Identification of Potential Proteinaceous Ligands of GI.1 Norovirus in Pacific Oyster Tissues
Abstract
:1. Introduction
2. Materials and Methods
2.1. Oyster Source and Acclimation
2.2. Protein Extraction
2.3. Construction of BSDS
2.4. Pulling down Potential Proteinaceous Ligand Candidates by BSDS
2.5. Identification of Proteinaceous Ligand Candidates
2.6. Prokaryotic Expression and Purification of oTNF and oIFT
2.7. Evaluation of the Binding Ability of roIFT and roTNF
2.8. mRNA Level of oTNF and oIFT in Oyster Tissues
2.9. Statistical Analysis
3. Results and Discussion
3.1. Identification of the Captured Proteins
3.2. Selection of Potential Proteinaceous Ligands
3.3. Binding Ability of roTNF and roIFT to P Proteins
3.4. Distribution of oTNF and oIFT in Oyster Tissues
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Primer Name | Sequence (5′→3′) |
---|---|
RS18 F | GCCATCAAGGGTATCGGTAGAC |
RS18 R | CTGCCTGTTAAGGAACCAGTCAG |
TNF F | TCTGATTGGAGAAGAGACAA |
TNF R | TGATTCGTATGGAGTGCTT |
ITF F | GCCAGTCCAAAGTTGTCCAA |
ITF R | ACTACAGCACACTCCGTTCT |
Reagent | Volume/µL |
---|---|
2 × ChamQ Universal SYBR qPCR Master Mix | 10 |
F | 0.4 |
R | 0.4 |
cDNA | 1 |
ddH2O | 8.2 |
Stage | Temperature/°C | Time/s | Cycles |
---|---|---|---|
Initial denaturation | 95 | 30 | - |
Denaturation | 95 | 10 | 40 |
Annealing | 60 | 30 | |
Extension | 95 | 15 | |
Dissolution curve | 60 | 60 | - |
95 | 15 |
References
- Chhabra, P.; de Graaf, M.; Parra, G.I.; Chan, M.C.; Green, K.; Martella, V.; Wang, Q.; White, P.A.; Katayama, K.; Vennema, H.; et al. Updated classification of norovirus genogroups and genotypes. J. Gen. Virol. 2019, 100, 1393–1406. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, Z.; Wu, Q.; Tian, P.; Geng, H.; Xu, T.; Wang, D. Redesigned duplex RT-qPCR for the detection of GI and GII human Noroviruses. Engineering 2020, 6, 442–448. [Google Scholar] [CrossRef]
- Verhoef, L.; Hewitt, J.; Barclay, L.; Ahmed, S.M.; Lake, R.; Hall, A.J.; Lopman, B.; Kroneman, A.; Vennema, H.; Vinje, J.; et al. Norovirus genotype profiles associated with foodborne transmission, 1999–2012. Emerg. Infect. Dis. 2015, 21, 592–599. [Google Scholar] [CrossRef]
- Daniels, N.A.; Bergmire-Sweat, D.A.; Schwab, K.J.; Hendricks, K.A.; Reddy, S.; Rowe, S.H.; Fankhauser, R.L.; Monroe, S.S.; Atmar, R.L.; Glass, R.I.; et al. A foodborne outbreak of gastroenteritis associated with Norwalk-like viruses: First molecular traceback to deli sandwiches contaminated during preparation. J. Infect. Dis. 2000, 181, 1467–1470. [Google Scholar] [CrossRef]
- Nicolay, N.; McDermott, R.; Kelly, M.; Gorby, M.; Prendergast, T.; Tuite, G.; Coughlan, S.; McKeown, P.; Sayers, G. Potential role of asymptomatic kitchen food handlers during a food-borne outbreak of norovirus infection, Dublin, Ireland, March 2009. Eurosurveillance 2011, 16, 10–15. [Google Scholar] [CrossRef]
- Stals, A.; Baert, L.; Van Coillie, E.; Uyttendaele, M. Extraction of food-borne viruses from food samples: A review. Int. J. Food Microbiol. 2012, 153, 1–9. [Google Scholar] [CrossRef]
- Razafimahefa, R.M.; Ludwig-Begall, L.F.; Thiry, E. Cockles and mussels, alive, alive, oh—The role of bivalve molluscs as transmission vehicles for human norovirus infections. Transbound. Emerg. Dis. 2020, 67, 9–25. [Google Scholar] [CrossRef]
- Mcleod, C.; Hay, B.; Grant, C.; Greening, G.; Day, D. Localization of norovirus and poliovirus in Pacific oysters. J. Appl. Microbiol. 2009, 106, 1220–1230. [Google Scholar] [CrossRef]
- Ueki, Y.; Shoji, M.; Suto, A.; Tanabe, T.; Okimura, Y.; Kikuchi, Y.; Saito, N.; Sano, D.; Omura, T. Persistence of caliciviruses in artificially contaminated oysters during depuration. Appl. Environ. Microbiol. 2007, 73, 5698–5701. [Google Scholar] [CrossRef]
- Jones, M.K.; Watanabe, M.; Zhu, S.; Graves, C.L.; Keyes, L.R.; Grau, K.R.; Gonzalez-Hernandez, M.B.; Iovine, N.M.; Wobus, C.E.; Vinje, J.; et al. Enteric bacteria promote human and mouse norovirus infection of B cells. Science 2014, 346, 755–759. [Google Scholar] [CrossRef]
- Ettayebi, K.; Crawford, S.E.; Murakami, K.; Broughman, J.R.; Karandikar, U.; Tenge, V.R.; Neill, F.H.; Blutt, S.E.; Zeng, X.; Qu, L.; et al. Replication of human noroviruses in stem cell-derived human enteroids. Science 2016, 353, 1387–1393. [Google Scholar] [CrossRef]
- Le Guyader, F.S.; Loisy, F.; Atmar, R.L.; Hutson, A.M.; Estes, M.K.; Ruvoen-Clouet, N.; Pommepuy, M.; Le Pendu, J. Norwalk virus-specific binding to oyster digestive tissues. Emerg. Infect. Dis. 2006, 12, 931–936. [Google Scholar] [CrossRef]
- Tian, P.; Engelbrektson, A.L.; Jiang, X.; Zhong, W.; Mandrell, R.E. Norovirus recognizes histo-blood group antigens on gastrointestinal cells of clams, mussels, and oysters: A possible mechanism of bioaccumulation. J. Food Prot. 2007, 70, 2140–2147. [Google Scholar] [CrossRef]
- Morozov, V.; Hanisch, F.; Wegner, K.M.; Schroten, H. Pandemic GII.4 Sydney and epidemic GII.17 Kawasaki308 Noroviruses display distinct specificities for histo-blood group antigens leading to different transmission vector dynamics in Pacific oysters. Front. Microbiol. 2018, 9, 2826. [Google Scholar] [CrossRef]
- Tan, M.; Xia, M.; Cao, S.; Huang, P.; Farkas, T.; Meller, J.; Hegde, R.S.; Li, X.; Rao, Z.; Jiang, X. Elucidation of strain-specific interaction of a GII-4 norovirus with HBGA receptors by site-directed mutagenesis study. Virology 2008, 379, 324–334. [Google Scholar] [CrossRef]
- Maalouf, H.; Zakhour, M.; Le Pendu, J.; Le Saux, J.C.; Atmar, R.L.; Le Guyader, F.S. Distribution in tissue and seasonal variation of norovirus genogroup I and II ligands in oysters. Appl. Environ. Microbiol. 2010, 76, 5621–5630. [Google Scholar] [CrossRef]
- Tian, P.; Bates, A.H.; Jensen, H.M.; Mandrell, R.E. Norovirus binds to blood group A-like antigens in oyster gastrointestinal cells. Lett. Appl. Microbiol. 2006, 43, 645–651. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, D.; Wu, Q.; Lu, Y.; Tian, P.; Wang, Z.; Wang, D. Characterization of a histo-blood group antigen-like substance in Romaine lettuce that contributes to human Norovirus attachment. J. Agric. Food Chem. 2020, 68, 1207–1212. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, D.; Wu, Q.; Wang, D. Oyster heat shock protein 70 plays a role in binding of human noroviruses. Appl. Environ. Microbiol. 2021, 87, e721–e790. [Google Scholar] [CrossRef]
- Zakhour, M.; Maalouf, H.; Di Bartolo, I.; Haugarreau, L.; Le Guyader, F.S.; Ruvoen-Clouet, N.; Le Saux, J.; Ruggeri, F.M.; Pommepuy, M.; Le Pendu, J. Bovine Norovirus: Carbohydrate ligand, environmental contamination, and potential cross-species transmission via oysters. Appl. Environ. Microbiol. 2010, 76, 6404–6411. [Google Scholar] [CrossRef]
- Drouaz, N.; Schaeffer, J.; Farkas, T.; Le Pendu, J.; Le Guyader, F.S. Tulane virus as a potential surrogate to mimic Norovirus behavior in oysters. Appl. Environ. Microbiol. 2015, 81, 5249–5256. [Google Scholar] [CrossRef]
- Niu, M.; Yu, Q.; Tian, P.; Gao, Z.; Wang, D.; Shi, X. Engineering bacterial surface displayed human Norovirus capsid proteins: A novel system to explore interaction between norovirus and ligands. Front. Microbiol. 2015, 6, 1448. [Google Scholar] [CrossRef]
- Xu, Q.; Ni, P.; Liu, D.; Yin, Y.; Li, Q.; Zhang, J.; Wu, Q.; Tian, P.; Shi, X.; Wang, D. A bacterial surface display system expressing cleavable capsid proteins of human Norovirus: A novel system to discover candidate receptors. Front. Microbiol. 2017, 8, 2405. [Google Scholar] [CrossRef]
- Le Guyader, F.S.; Le Saux, J.; Ambert-Balay, K.; Krol, J.; Serais, O.; Parnaudeau, S.; Giraudon, H.; Delmas, G.; Pommepuy, M.; Pothier, P.; et al. Aichi virus, Norovirus, Astrovirus, Enterovirus, and Rotavirus involved in clinical cases from a French oyster-related gastroenteritis outbreak. J. Clin. Microbiol. 2008, 46, 4011–4017. [Google Scholar] [CrossRef]
- Bi, S.; Chen, L.; Sun, Z.; Wen, Y.; Xue, Q.; Xue, C.; Li, Z.; Liu, H. Physiological responses of the triploid Pacific oyster (Crassostrea gigas) to varying salinities of aquaculture seawater. Aquac. Res. 2021, 52, 2907–2914. [Google Scholar] [CrossRef]
- Wang, D.; Wu, Q.; Kou, X.; Yao, L.; Zhang, J. Distribution of norovirus in oyster tissues. J. Appl. Microbiol. 2008, 105, 1966–1972. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, D.; Chen, W.; Yu, S.; Shi, X. Retention of Vibrio parahaemolyticus in oyster tissues after chlorine dioxide treatment. Int. J. Food Microbiol. 2010, 137, 76–80. [Google Scholar] [CrossRef]
- Cheng, X.; Xiao, X.; Chou, K. pLoc-mEuk: Predict subcellular localization of multi-label eukaryotic proteins by extracting the key GO information into general PseAAC. Genomics 2018, 110, 50–58. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, Z.; Liao, N.; Zou, S.; Tang, H.; Tian, P.; Young, G.M.; Wu, Q.; Wang, D. Culturable bacteria resident on lettuce might contribute to accumulation of human noroviruses. Int. J. Food Microbiol. 2020, 317, 108492. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; et al. The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021, 49, D605–D612. [Google Scholar] [CrossRef]
- Lwa, S.H.; Chen, W.N. Hepatitis B virus X protein interacts with beta5 subunit of heterotrimeric guanine nucleotide binding protein. Virol. J. 2005, 2, 76. [Google Scholar] [CrossRef]
- Ishikawa, H.; Marshall, W.F. Ciliogenesis: Building the cell’s antenna. Nat. Rev. Mol. Cell Biol. 2011, 12, 222–234. [Google Scholar] [CrossRef]
- Winter, E.; Ponting, C.P. TRAM, LAG1 and CLN8: Members of a novel family of lipid-sensing domains? Trends Biochem. Sci. 2002, 27, 381–383. [Google Scholar] [CrossRef]
- MacEwan, D.J. TNF ligands and receptors—A matter of life and death. Br. J. Pharmacol. 2002, 135, 855–875. [Google Scholar] [CrossRef]
- Waters, J.P.; Pober, J.S.; Bradley, J.R. Tumour necrosis factor in infectious disease. J. Pathol. 2013, 230, 132–147. [Google Scholar] [CrossRef]
- Goetz, F.W.; Planas, J.V.; Mackenzie, S. Tumor necrosis factors. Dev. Comp. Immunol. 2004, 28, 487–497. [Google Scholar] [CrossRef]
- Kriegler, M.; Perez, C.; DeFay, K.; Albert, I.; Lu, S.D. A novel form of TNF/cachectin is a cell surface cytotoxic transmembrane protein: Ramifications for the complex physiology of TNF. Cell 1988, 53, 45–53. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, Z.; Wang, L.; Yang, C.; Jianga, S.; Song, L. The immunomodulation of a novel tumor necrosis factor (CgTNF-1) in oyster Crassostrea gigas. Dev. Comp. Immunol. 2014, 45, 291–299. [Google Scholar] [CrossRef]
- Qu, F.; Xiang, Z.; Zhang, Y.; Li, J.; Xiao, S.; Zhang, Y.; Qin, Y.; Zhou, Y.; Yu, Z. Molecular identification and functional characterization of a tumor necrosis factor (TNF) gene in Crassostrea hongkongensis. Immunobiology 2017, 222, 751–758. [Google Scholar] [CrossRef]
- Yu, F.; Zhang, Y.; Yu, Z. Characteristics and expression patterns of the lipopolysaccharide-induced TNF-alpha factor (LITAF) gene family in the Pacific oyster Crassostrea gigas. Fish Shellfish Immunol. 2012, 33, 899–908. [Google Scholar] [CrossRef]
- Zhang, D.; Jiang, J.; Jiang, S.; Ma, J.; Su, T.; Qiu, L.; Zhu, C.; Xu, X. Molecular characterization and expression analysis of a putative LPS-induced TNF-alpha factor (LITAF) from pearl oyster Pinctada fucata. Fish Shellfish Immunol. 2009, 27, 391–396. [Google Scholar] [CrossRef]
Uniprot Number | Protein Name | Coverage (%) | Number of Specific Peptides | Molecular Weight (kDa) | Theoretical Isoelectric Point | Tissue Distribution Location |
---|---|---|---|---|---|---|
K1P4E2 | Putative tyrosinase-like protein tyr-3 | 4 | 1 | 66.7 | 9.22 | MDGH |
K1QJ28 | Mammalian ependymin-related protein 1 | 3 | 1 | 40.5 | 6.07 | MDGH |
K1QN64 | Transporter | 2 | 1 | 95.6 | 7.81 | MDGH |
K1PT11 | Collagen alpha-2(I) chain | 2 | 1 | 168.9 | 5.24 | MDGH |
K1QV98 | TNF_2 domain-containing protein | 6 | 1 | 35.8 | 9.17 | MDGH |
K1QHF1 | Collectin-12 | 6 | 1 | 43.9 | 8.44 | MDGH |
K1R7M0 | SMC_N domain-containing protein | 2 | 1 | 88.1 | 5.26 | D |
K1RIE6 | Small conductance calcium-activated potassium channel protein 2 | 7 | 1 | 43.8 | 9.11 | D |
K1PNV2 | Trithorax group protein osa | 4 | 1 | 72.5 | 9.54 | D |
K1PRP1 | TPR_REGION domain-containing protein | 1 | 1 | 182.6 | 5.68 | D |
K1QHW7 | Microfibrillar-associated protein 1 | 3 | 1 | 67.3 | 5.03 | D |
K1QHP5 | Carbohydrate sulfotransferase 15 | 2 | 1 | 168.4 | 8.28 | D |
K1QX85 | Bestrophin homolog | 3 | 1 | 82.3 | 6.39 | D |
K1QIT7 | Extracellular matrix protein FRAS1 | 1 | 1 | 233.6 | 5.27 | D |
K1RF07 | Guanine nucleotide-binding protein subunit beta-5 | 6 | 1 | 40.5 | 6.16 | D |
K1QX37 | phosphopyruvate hydratase | 1 | 1 | 127.3 | 7.34 | D |
K1P919 | Protocadherin-like wing polarity protein stan | 7 | 1 | 39.5 | 4.7 | D |
K1PJY2 | Inositol polyphosphate 1-phosphatase | 3 | 1 | 82.3 | 5.33 | D |
K1QWW4 | Lin-54-like protein | 3 | 1 | 81.6 | 8.43 | D |
K1PUP1 | N-acetylated-alpha-linked acidic dipeptidase 2 | 1 | 1 | 84.8 | 6.34 | D |
K1PB63 | DUF19 domain-containing protein | 5 | 1 | 19 | 6.51 | D |
F8RP10 | Bactericidal permeability increasing protein | 6 | 1 | 52.8 | 9.76 | D |
K1QM09 | Contactin | 3 | 1 | 88.7 | 6.84 | D |
K1R0F5 | Prominin-1-A | 3 | 1 | 91.2 | 4.94 | D |
K1RGD2 | Pancreatic lipase-related protein 1 | 3 | 1 | 56.1 | 6.62 | D |
K1QH82 | Transient receptor potential cation channel subfamily M member 8 | 2 | 1 | 150 | 6.54 | D |
K1QM30 | EGF-like domain-containing protein | 8 | 1 | 39.7 | 7.24 | DGH |
K1QCZ6 | Proprotein convertase subtilisin/kexin type 4 | 1 | 1 | 62.2 | 7.87 | DGH |
K1Q3 × 2 | Plexin-A4 | 7 | 1 | 64.9 | 6.24 | DGH |
K1R1E8 | Fibronectin type-III domain-containing protein | 22 | 1 | 17.1 | 8.16 | DGH |
K1QJQ0 | Dynein regulatory complex protein 10 | 4 | 1 | 60.7 | 9.26 | DGH |
K1QQ05 | Insulin-like growth factor-binding protein complex acid labile chain | 2 | 1 | 104.1 | 8.79 | DGH |
K1PKY4 | Sodium/calcium exchanger 3 | 3 | 1 | 64.5 | 5.36 | DGH |
K1QUL1 | Zinc finger CW-type PWWP domain protein 1-like protein | 2 | 1 | 102.7 | 5.43 | DGH |
K1P915 | Sushi domain-containing protein | 7 | 1 | 32.5 | 5.49 | DGH |
K1PAY0 | Sodium bicarbonate transporter-like protein 11 | 6 | 2 | 98.8 | 6.71 | DGH |
K1S3D5 | Solute carrier family 22 member 16 | 20 | 1 | 17.6 | 7.91 | DGH |
K1QYC3 | P-type Cu(+) transporter | 4 | 2 | 131.3 | 6.3 | DGH |
K1Q7G4 | Protein LAP2 | 3 | 1 | 80 | 4.64 | DG |
K1PRW3 | Innexin | 5 | 1 | 52.4 | 8.53 | DG |
K1QJH8 | Amiloride-sensitive cation channel 2, neuronal | 2 | 1 | 72.2 | 6.61 | DG |
K1QJA1 | Cell division control protein 42-like protein | 10 | 1 | 22.7 | 5.62 | DG |
K1R5R3 | DBH-like monooxygenase protein 2-like protein | 2 | 1 | 126.4 | 6.02 | DH |
K1QGG3 | Secreted protein | 22 | 1 | 16.6 | 5.97 | DH |
K1QUW2 | Pancreatic trypsin inhibitor | 3 | 1 | 134.3 | 10.61 | DM |
K1RYS4 | E3 ubiquitin-protein ligase TRIP12 | 1 | 1 | 109.4 | 9.54 | DM |
K1RRI7 | Ficolin-2 | 10 | 1 | 42.5 | 6.37 | DM |
K1Q659 | Centromere protein F | 1 | 2 | 443.5 | 4.94 | DGM |
K1QUK9 | Migration and invasion-inhibitory protein | 2 | 1 | 74.7 | 8.16 | DGM |
K1PWZ2 | Metabotropic glutamate receptor 8 | 3 | 1 | 79.8 | 7.52 | DMH |
K1QAB1 | AP-2 complex subunit alpha | 2 | 1 | 109.6 | 7.78 | DMH |
K1QDK8 | Intraflagellar transport protein 74-like protein | 2 | 1 | 86.1 | 5.43 | DMH |
K1PBI1 | Metalloendopeptidase | 2 | 1 | 91.6 | 6.52 | DMH |
K1RVV6 | Titin-like | 2 | 1 | 76.9 | 8.82 | DMH |
K1QIA5 | Membrane progestin receptor beta | 2 | 1 | 103.3 | 7.83 | DMH |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyu, C.; Li, J.; Shi, Z.; An, R.; Wang, Y.; Luo, G.; Wang, D. Identification of Potential Proteinaceous Ligands of GI.1 Norovirus in Pacific Oyster Tissues. Viruses 2023, 15, 631. https://doi.org/10.3390/v15030631
Lyu C, Li J, Shi Z, An R, Wang Y, Luo G, Wang D. Identification of Potential Proteinaceous Ligands of GI.1 Norovirus in Pacific Oyster Tissues. Viruses. 2023; 15(3):631. https://doi.org/10.3390/v15030631
Chicago/Turabian StyleLyu, Chenang, Jingwen Li, Zhentao Shi, Ran An, Yanfei Wang, Guangda Luo, and Dapeng Wang. 2023. "Identification of Potential Proteinaceous Ligands of GI.1 Norovirus in Pacific Oyster Tissues" Viruses 15, no. 3: 631. https://doi.org/10.3390/v15030631
APA StyleLyu, C., Li, J., Shi, Z., An, R., Wang, Y., Luo, G., & Wang, D. (2023). Identification of Potential Proteinaceous Ligands of GI.1 Norovirus in Pacific Oyster Tissues. Viruses, 15(3), 631. https://doi.org/10.3390/v15030631