Novel Epitopes Mapping of African Swine Fever Virus CP312R Protein Using Monoclonal Antibodies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Cells Maintenance
2.3. Antibodies and Reagents
2.4. Plasmids Construction
2.5. Expression and Purification of Recombinant CP312R Protein
2.6. Immunization, Cells Fusion and Production of Monoclonal Antibodies
2.7. Monoclonal Antibody Isotyping
2.8. Indirect-Enzyme-Linked Immunosorbent Assay (iELISA)
2.9. Western Blotting Assay
2.10. Immunofluorescence Assay (IFA)
2.11. Epitope Mapping of CP312R
2.12. Lentivirus Production
2.13. Subcellular Localization of CP312R
2.14. Cell Transfection
2.15. Statistical Analyses
3. Results
3.1. Expression and Purification of the Recombinant CP312R Protein
3.2. Production and Characterization of Anti-ASFV-CP312R Monoclonal Antibodies
3.3. Epitopes Mapping of Recognized by the Monoclonal Antibodies
3.4. Subcellular Location of CP312R
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tulman, E.R.; Delhon, G.A.; Ku, B.K.; Rock, D.L. African swine fever virus. Curr. Top. Microbiol. Immunol. 2009, 328, 43–87. [Google Scholar] [PubMed]
- OIE-WAHID. World Animal Health Information Database (Wahid) [Database on the Internet]; World Organisation for Animal Health (OIE): Paris, France, 2019. [Google Scholar]
- Montgomery, R.E. On A Form of Swine Fever Occurring in British East Africa (Kenya Colony). J. Comp. Pathol. Ther. 1921, 34, 159–191. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Cordón, P.J.; Montoya, M.; Reis, A.L.; Dixon, L.K. African swine fever: A re-emerging viral disease threatening the global pig industry. Vet. J. 2018, 233, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Li, N.; Luo, Y.; Liu, Y.; Miao, F.; Chen, T.; Zhang, S.; Cao, P.; Li, X.; Tian, K.; et al. Emergence of African Swine Fever in China. Transbound. Emerg. Dis. 2018, 65, 1482–1484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garigliany, M.; Desmecht, D.; Tignon, M.; Cassart, D.; Lesenfant, C.; Paternostre, J.; Volpe, R.; Cay, A.B.; van den Berg, T.; Linden, A. Phylogeographic Analysis of African Swine Fever Virus, Western Europe, 2018. Emerg. Infect. Dis. 2019, 25, 184–186. [Google Scholar] [CrossRef] [PubMed]
- OIE. (World Organization for animal Health). African Swine Fever (ASF) Report No. 63: Retrieved: 14 October 2022; World Organisation for Animal Health (OIE): Paris, France, 2021. [Google Scholar]
- Salas, M.L.; Andrés, G. African swine fever virus morphogenesis. Virus Res. 2013, 173, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Dixon, L.; Escribano, J.; Martins, C.; Rock, D.; Salas, M.; Wilkinson, P. Asfarviridae in Virus taxonomy. In VIIIth Report of the ICTV; Elsevier/Academic Press: London, UK, 2005. [Google Scholar]
- Alonso, C.; Borca, M.; Dixon, L.; Revilla, Y.; Rodriguez, F.; Escribano, J.M.; ICTV Report Consortium. ICTV Virus Taxonomy Profile Asfarviridae. J. Gen. Virol. 2018, 99, 613–614. [Google Scholar] [CrossRef]
- Dixon, L.K.; Chapman, D.A.; Netherton, C.L.; Upton, C. African swine fever virus replication and genomics. Virus Res. 2013, 173, 3–14. [Google Scholar] [CrossRef]
- Reis, A.L.; Netherton, C.; Dixon, L.K. Unraveling the Armor of a Killer: Evasion of Host Defenses by African Swine Fever Virus. J. Virol. 2017, 91, e02338-16. [Google Scholar] [CrossRef] [Green Version]
- Rock, D.L. Challenges for African swine fever vaccine development— “… perhaps the end of the beginning”. Vet. Microbiol. 2017, 206, 52–58. [Google Scholar] [CrossRef]
- Bao, J.; Wang, Q.; Lin, P.; Liu, C.; Li, L.; Wu, X.; Chi, T.; Xu, T.; Ge, S.; Liu, Y. Genome comparison of African swine fever virus China/2018/AnhuiXCGQ strain and related European p72 GenotypeII strains. Transbound. Emerg. Dis. 2019, 66, 1167–1176. [Google Scholar] [CrossRef]
- Alejo, A.; Matamoros, T.; Guerra, M.; Andrés, G. A Proteomic Atlas of the African Swine Fever Virus Particle. J. Virol. 2018, 92, e01293-18. [Google Scholar] [CrossRef] [Green Version]
- Arias, M.; De La Torre, A.; Dixon, L.; Gallardo, C.; Jori, F.; Laddomada, A.; Martins, C.; Parkhouse, R.M.; Revilla, Y.; Rodriguez, F.M.; et al. Approaches and Perspectives for Development of African Swine Fever Virus Vaccines. Vaccines 2017, 5, 35. [Google Scholar] [CrossRef]
- Heimerman, M.E.; Murgia, M.V.; Wu, P.; Lowe, A.D.; Jia, W.; Rowland, R.R. Linear epitopes in African swine fever virus p72 recognized by monoclonal antibodies prepared against baculovirus-expressed antigen. J. Vet. Diagn. Investig. 2018, 30, 406–412. [Google Scholar] [CrossRef]
- Zhu, W.; Meng, K.; Zhang, Y.; Bu, Z.; Zhao, D.; Meng, G. Lateral Flow Assay for the Detection of African Swine Fever Virus Antibodies Using Gold Nanoparticle-Labeled Acid-Treated p72. Front. Chem. 2022, 9, 804981. [Google Scholar] [CrossRef]
- Zhong, K.; Zhu, M.; Yuan, Q.; Deng, Z.; Feng, S.; Liu, D.; Yuan, X. Development of an Indirect ELISA to Detect African Swine Fever Virus pp62 Protein-Specific Antibodies Front. Vet. Sci. 2022, 8, 798559. [Google Scholar]
- Petrovan, V.; Murgia, M.V.; Wu, P.; Lowe, A.D.; Jia, W.; Rowland, R.R. Epitope mapping of African swine fever virus (ASFV) structural protein, p54. Virus Res. 2020, 279, 197871. [Google Scholar] [CrossRef]
- Wang, A.; Min, J.; Hongliang, L.; Yankai, L.; Jingming, Z.; Yumei, C.D.P.; Yanwei, W.; Weisheng, P.; Yanhua, Q.; Gaiping, Z. Development and characterization of monoclonal antibodies against the N-terminal domain of African swine fever virus structural protein, p54. Int. J. Biol. Macromol. 2021, 180, 203–211. [Google Scholar] [CrossRef]
- Oviedo, J.; Rodriguez, F.; Gomez-Puertas, P.; Brun, A.; Gómez, N.; Alonso, C.; Escribano, J. High level expression of the major antigenic African swine fever virus proteins p54 and p30 in baculovirus and their potential use as diagnostic reagents. J. Virol. Methods 1997, 64, 27–35. [Google Scholar] [CrossRef]
- Wang, L.; Fu, D.; Tesfagaber, W.; Li, F.; Chen, W.; Zhu, Y.; Sun, E.; Wang, W.; He, X.; Guo, Y.; et al. Development of an ELISA Method to Differentiate Animals Infected with Wild-Type African Swine Fever Viruses and Attenuated HLJ/18-7GD Vaccine Candidate. Viruses 2022, 14, 1731. [Google Scholar] [CrossRef]
- Li, J.; Bai, Y.; Li, F.; Zhang, Y.; Xie, Q.; Zhang, L.; Hua, L.; Xiong, Q.; Shan, Y.; Bu, Z.; et al. Rapid and ultra-sensitive detection of African swine fever virus antibody on site using QDM based-ASFV immunosensor (QAIS). Anal. Chim. Acta 2021, 1189, 339187. [Google Scholar] [CrossRef]
- Tsegay, G.; Tesfagaber, W.; Zhu, Y.; He, X.; Wang, W.; Zhang, Z.; Sun, E.; Zhang, J.; Guan, Y.; Li, F.; et al. Novel P22-monoclonal antibody based blocking ELISA for the detection of African swine fever virus antibodies in serum. Biosaf. Health 2022, 4, 234–243. [Google Scholar] [CrossRef]
- Kaplon, H.; Muralidharan, M.; Schneider, Z.; Reichert, J.M. Antibodies to watch in 2020. Mabs 2019, 12, 1703531. [Google Scholar] [CrossRef] [Green Version]
- Mullard, A. FDA approves 100th monoclonal antibody product. Nat. Rev. Drug Discov. 2021, 20, 491–495. [Google Scholar] [CrossRef]
- Netherton, C.L.; Goatley, L.C.; Reis, A.L.; Portugal, R.; Nash, R.H.; Morgan, S.B.; Gault, L.; Nieto, R.; Norlin, V.; Gallardo, C.; et al. Identification and Immunogenicity of African Swine Fever Virus Antigens. Front. Immunol. 2019, 10, 1318. [Google Scholar] [CrossRef] [Green Version]
- Reis, A.L.; Parkhouse, M.; Penedos, A.; Martins, C.; Leitão, A. Systematic analysis of longitudinal serological responses of pigs infected experimentally with African swine fever virus. J. Gen. Virol. 2007, 88, 2426–2434. [Google Scholar] [CrossRef]
- Kollnberger, S.D.; Gutierrez-Castañeda, B.; Foster-Cuevas, M.; Corteyn, A.; Parkhouse, R.M.E. Identification of the principal serological immunodeterminants of African swine fever virus by screening a virus cDNA library with antibody. J. Gen. Virol. 2002, 83, 1331–1342. [Google Scholar] [CrossRef]
- Chen, L.; Chen, L.; Chen, H.; Zhang, H.; Dong, P.; Sun, L.; Huang, X.; Lin, P.; Wu, L.; Jing, D.; et al. Structural insights into the CP312R protein of the African swine fever virus. Biochem. Biophys. Res. Commun. 2022, 624, 68–74. [Google Scholar] [CrossRef]
- Fang, Y.; Pekosz, A.; Haynes, L.; Nelson, E.A.; Rowland, R.R.R. Production and Characterization of Monoclonal Antibodies Against the Nucleocapsid Protein of SARS-COV. Adv. Exp. Med. Biol. 2006, 581, 153–156. [Google Scholar] [CrossRef]
- Wen, X.; He, X.; Zhang, X.; Zhang, X.; Liu, L.; Guan, Y.; Zhang, Y.; Bu, Z. Genome sequences derived from pig and dried blood pig feed samples provide important insights into the transmission of African swine fever virus in China in 2018. Emerg. Microbes Infect. 2019, 8, 303–306. [Google Scholar] [CrossRef]
- Chen, Z.; Shao, L.; Ye, J.; Li, Y.; Huang, S.; Chen, H.; Cao, S. Monoclonal antibodies against NS3 and NS5 proteins of Japanese encephalitis virus. Hybridoma 2012, 3, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Shivanand, P. Hybridoma technology for production of monoclonal antibodies. Int. J. Pharm. Sci. Rev. Res. 2010, 17, 88–94. [Google Scholar]
- Ling, S.; Pang, J.; Yu, J.; Wang, R.; Liu, L.; Ma, Y.; Zhang, Y.; Jin, N.; Wang, S. Preparation and identification of monoclonal antibody against fumonisin B1 and development of detection by Ic-ELISA. Toxicon 2014, 80, 64–72. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, R.; Zhu, X.; Jin, J.; Lu, W.; Zhao, X.; Wan, B.; Liao, Y.; Zhao, Q.; Netherton, C.L.; et al. Identification and Characterization of a Novel Epitope of ASFV-Encoded dUTPase by Monoclonal Antibodies. Viruses 2021, 13, 2175. [Google Scholar] [CrossRef]
- Sun, E.; Zhang, Z.; Wang, Z.; He, X.; Zhang, X.; Wang, L.; Wang, W.; Huang, L.; Xi, F.; Huangfu, H.; et al. Emergence and prevalence of naturally occurring lower virulent African swine fever viruses in domestic pigs in China in 2020. Sci. China Life Sci. 2021, 64, 752–765. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Chen, Y.; Wang, A.; Wei, Q.; Yang, S.; Feng, H.; Chai, S.; Liu, D.; Zhang, G. Identification of a dominant linearepitope on the VP2 capsid protein of porcine parvovirus and characterization of two monoclonal antibodies with neutralizing abilities. Int. J. Biol. Macromol. 2020, 163, 2013–2022. [Google Scholar] [CrossRef]
- Li, C.; Liu, H.; Li, J.; Liu, D.; Meng, R.; Zhang, Q.; Shaozhou, W.; Bai, X.; Zhang, T.; Liu, M. A Conserved Epitope Mappedwith a Monoclonal Antibody against the VP3 Protein of Goose Parvovirus by Using Peptide Screening and Phage Display Approaches. PLoS ONE 2016, 11, e0147361. [Google Scholar]
- Zhong, H.; Fan, S.; Du, Y.; Zhang, Y.; Zhang, A.; Jiang, D.; Han, S.; Wan, B.; Zhang, G. African Swine Fever Virus MGF110-7L Induces Host Cell Translation Suppression and Stress Granule Formation by Activating the PERK/PKR-eIF2α Pathway. Microbiol. Spectr. 2022, 10, e0328222. [Google Scholar] [CrossRef]
- Gaudreault, N.N.; Richt, J. Subunit vaccine approaches for African swine fever virus. Vaccines 2019, 7, 56. [Google Scholar] [CrossRef] [Green Version]
- Hübner, A.; Keßler, C.; Pannhorst, K.; Forth, J.H.; Kabuuka, T.; Karger, A.; Mettenleiter, T.C.; Fuchs, W. Identification and characterization of the 285L and K145R proteins of African swine fever virus. J. Gen. Virol. 2019, 100, 1303–1314. [Google Scholar] [CrossRef]
- Chen, W.; Zhao, D.; He, X.; Liu, R.; Wang, Z.; Zhang, X.; Li, F.; Shan, D.; Chen, H.; Zhang, J.; et al. A seven-gene-deleted African swine fever virus is safe and effective as a live attenuated vaccine in pigs. Sci. China Life Sci. 2020, 63, 623–634. [Google Scholar] [CrossRef] [PubMed]
- King, K.; Chapman, D.; Argilaguet, J.M.; Fishbourne, E.; Hutet, E.; Cariolet, R.; Hutchings, G.; Oura, C.A.L.; Netherton, C.L.; Moffat, K.; et al. Protection of European domestic pigs from virulent African isolates of African swine fever virus by experimental immunisation. Vaccine 2011, 29, 4593–4600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, E.; Huang, L.; Zhang, X.; Zhang, J.; Shen, D.; Zhang, Z.; Wang, Z.; Huo, H.; Wang, W.; Huangfu, H.; et al. Genotype I African swine fever viruses emerged in domestic pigs in China and caused chronic infection. Emerg. Microbes Infect. 2021, 10, 2183–2193. [Google Scholar] [CrossRef] [PubMed]
- Reis, A.L.; Goatley, L.C.; Jabbar, T.; Sanchez-Cordon, P.J.; Netherton, C.L.; Chapman, D.A.G.; Dixon, L.K. Deletion of the African Swine Fever Virus Gene DP148R Does Not Reduce Virus Replication in Culture but Reduces Virus Virulence in Pigs and Induces High Levels of Protection against Challenge. J. Virol. 2017, 91, e01428-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, D.; Liu, R.; Zhang, X.; Li, F.; Wang, J.; Zhang, J.; Liu, X.; Wang, L.; Zhang, J.; Wu, X.; et al. Replication and virulence in pigs of the first African swine fever virus isolated in China. Emerg. Microbes Infect. 2019, 8, 438–447. [Google Scholar] [CrossRef] [Green Version]
- Cubillos-Zapata, C.; Angulo, I.; Almanza, H.; Borrego, B.; Zamora-Ceballos, M.; Castón, J.R.; Mena, I.; Blanco, E.; Bárcena, J. Precise location of linear epitopes on the capsid surface of feline calicivirus recognized by neutralizing and non-neutralizing monoclonal antibodies. Vet. Res. 2020, 51, 1–8. [Google Scholar] [CrossRef]
- Cackett, G.; Matelska, D.; Sýkora, M.; Portugal, R.; Malecki, M.; Bähler, J.; Dixon, L.; Werner, F. The African Swine Fever Virus Transcriptome. J. Virol. 2020, 94, e00119-20. [Google Scholar] [CrossRef] [Green Version]
- Corral-Lugo, A.; Lopez-Siles, M.; Lopez, D.; McConnell, M.J.; Martin-Galiano, A.J. Identification and analysis of unstructured, linear B-cell epitopes in SARS-CoV-2 virion proteins for vaccine development. Vaccines 2020, 8, 397. [Google Scholar] [CrossRef]
- Mitton-Fry, R.M.; Wuttke, D.S. Nucleic Acid Recognition by OB-Fold Proteins. Annu. Rev. Biophys. Biomol. Struct. 2003, 32, 115–133. [Google Scholar] [CrossRef] [Green Version]
- Bochkarev, A.; Bochkareva, E. From RPA to BRCA2: Lessons from singlestranded DNA binding by the OB-fold. Curr. Opin. Struct. Biol. 2004, 14, 36–42. [Google Scholar] [CrossRef]
- Vieille, C.; Zeikus, G.J. Hyperthermophilic enzymes: Sources, uses, and molecular mechanisms for thermostability. Microbiol. Mol. Biol. Rev. 2001, 65, 1–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pace, C.N.; Hailong, F.; Katrina, L.; John, L.; Saul, R.T.; Bret, A.; Marsha, M.; Satoshi, L.; Ketan, G.; Martin, S.; et al. Contribution of hydrophobic interactions to protein stability. J. Mol. Biol. 2011, 408, 514–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Creighton, T.E. Proteins: Structures and Molecular Properties, 2nd ed.; Freeman & Company: New York, NY, USA, 1997; pp. 1–20. [Google Scholar]
- Kumar, S.; Tsai, C.-J.; Nussinov, R. Factors enhancing protein thermostability. Protein Eng. Des. Sel. 2000, 13, 179–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richard, D.J.; Bolderson, E.; Khanna, K.K. Multiple human single-stranded DNA binding proteins function in genome maintenance: Structural, biochemical and functional analysis. Crit. Rev. Biochem. Mol. Biol. 2009, 44, 98–116. [Google Scholar] [CrossRef] [PubMed]
- Shereda, R.D.; Kozlov, A.G.; Lohman, T.M.; Cox, M.M.; Keck, J. SSB as an organizer/mobilizer of genome maintenance complexes. Crit. Rev. Biochem. Mol. Biol. 2008, 43, 289–318. [Google Scholar] [CrossRef] [Green Version]
- Bianco, P.R. The tale of SSB. Prog. Biophys. Mol. Biol. 2017, 127, 111–118. [Google Scholar] [CrossRef]
- Costes, A.; Lecointe, F.; McGovern, S.; Quevillon-Cheruel, S.P. The C-terminal domain of the bacterial SSB protein acts as a DNA maintenance hub at active chromosome replication forks. PLoS Genet. 2010, 6, e1001238. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Chen, J.; Peng, Y.; Xie, Y.; Xiao, Y. A Promising Tool in Serological Diagnosis: Current Research Progress of Antigenic Epitopes in Infectious Diseases. Pathogens 2022, 11, 1095. [Google Scholar] [CrossRef]
- Schormann, W.; Hariharan, S.; Andrews, D.W. A reference library for assigning protein subcellular localizations by image-based machine learning. J. Cell Biol. 2020, 219, e201904090. [Google Scholar] [CrossRef]
- Pena, L.; Yáñez, R.; Revilla, Y.; Viñuela, E.; Salas, M. African Swine Fever Virus Guanylyltransferase. Virology 1993, 193, 319–328. [Google Scholar] [CrossRef]
Fragments | Primer Sequences (5′-3′) |
---|---|
F1-152 | ATCATTTTGGCAAAGAATTGCCACCATGACTACACACATCTTTCACGCAGATG |
R1-152 | AGGGAAAAAGATCTGCTAGCTCGATTACAAGTCCTCTTCAGAAATGAGCTTTTGCTCGTCTTCAAAGGCTTCTTCTAACAGTTC |
R1-141 | AGGGAAAAAGATCTGCTAGCTCGATTACAAGTCCTCTTCAGAAATGAGCTTTTGCTCTTGAAACAACTTAGATTTTTCTTCGTCGCCGG |
R1-130 | AGGGAAAAAGATCTGCTAGCTCGATTACAAGTCCTCTTCAGAAATGAGCTTTTGCTCGTATATTTCTTCACCCTGCTCATTC |
R1-119 | AGGGAAAAAGATCTGCTAGCTCGATTACAAGTCCTCTTCAGAAATGAGCTTTTGCTCAGTGAGACCATCATCTTCCAATGGCG |
R1-108 | AGGGAAAAAGATCTGCTAGCTCGATTACAAGTCCTCTTCAGAAATGAGCTTTTGCTCTTTGTATTTGTTGAACTGCAAACAGGGATCC |
R1-86 | AGGGAAAAAGATCTGCTAGCTCGATTACAAGTCCTCTTCAGAAATGAGCTTTTGCTCAGCATTCATCCGTATAACCTCTTCATCGG |
R1-75 | AGGGAAAAAGATCTGCTAGCTCGATTACAAGTCCTCTTCAGAAATGAGCTTTTGCTCGGGAGGAATGGTTCCTACATGTTTTTC |
R1-64 | AGGGAAAAAGATCTGCTAGCTCGATTACAAGTCCTCTTCAGAAATGAGCTTTTGCTCAAAGTTAAACATTAGCGGAGCTTTTTTGCC |
F153-307 | CATCATTTTGGCAAAGAATTGCCACCATGGTGCAAAAAGGTCCTGAAGCCATGAAAACG |
R153-307 | AGGGAAAAAGATCTGCTAGCTCGATTACAAGTCCTCTTCAGAAATGAGCTTTTGCTCAGCAATAGCAATCTGATTAACAAGAGTTG |
F1-87 | AGGGAAAAAGATCTGCTAGCTCGATTACAAGTCCTCTTCAGAAATGAGCTTTTGCTCTTCAGCATTCATCCGTATAACCTCTTCATCGG |
R1-87 | TCTCATCATTTTGGCAAAGAATTGCCACCATGACTACACACATCTTTCACGCAGATG |
R122-307 | AGGGAAAAAGATCTGCTAGCTCGATTACAAGTCCTCTTCAGAAATGAGCTTTTGCTCAGCAATAGCAATCTGATTAACAAGAGTTG |
F122-307 | CATCATTTTGGCAAAGAATTGCCACCATGAAGAATGAGCAGGGTGAAGAAATATACCCCG |
F123-307 | CATCATTTTGGCAAAGAATTGCCACCATGAATGAGCAGGGTGAAGAAATATACCCCGGCG |
F124-307 | CATCATTTTGGCAAAGAATTGCCACCATGGAGCAGGGTGAAGAAATATACCCCGGCGACG |
F1-131 | CATCATTTTGGCAAAGAATTGCCACCATGACTACACACATCTTTCACGCAGATG |
R1-131 | AGGGAAAAAGATCTGCTAGCTCGATTACAAGTCCTCTTCAGAAATGAGCTTTTGCTCGGGGTATATTTCTTCACCCTGCTCATTC |
F132-307 | CATCATTTTGGCAAAGAATTGCCACCATGGACGAAGAAAAATCTAAGTTGTTTC |
F77-307 | CATCATTTTGGCAAAGAATTGCCACCATGACCGATGAAGAGGTTATACGGATGAATGC |
F78-307 | CATCATTTTGGCAAAGAATTGCCACCATGGATGAAGAGGTTATACGGATGAATGCTG |
F79-80 | CATCATTTTGGCAAAGAATTGCCACCATGGAAGAGGTTATACGGATGAATGCTGAAAATCC |
F80-307 | CATCATTTTGGCAAAGAATTGCCACCATGGAGGTTATACGGATGAATGCTGAAAATCC |
F88-307 | CATCATTTTGGCAAAGAATTGCCACCATGCCAAAGTTTTTGGTGAAAAAACGTGACAGGGATCCC |
F141 | CATCATTTTGGCAAAGAATTGCCACCATGCAAATTATTGAACTGTTAGAAGAAGCCTTTGAAGACGC |
R141 | AGGGAAAAAGATCTGCTAGCTCGATTACAAGTCCTCTTCAGAAATGAGCTTTTGCTCAGCAATAGCAATCTGATTAACAAGAGTTG |
CP312RHis-F | CGACGATCGATATGACCACCCACATCTTTC |
CP312RHis-R | GTAGCTAGCCTCGAGCGCAATCGCAATCTGG |
CP312R-F | CATCATTTTGGCAAAGAATTGCCACCATGACTACACACATCTTTCACGCAGATG |
CP312R-R | AGGGAAAAAGATCTGCTAGCTCGATTAAGCAATAGCAATCTGATTAACAAGAGTTG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hagoss, Y.T.; Shen, D.; Zhang, Z.; Li, F.; Bu, Z.; Zhao, D. Novel Epitopes Mapping of African Swine Fever Virus CP312R Protein Using Monoclonal Antibodies. Viruses 2023, 15, 557. https://doi.org/10.3390/v15020557
Hagoss YT, Shen D, Zhang Z, Li F, Bu Z, Zhao D. Novel Epitopes Mapping of African Swine Fever Virus CP312R Protein Using Monoclonal Antibodies. Viruses. 2023; 15(2):557. https://doi.org/10.3390/v15020557
Chicago/Turabian StyleHagoss, Yibrah Tekle, Dongdong Shen, Zhenjiang Zhang, Fang Li, Zhigao Bu, and Dongming Zhao. 2023. "Novel Epitopes Mapping of African Swine Fever Virus CP312R Protein Using Monoclonal Antibodies" Viruses 15, no. 2: 557. https://doi.org/10.3390/v15020557
APA StyleHagoss, Y. T., Shen, D., Zhang, Z., Li, F., Bu, Z., & Zhao, D. (2023). Novel Epitopes Mapping of African Swine Fever Virus CP312R Protein Using Monoclonal Antibodies. Viruses, 15(2), 557. https://doi.org/10.3390/v15020557