 71.1% male) |
| Negative swab-evaluation: 15 to 30 days. | Athlete with myocarditis was evaluated after 3 months of sport withdrawal. |
|
Erickson J et al. Mayo Clinic Proceedings Innovation and quality outcomes, 2021 [31] | Retrospective cohort study | 170 collegiate athletes (ages 18–25 years, 91% male) |
| COVID-19 diagnosis-cardiac screening: 22.54 ± 14.20 days. | - |
|
Moulson et al. Br J Sports Med, 2022 [38] | Prospective observational study | 21 consecutive young athletes (mean age 21.9 ± 3.9 years, 43% female) |
| COVID-19 diagnosis-cardiac evaluation: 3.0 ± 2.1 months. | 6 months |
|
Multi-center Studies | ||||||
Moulson et al. Circulation, 2021 [32] | Prospective observational cohort study | 3018 collegiate athletes from the ORCCA registry (mean age 20 ± 1 years, 32% female) |
| COVID-19 diagnosis-Cardiac tests:
| Clinical follow-up among the entire cohort: 113 days (IQR 90–146). Clinical follow-up among athletes with SARS-CoV-2 cardiac involvement (definite, probable, or possible): median of 130 days (IQR 97–160) |
|
Daniels et al. Jama Cardiology, 2021 [33] | Observational Study | 1597 athletes (60% male) from 13 universities, participating in the Big 10 COVID-19 Cardiac Registry |
| COVID-19 diagnosis-cardiac testing: 22 days (range 10–78 days). | CMR follow-up in athletes with myocarditis diagnosis: 9.4 ± 3.1 weeks. |
|
Martinez et al. JAMA, 2021 [34] | Cross sectional study | 789 professional athletes (mean age 25 ± 3 years, 98.5% male) |
| COVID-19 diagnosis-cardiac testing: 19 ± 17 days (range of 3–156). | Clinical follow-up: from enrollment (May-October 2020) to December 2020. |
|
Chevalier et al. Sports Medicine—Open, 2022 [35] | Prospective cohort study | 950 athletes: 779 professional league rugby players (mean age 25.8 ± 4.6, 100% male) and 171 student athletes (mean age 20.1 ± 3.1, 49.7% male) |
| COVID-19 diagnosis-CMR: 51 ± 37 days. Healing-lab tests: 7 (7–13) days. | Clinical follow-up: 289 ± 56 days. |
|
Casasco et al. Journal of Cardiovascular Development and Disease, 2022 [36] | Prospective observational study | 4143 athletes (mean age 22.5 ± 13.3 years, ranging from 8 to 80 years; 67.8% male) |
| Healing-cardiac testing: 30 days. | - |
|
Hedon et al. Arch Cardiovasc Dis, 2022 [37] | Retrospective cohort study | 554 high-level athletes (professional or national level; median age 22 years, 72% male) |
| - | Clinical follow-up: 376 ± 125 days. |
|
Petek et al. Br J Sports Med, 2022 [39] | Prospective observational cohort study | 3644 collegiate athletes from the ORCCA registry (mean age 20 years, 34% female) |
| COVID-19 diagnosis-RTP: 17 days (IQR 13–21). COVID 19 diagnosis-CMR: 44 days (IQR 29–70). | Clinical follow-up: at least 12 weeks. |
|
Petek et al. Circulation, 2022 [40] | Prospective observational cohort study | 3675 collegiate athletes from the ORCCA registry (mean age 20 ± 1 years, 33% female) |
| - | Median follow-up: 1.12 years (IQR 1.06–1.22). |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monosilio, S.; Prosperi, S.; Squeo, M.R.; Spataro, S.; Spataro, A.; Maestrini, V. Short and Long-Term Cardiovascular Sequelae after SARS-CoV-2 Infection: A Narrative Review Focusing on Athletes. Viruses 2023, 15, 493. https://doi.org/10.3390/v15020493
Monosilio S, Prosperi S, Squeo MR, Spataro S, Spataro A, Maestrini V. Short and Long-Term Cardiovascular Sequelae after SARS-CoV-2 Infection: A Narrative Review Focusing on Athletes. Viruses. 2023; 15(2):493. https://doi.org/10.3390/v15020493
Chicago/Turabian StyleMonosilio, Sara, Silvia Prosperi, Maria Rosaria Squeo, Stefano Spataro, Antonio Spataro, and Viviana Maestrini. 2023. "Short and Long-Term Cardiovascular Sequelae after SARS-CoV-2 Infection: A Narrative Review Focusing on Athletes" Viruses 15, no. 2: 493. https://doi.org/10.3390/v15020493
APA StyleMonosilio, S., Prosperi, S., Squeo, M. R., Spataro, S., Spataro, A., & Maestrini, V. (2023). Short and Long-Term Cardiovascular Sequelae after SARS-CoV-2 Infection: A Narrative Review Focusing on Athletes. Viruses, 15(2), 493. https://doi.org/10.3390/v15020493