Research Advances on the Stability of mRNA Vaccines
Abstract
:1. Introduction
2. Regulatory Documents and Guidelines Related to Vaccine Stability
3. Advances in mRNA Vaccine Development
4. Mechanism of mRNA Vaccine Degradation
4.1. Degradation of mRNA
4.2. Degradation of LNPs
5. Factors Affecting mRNA Vaccine Stability
5.1. mRNA Structure
5.1.1. Integrity and Length
5.1.2. Sequence Optimization and Modification
5.1.3. Circular RNA and Self-Amplifying RNA Structures
5.2. Excipients
5.3. LNP Delivery Systems
5.4. Manufacturing Processes
5.4.1. Ethanol
5.4.2. pH and Buffer System
5.4.3. Lyophilization
5.5. Temperature and Physical Shock
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Beck, J.D.; Reidenbach, D.; Salomon, N.; Sahin, U.; Türeci, O.; Vormehr, M.; Kranz, L.M. mRNA therapeutics in cancer immunotherapy. Mol. Cancer 2021, 20, 69. [Google Scholar] [CrossRef]
- Uddin, M.N.; Roni, M.A. Challenges of Storage and Stability of Mrna-Based COVID-19 Vaccines. Vaccines 2021, 9, 1033. [Google Scholar] [CrossRef]
- McMahon, M.E.; Abbott, A.; Babayan, Y.; Carhart, J.; Chen, C.W.; Debie, E.; Fu, M.; Hoaglund-Hyzer, C.; Lennard, A.; Li, H.; et al. Considerations for Updates to Ich Q1 and Q5c Stability Guidelines: Embracing Current Technology and Risk Assessment Strategies. AAPS J. 2021, 23, 107. [Google Scholar] [CrossRef]
- WHO. Stability of Vaccines; WHO: Geneva, Switzerland, 1989. [Google Scholar]
- WHO. Thermostability of Vaccines; WHO/GPV/98.07; WHO: Geneva, Switzerland, 1998. [Google Scholar]
- ICH. Q5C Stability Testing of Biotechnologicalbiological Products; ICH: Geneva, Switzerland, 1995. [Google Scholar]
- WHO. Guidelines for Stability Evaluation of Vaccines; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- WHO. Guidelines for Stability Evaluation of Vaccines; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- Center for Drug Evaluation of China. Technical Guidelines for Stability Research of Biological Products; Center for Drug Evaluation of China: Beijing, China, 2015. [Google Scholar]
- Pharmacopoeia of the People’s Republic of China. Guidelines for stability test of biological products. In Chinese Pharmacopoeia; China Pharmaceutical Science and Technology Press Publishing Company: Beijing, China, 2020. [Google Scholar]
- Schmid, A. Considerations for Producing Mrna Vaccines for Clinical Trials. Methods Mol. Biol. 2016, 1499, 237–251. [Google Scholar]
- Evaluation, Center for Drug. Technical Guidelines on Research and Development of COVID-19 Prophylactic Mrna Vaccines (Draft Edition); Center for Drug Evaluation of China: Beijing, China, 2020. [Google Scholar]
- WHO. Evaluation of the Quality, Safety and Efficacy of Messenger Rna Vaccines for the Prevention of Infectious Diseases: Regulatory Considerations; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- FDA. Liposomal Drug Products: Chemistry, Manufacturing, and Controls; Human Pharmacokinetic and Bioavailability; and Labeling Docu-mentation; FDA: Silver Spring, MD, USA, 2018. [Google Scholar]
- Center for Drug Evaluation of China. Technical Guidelines for the Pharmacological Study and Evaluation of in Vivo Gene Therapy Products (Draft Edition); CDE: Beijing, China, 2022. [Google Scholar]
- ICH. Evaluation for Stability Data Q1e; ICH: Geneva, Switzerland, 2003. [Google Scholar]
- ICH. Stability Testing of New Drug Substances and Products Q1a(R2); ICH: Geneva, Switzerland, 2003. [Google Scholar]
- WHO. Controlled Temperature Chain (Ctc) Guidelines; WHO: Geneva, Switzerland, 2012. [Google Scholar]
- WHO. Extended Controlled Temperature Conditions (Ectc) Guidelines; WHO: Geneva, Switzerland, 2013. [Google Scholar]
- Malone, R.W.; Felgner, P.L.; Verma, I.M. Cationic Liposome-Mediated Rna Transfection. Proc. Natl. Acad. Sci. USA 1989, 86, 6077–6081. [Google Scholar] [CrossRef] [Green Version]
- Wolff, J.A.; Malone, R.W.; Williams, P.; Chong, W.; Acsadi, G.; Jani, A.; Felgner, P.L. Direct gene transfer into mouse muscle in vivo. Science 1990, 247 Pt 1, 1465–1468. [Google Scholar] [CrossRef]
- Karikó, K.; Buckstein, M.; Ni, H.; Weissman, D. Suppression of RNA Recognition by Toll-like Receptors: The Impact of Nucleoside Modification and the Evolutionary Origin of RNA. Immunity 2005, 23, 165–175. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. COVID-19 Vaccine Tracker and Landscape[Eb/Ol]. 2022. Available online: Https://Www.Who.Int/Publications/M/Item/Draft-Landscape-of-Covid-19-Candidate-Vaccines (accessed on 8 February 2023).
- Feldman, R.A.; Fuhr, R.; Smolenov, I.; Ribeiro, A.; Panther, L.; Watson, M.; Senn, J.J.; Smith, M.; Almarsson, Ö.; Pujar, H.S.; et al. mRNA vaccines against H10N8 and H7N9 influenza viruses of pandemic potential are immunogenic and well tolerated in healthy adults in phase 1 randomized clinical trials. Vaccine 2019, 37, 3326–3334. [Google Scholar] [CrossRef]
- Miah, K.M.; Hyde, S.C.; Gill, D.R. Emerging gene therapies for cystic fibrosis. Expert Rev. Respir. Med. 2019, 13, 709–725. [Google Scholar] [CrossRef]
- Attarwala, H.; Lumley, M.; Liang, M.; Ivaturi, V.; Senn, J. Translational Pharmacokinetic/Pharmacodynamic Model for mRNA-3927, an Investigational Therapeutic for the Treatment of Propionic Acidemia. Nucleic Acid Ther. 2022. Online ahead of print. [Google Scholar] [CrossRef]
- Gillmore, J.D.; Gane, E.; Taubel, J.; Kao, J.; Fontana, M.; Maitland, M.L.; Seitzer, J.; O’Connell, D.; Walsh, K.R.; Wood, K.; et al. CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis. N. Engl. J. Med. 2021, 385, 493–502. [Google Scholar] [CrossRef]
- Schoenmaker, L.; Witzigmann, D.; Kulkarni, J.A.; Verbeke, R.; Kersten, G.; Jiskoot, W.; Crommelin, D.J.A. Mrna-Lipid Nanoparticle COVID-19 Vaccines: Structure and Stability. Int. J. Pharm. 2021, 601, 120586. [Google Scholar] [CrossRef]
- Pogocki, D.; Schöneich, C. Chemical stability of nucleic acid–derived drugs. J. Pharm. Sci. 2000, 89, 443–456. [Google Scholar] [CrossRef]
- Kaukinen, U.; Lyytikainen, S.; Mikkola, S.; Lonnberg, H. The Reactivity of Phosphodiester Bonds within Linear Single-Stranded Oligoribonucleotides Is Strongly Dependent on the Base Sequence. Nucleic Acids Res 2002, 30, 468–474. [Google Scholar] [CrossRef] [Green Version]
- Wayment-Steele, H.K.; Kim, D.S.; Choe, C.A.; Nicol, J.J.; Wellington-Oguri, R.; Watkins, A.M.; Sperberg, R.A.P.; Huang, P.S.; Participants, E.; Das, R. Theoretical Basis for Stabilizing Messenger Rna through Secondary Structure Design. bioRxiv 2021. [CrossRef]
- Mikkola, S.; Kaukinen, U.; Lönnberg, H. The Effect of Secondary Structure on Cleavage of the Phosphodiester Bonds of RNA. Cell Biochem. Biophys. 2001, 34, 95–119. [Google Scholar] [CrossRef] [PubMed]
- Fabre, A.-L.; Colotte, M.; Luis, A.; Tuffet, S.; Bonnet, J. An efficient method for long-term room temperature storage of RNA. Eur. J. Hum. Genet. 2014, 22, 379–385. [Google Scholar] [CrossRef] [Green Version]
- Ayat, N.R.; Sun, Z.; Sun, D.; Yin, M.; Hall, R.C.; Vaidya, A.M.; Liu, X.; Schilb, A.L.; Scheidt, J.; Lu, Z.-R. Formulation of Biocompatible Targeted ECO/siRNA Nanoparticles with Long-Term Stability for Clinical Translation of RNAi. Nucleic Acid Ther. 2019, 29, 195–207. [Google Scholar] [CrossRef]
- Ball, R.L.; Bajaj, P.; Whitehead, K.A. Achieving Long-Term Stability of Lipid Nanoparticles: Examining the Effect of Ph, Temperature, and Lyophilization. Int. J. Nanomed. 2017, 12, 305–315. [Google Scholar] [CrossRef] [Green Version]
- Ryals, R.C.; Patel, S.; Acosta, C.; McKinney, M.; Pennesi, M.E.; Sahay, G. The effects of PEGylation on LNP based mRNA delivery to the eye. PLoS ONE 2020, 15, e0241006. [Google Scholar] [CrossRef]
- Garaycoechea, J.I.; Crossan, G.P.; Langevin, F.; Mulderrig, L.; Louzada, S.; Yang, F.; Guilbaud, G.; Park, N.; Roerink, S.; Nik-Zainal, S.; et al. Alcohol and endogenous aldehydes damage chromosomes and mutate stem cells. Nature 2018, 553, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Shishodia, S.; Zhang, D.; El-Sagheer, A.H.; Brown, T.; Claridge, T.D.W.; Schofield, C.J.; Hopkinson, R.J. NMR analyses onN-hydroxymethylated nucleobases—Implications for formaldehyde toxicity and nucleic acid demethylases. Org. Biomol. Chem. 2018, 16, 4021–4032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Packer, M.; Gyawali, D.; Yerabolu, R.; Schariter, J.; White, P. A novel mechanism for the loss of mRNA activity in lipid nanoparticle delivery systems. Nat. Commun. 2021, 12, 6777. [Google Scholar] [CrossRef] [PubMed]
- Klauer, A.A.; van Hoof, A. Degradation of Mrnas That Lack a Stop Codon: A Decade of Nonstop Progress. Wiley Interdiscip Rev. RNA 2012, 3, 649–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santiago, T.C.; Purvis, I.J.; Bettany, A.J.; Brown, A.J. The Relationship between Mrna Stability and Length in Saccharomyces Cerevisiae. Nucleic. Acids Res. 1986, 14, 8347–8360. [Google Scholar] [CrossRef] [PubMed]
- Stewart-Jones, G.B.E.; Elbashir, S.M.; Wu, K.; Lee, D.; Renzi, I.; Ying, B.; Koch, M.; Sein, C.E.; Choi, A.; Whitener, B.; et al. Development of SARS-CoV-2 Mrna Vaccines Encoding Spike N-Terminal and Receptor Binding Domains. bioRxiv 2022. [CrossRef]
- Suzuki, Y.; Hyodo, K.; Tanaka, Y.; Ishihara, H. Sirna-Lipid Nanoparticles with Long-Term Storage Stability Facilitate Potent Gene-Silencing in Vivo. J. Control. Release 2015, 220, 44–50. [Google Scholar] [CrossRef]
- Gustafsson, C.; Govindarajan, S.; Minshull, J. Codon bias and heterologous protein expression. Trends Biotechnol. 2004, 22, 346–353. [Google Scholar] [CrossRef]
- Graf, M.; Bojak, A.; Deml, L.; Bieler, K.; Wolf, H.; Wagner, R. Concerted Action of Multiple cis -Acting Sequences Is Required for Rev Dependence of Late Human Immunodeficiency Virus Type 1 Gene Expression. J. Virol. 2000, 74, 10822–10826. [Google Scholar] [CrossRef] [Green Version]
- Kudla, G.; Lipinski, L.; Caffin, F.; Helwak, A.; Zylicz, M. High Guanine and Cytosine Content Increases mRNA Levels in Mammalian Cells. PLoS Biol. 2006, 4, e180. [Google Scholar] [CrossRef]
- Thess, A.; Grund, S.; Mui, B.L.; Hope, M.J.; Baumhof, P.; Fotin-Mleczek, M.; Schlake, T. Sequence-Engineered Mrna without Chemical Nucleoside Modifications Enables an Effective Protein Therapy in Large Animals. Mol. Ther. 2015, 23, 1456–1464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weissman, D.; Karikó, K. mRNA: Fulfilling the Promise of Gene Therapy. Mol. Ther. 2015, 23, 1416–1417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarghampoor, F.; Azarpira, N.; Khatami, S.R.; Behzad-Behbahani, A.; Foroughmand, A.M. Improved translation efficiency of therapeutic mRNA. Gene 2019, 707, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Karikó, K.; Kuo, A.; Barnathan, E.S. Overexpression of urokinase receptor in mammalian cells following administration of the in vitro transcribed encoding mRNA. Gene Ther. 1999, 6, 1092–1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ross, J.; Sullivan, T.D. Half-lives of beta and gamma globin messenger RNAs and of protein synthetic capacity in cultured human reticulocytes. Blood 1985, 66, 1149–1154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holtkamp, S.; Kreiter, S.; Selmi, A.; Simon, P.; Koslowski, M.; Huber, C.; Tureci, O.; Sahin, U. Modification of Antigen-Encoding Rna Increases Stability, Translational Efficacy, and T-Cell Stimulatory Capacity of Dendritic Cells. Blood 2006, 108, 4009–4017. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, J.; Sonenberg, N. The Organizing Principles of Eukaryotic Ribosome Recruitment. Annu. Rev. Biochem. 2019, 88, 307–335. [Google Scholar] [CrossRef]
- E Grier, A.; Burleigh, S.; Sahni, J.; A Clough, C.; Cardot, V.; Choe, D.C.; Krutein, M.C.; Rawlings, D.J.; Jensen, M.C.; Scharenberg, A.M.; et al. pEVL: A Linear Plasmid for Generating mRNA IVT Templates With Extended Encoded Poly(A) Sequences. Mol. Ther. Nucleic Acids 2016, 5, e306. [Google Scholar] [CrossRef]
- Li, C.Y.; Liang, Z.; Hu, Y.; Zhang, H.; Setiasabda, K.D.; Li, J.; Ma, S.; Xia, X.; Kuang, Y. Cytidine-containing tails robustly enhance and prolong protein production of synthetic mRNA in cell and in vivo. Mol. Ther. Nucleic Acids 2022, 30, 300–310. [Google Scholar] [CrossRef]
- Anderson, B.R.; Muramatsu, H.; Jha, B.K.; Silverman, R.H.; Weissman, D.; Karikó, K. Nucleoside modifications in RNA limit activation of 2′-5′-oligoadenylate synthetase and increase resistance to cleavage by RNase L. Nucleic Acids Res. 2011, 39, 9329–9338. [Google Scholar] [CrossRef] [Green Version]
- Andries, O.; Mc Cafferty, S.; De Smedt, S.C.; Weiss, R.; Sanders, N.N.; Kitada, T. N1-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice. J. Control. Release 2015, 217, 337–344. [Google Scholar] [CrossRef]
- Sen, A.; Kargar, K.; Akgun, E.; Pinar, M.C. Codon Optimization: A Mathematical Programing Approach. Bioinformatics 2020, 36, 4012–4020. [Google Scholar] [CrossRef]
- Mauger, D.M.; Cabral, B.J.; Presnyak, V.; Su, S.V.; Reid, D.W.; Goodman, B.; Link, K.; Khatwani, N.; Reynders, J.; Moore, M.J.; et al. mRNA structure regulates protein expression through changes in functional half-life. Proc. Natl. Acad. Sci. USA 2019, 116, 24075–24083. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Kuo, C.C.; Chen, L. Gc Content around Splice Sites Affects Splicing through Pre-Mrna Secondary Structures. BMC Genom. 2011, 12, 90. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.S.; He, C. Pseudouridine in a new era of RNA modifications. Cell Res. 2015, 25, 153–154. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Liu, D.; He, Q.; Liu, J.; Mao, Q.; Liang, Z. Research progress on circular RNA vaccines. Front. Immunol. 2022, 13, 1091797. [Google Scholar] [CrossRef]
- Zhou, W.Y.; Cai, Z.R.; Liu, J.; Wang, D.S.; Ju, H.Q.; Xu, R.H. Circular Rna: Metabolism, Functions and Interactions with Proteins. Mol. Cancer 2020, 19, 172. [Google Scholar] [CrossRef]
- Uchida, S.; Perche, F.; Pichon, C.; Cabral, H. Nanomedicine-Based Approaches for mRNA Delivery. Mol. Pharm. 2020, 17. [Google Scholar] [CrossRef]
- Enuka, Y.; Lauriola, M.; Feldman, M.E.; Sas-Chen, A.; Ulitsky, I.; Yarden, Y. Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res. 2016, 44, 1370–1383. [Google Scholar] [CrossRef] [Green Version]
- Wesselhoeft, R.A.; Kowalski, P.S.; Anderson, D.G. Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat. Commun. 2018, 9, 2629. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Wei, H.; Zhang, K.; Li, Z.; Wei, T.; Tang, C.; Yang, Y.; Wang, Z. A flexible, efficient, and scalable platform to produce circular RNAs as new therapeutics. bioRxiv 2022. [CrossRef]
- Qu, L.; Yi, Z.; Shen, Y.; Lin, L.; Chen, F.; Xu, Y.; Wu, Z.; Tang, H.; Zhang, X.; Tian, F.; et al. Circular Rna Vaccines against SARS-CoV-2 and Emerging Variants. Cell 2022, 185, 1728–1744.e16. [Google Scholar] [CrossRef]
- McKay, P.F.; Hu, K.; Blakney, A.K.; Samnuan, K.; Brown, J.C.; Penn, R.; Zhou, J.; Bouton, C.R.; Rogers, P.; Polra, K.; et al. Self-Amplifying Rna SARS-CoV-2 Lipid Nanoparticle Vaccine Candidate Induces High Neutralizing Antibody Titers in Mice. Nat. Commun. 2020, 11, 3523. [Google Scholar] [CrossRef] [PubMed]
- de Alwis, R.; Gan, E.S.; Chen, S.; Leong, Y.S.; Tan, H.C.; Zhang, S.L.; Yau, C.; Low, J.G.H.; Kalimuddin, S.; Matsuda, D.; et al. A Single Dose of Self-Transcribing and Replicating Rna-Based SARS-CoV-2 Vaccine Produces Protective Adaptive Immunity in Mice. Mol. Ther. 2021, 29, 1970–1983. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Kalonia, D.S. Removal of peroxides in polyethylene glycols by vacuum drying: Implications in the stability of biotech and pharmaceutical formulations. AAPS PharmSciTech 2006, 7, E47–E53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, S.; Huang, Y.; van Huystee, R. Improved plant RNA stability in storage. Anal. Biochem. 2004, 326, 122–124. [Google Scholar] [CrossRef]
- Seyhan, A.A.; Burke, J.M. Mg2+-independent hairpin ribozyme catalysis in hydrated RNA films. Rna 2000, 6, 189–198. [Google Scholar] [CrossRef] [Green Version]
- Mao, S.; Li, S.; Zhang, Y.; Long, L.; Peng, J.; Cao, Y.; Mao, J.Z.; Qi, X.; Xin, Q.; San, G.; et al. A Highly Efficient Needle-Free-Injection Delivery System for Mrna-Lnp Vaccination against SARS-CoV-2. Nano Today 2023, 48, 101730. [Google Scholar] [CrossRef]
- Cullis, P.R.; Hope, M.J. Lipid Nanoparticle Systems for Enabling Gene Therapies. Mol. Ther. 2017, 25, 1467–1475. [Google Scholar] [CrossRef] [Green Version]
- Sabnis, S.; Kumarasinghe, E.S.; Salerno, T.; Mihai, C.; Ketova, T.; Senn, J.J.; Lynn, A.; Bulychev, A.; McFadyen, I.; Chan, J.; et al. A Novel Amino Lipid Series for mRNA Delivery: Improved Endosomal Escape and Sustained Pharmacology and Safety in Non-human Primates. Mol. Ther. 2018, 26, 1509–1519. [Google Scholar] [CrossRef] [Green Version]
- Prieve, M.G.; Harvie, P.; Monahan, S.D.; Roy, D.; Li, A.G.; Blevins, T.L.; Paschal, A.E.; Waldheim, M.; Bell, E.C.; Galperin, A.; et al. Targeted mRNA Therapy for Ornithine Transcarbamylase Deficiency. Mol. Ther. 2018, 26, 801–813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kauffman, K.J.; Dorkin, J.R.; Yang, J.H.; Heartlein, M.W.; DeRosa, F.; Mir, F.F.; Fenton, O.S.; Anderson, D.G. Optimization of Lipid Nanoparticle Formulations for mRNA Delivery in Vivo with Fractional Factorial and Definitive Screening Designs. Nano Lett. 2015, 15, 7300–7306. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; El-Mayta, R.; Murdoch, T.J.; Warzecha, C.C.; Billingsley, M.M.; Shepherd, S.J.; Gong, N.; Wang, L.; Wilson, J.M.; Lee, D.; et al. Helper lipid structure influences protein adsorption and delivery of lipid nanoparticles to spleen and liver. Biomater. Sci. 2021, 9, 1449–1463. [Google Scholar] [CrossRef] [PubMed]
- Meng, C.; Chen, Z.; Li, G.; Welte, T.; Shen, H. Nanoplatforms for mRNA Therapeutics. Adv. Ther. 2020, 4, 2000099. [Google Scholar] [CrossRef]
- Hajj, K.A.; Whitehead, K.A. Tools for translation: Non-viral materials for therapeutic mRNA delivery. Nat. Rev. Mater. 2017, 2, 17056. [Google Scholar] [CrossRef]
- Patel, S.; Ashwanikumar, N.; Robinson, E.; Xia, Y.; Mihai, C.; Griffith, J.P., 3rd; Hou, S.; Esposito, A.A.; Ketova, T.; Welsher, K.; et al. Naturally-Occurring Cholesterol Analogues in Lipid Nanoparticles Induce Polymorphic Shape and Enhance Intracellular Delivery of Mrna. Nat. Commun. 2020, 11, 983. [Google Scholar] [CrossRef] [Green Version]
- Heyes, J.; Hall, K.; Tailor, V.; Lenz, R.; MacLachlan, I. Synthesis and characterization of novel poly(ethylene glycol)-lipid conjugates suitable for use in drug delivery. J. Control. Release 2006, 112, 280–290. [Google Scholar] [CrossRef]
- Leung, A.K.; Tam, Y.Y.C.; Cullis, P.R. Lipid Nanoparticles for Short Interfering RNA Delivery. Adv. Genet. 2014, 88, 71–110. [Google Scholar] [CrossRef]
- Jokerst, J.V.; Lobovkina, T.; Zare, R.N.; Gambhir, S.S. Nanoparticle PEGylation for imaging and therapy. Nanomedicine 2011, 6, 715–728. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.S.; Ramishetti, S.; Landesman-Milo, D.; Goldsmith, M.; Chatterjee, S.; Palakuri, R.; Peer, D. Therapeutic Gene Silencing Using Targeted Lipid Nanoparticles in Metastatic Ovarian Cancer. Small 2021, 17, e2100287. [Google Scholar] [CrossRef]
- Kowalski, P.S.; Rudra, A.; Miao, L.; Anderson, D.G. Delivering the Messenger: Advances in Technologies for Therapeutic mRNA Delivery. Mol. Ther. 2019, 27, 710–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alameh, M.-G.; Tombácz, I.; Bettini, E.; Lederer, K.; Ndeupen, S.; Sittplangkoon, C.; Wilmore, J.R.; Gaudette, B.T.; Soliman, O.Y.; Pine, M.; et al. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity 2021, 54, 2877–2892.e7. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Fan, N.; Huang, H.; Jiang, X.; Qin, S.; Xiao, W.; Zheng, Q.; Zhang, Y.; Duan, X.; Qin, Z.; et al. Mrna Vaccines against SARS-CoV-2 Variants Delivered by Lipid Nanoparticles Based on Novel Ionizable Lipids. Adv Funct Mater 2022, 32, 2204692. [Google Scholar] [CrossRef] [PubMed]
- Mitragotri, S.; Lahann, J. Physical approaches to biomaterial design. Nat. Mater. 2009, 8, 15–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, X.; Li, Y. Physicochemical Characteristics of Nanoparticles Affect Circulation, Biodistribution, Cellular Internalization, and Trafficking. Small 2013, 9, 1521–1532. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Jeong, M.; Hur, S.; Cho, Y.; Park, J.; Jung, H.; Seo, Y.; Woo, H.A.; Nam, K.T.; Lee, K.; et al. Engineered ionizable lipid nanoparticles for targeted delivery of RNA therapeutics into different types of cells in the liver. Sci. Adv. 2021, 7, eabf4398. [Google Scholar] [CrossRef]
- Barua, S.; Mitragotri, S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review of current status and future prospects. Nano Today 2014, 9, 223–243. [Google Scholar] [CrossRef] [Green Version]
- Ly, H.H.; Daniel, S.; Soriano, S.K.V.; Kis, Z.; Blakney, A.K. Optimization of Lipid Nanoparticles for saRNA Expression and Cellular Activation Using a Design-of-Experiment Approach. Mol. Pharm. 2022, 19, 1892–1905. [Google Scholar] [CrossRef]
- Komatsu, H.; Okada, S. Ethanol-induced aggregation and fusion of small phosphatidylcholine liposome: Participation of interdigitated membrane formation in their processes. Biochim. Biophys. Acta 1995, 1235, 270–280. [Google Scholar] [CrossRef] [Green Version]
- Kimura, N.; Maeki, M.; Sato, Y.; Ishida, A.; Tani, H.; Harashima, H.; Tokeshi, M. Development of a Microfluidic-Based Post-Treatment Process for Size-Controlled Lipid Nanoparticles and Application to siRNA Delivery. ACS Appl. Mater. Interfaces 2020, 12, 34011–34020. [Google Scholar] [CrossRef]
- Bauer, T.; Hammes, W.P.; Haase, N.U.; Hertel, C. Effect of food components and processing parameters on DNA degradation in food. Environ. Biosaf. Res. 2004, 3, 215–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindahl, T. Instability and decay of the primary structure of DNA. Nature 1993, 362, 709–715. [Google Scholar] [CrossRef] [PubMed]
- Lewis, L.M.; Badkar, A.V.; Cirelli, D.; Combs, R.; Lerch, T.F. “The Race to Develop the Pfizer-Biontech COVID-19 Vaccine: From the Pharmaceutical Scientists’ Perspective. J. Pharm. Sci. 2022, 112, 640–647. [Google Scholar] [CrossRef] [PubMed]
- White, P. Moderna Science and Technology Day. 2022. Available online: https://s29.q4cdn.com/435878511/files/doc_presentations/2022/05/Science-Day-2022-Master-Slides-FINAL-(05.17_7am).pdf (accessed on 8 January 2023).
- Blenke, E.O.; Örnskov, E.; Schöneich, C.; Nilsson, G.A.; Volkin, D.B.; Mastrobattista, E.; Almarsson, O.; Crommelin, D.J. The Storage and In-Use Stability of mRNA Vaccines and Therapeutics: Not A Cold Case. J. Pharm. Sci. 2023, 112, 386–403. [Google Scholar] [CrossRef] [PubMed]
- Kolhe, P.; Amend, E.; Singh, S.K. Impact of freezing on pH of buffered solutions and consequences for monoclonal antibody aggregation. Biotechnol. Prog. 2010, 26, 727–733. [Google Scholar] [CrossRef]
- Hansen, L.J.J.; Daoussi, R.; Vervaet, C.; Remon, J.-P.; De Beer, T.R.M. Freeze-drying of live virus vaccines: A review. Vaccine 2015, 33, 5507–5519. [Google Scholar] [CrossRef] [Green Version]
- Abdelwahed, W.; Degobert, G.; Stainmesse, S.; Fessi, H. Freeze-Drying of Nanoparticles: Formulation, Process and Storage Considerations. Adv. Drug Deliv. Rev. 2006, 58, 1688–1713. [Google Scholar] [CrossRef]
- Schwarz, C.; Mehnert, W. Freeze-drying of drug-free and drug-loaded solid lipid nanoparticles (SLN). Int. J. Pharm. 1997, 157, 171–179. [Google Scholar] [CrossRef]
- Wang, W. Lyophilization and development of solid protein pharmaceuticals. Int. J. Pharm. 2000, 203, 1–60. [Google Scholar] [CrossRef]
- Jones, K.L.; Drane, D.; Gowans, E.J. Long-term storage of DNA-free RNA for use in vaccine studies. Biotechniques 2007, 43, 675–681. [Google Scholar] [CrossRef] [Green Version]
- Gerhardt, A.; Voigt, E.; Archer, M.; Reed, S.; Larson, E.; Van Hoeven, N.; Kramer, R.; Fox, C.; Casper, C. A Thermostable, Flexible RNA Vaccine Delivery Platform for Pandemic Response. bioRxiv 2021. [Google Scholar] [CrossRef]
- Muramatsu, H.; Lam, K.; Bajusz, C.; Laczko, D.; Kariko, K.; Schreiner, P.; Martin, A.; Lutwyche, P.; Heyes, J.; Pardi, N. Lyophilization Provides Long-Term Stability for a Lipid Nanoparticle-Formulated, Nucleoside-Modified Mrna Vaccine. Mol. Ther. 2022, 30, 1941–1951. [Google Scholar] [CrossRef] [PubMed]
- Ai, L.; Li, Y.; Zhou, L.; Yao, W.; Zhang, H.; Hu, Z.; Han, J.; Wang, W.; Wu, J.; Xu, P.; et al. Lyophilized Mrna-Lipid Nanoparticle Vaccines with Long-Term Stability and High Antigenicity against SARS-CoV-2. Cell Discov. 2023, 9, 9. [Google Scholar] [CrossRef] [PubMed]
- EMA. Summary of Product Characteristics. 2018. Available online: https://www.ema.europa.eu/en/documents/product-information/onpattro-epar-product-information_en.pdf (accessed on 10 January 2023).
- Zhang, N.-N.; Li, X.-F.; Deng, Y.-Q.; Zhao, H.; Huang, Y.-J.; Yang, G.; Huang, W.-J.; Gao, P.; Zhou, C.; Zhang, R.-R.; et al. A Thermostable mRNA Vaccine against COVID-19. Cell 2020, 182, 1271–1283.e16. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, T.-C.; Li, X.-F.; Zhang, N.-N.; Li, L.; Zhou, C.; Deng, Y.-Q.; Cao, T.-S.; Yang, G.; Li, R.-T.; et al. Long-term stability and protection efficacy of the RBD-targeting COVID-19 mRNA vaccine in nonhuman primates. Signal Transduct. Target. Ther. 2021, 6, 438. [Google Scholar] [CrossRef]
- Grau, S.; Ferrández, O.; Martín-García, E.; Maldonado, R. Reconstituted mRNA COVID-19 vaccines may maintain stability after continuous movement. Clin. Microbiol. Infect. 2021, 27, 1698.e1–1698.e4. [Google Scholar] [CrossRef]
- Kudsiova, L.; Lansley, A.; Scutt, G.; Allen, M.; Bowler, L.; Williams, S.; Lippett, S.; Stafford, S.; Tarzi, M.; Cross, M.; et al. Stability Testing of the Pfizer-Biontech Bnt162b2 COVID-19 Vaccine: A Translational Study in Uk Vaccination Centres. BMJ Open Sci. 2021, 5, e100203. [Google Scholar] [CrossRef]
Issue Date | Name of Regulation | Issuing Agency /Country | Reference |
---|---|---|---|
1989 | Stability of vaccines (WHO/EPI/GEN/89.08) | WHO | [4] |
1995 | Stability testing of biotechnological/biological products—Scientific guideline (ICH Q5C) | ICH | [6] |
1998 | Thermostability of vaccines (WHO/GPV/98.07) | WHO | [5] |
2003 | Evaluation for Stability Data Q1E | ICH | [16] |
2003 | Stability Testing of New Drug Substances and Products Q1A(R2) | ICH | [17] |
2011 | Guidelines on Stability Evaluation of Vaccines | WHO | [8] |
2012 | Controlled Temperature Chain (CTC) Guidelines | WHO | [18] |
2013 | Extended Controlled Temperature Conditions (ECTC) Guidelines | WHO | [19] |
2015 | Technical Guidelines for Stability Studies of Biological Products | CDE/China | [9] |
2018 | Liposomal Drug Products: Chemistry, Manufacturing, and Controls; Human Pharmacokinetic and Bioavailability; and Labeling Documentation | FDA/USA | [14] |
2020 | 2020 Chinese Pharmacopoeia Section 4 Regulation 9402 Guidelines for stability testing of biological products | Chinese Pharmacopoeia Commission /China | [10] |
2021 | Evaluation of the quality, safety, and efficacy of messenger RNA vaccines for the prevention of infectious diseases: regulatory considerations | WHO | [13] |
2022 | Technical Guidelines for the Pharmacological Study and Evaluation of In Vivo Gene Therapy Products (draft edition) | CDE/China | [15] |
Name | Developer | Country | Phase |
---|---|---|---|
mRNA-1273 | Moderna | USA | IV |
BNT162b2 | Pfizer/BioNTech | USA/Germany | IV |
mRNA-1273.351 | Moderna | USA | IV |
CVnCoV | CureVac AG | Germany | III |
PTX-COVID19-B | Providence Therapeutics | Canada | III |
SW-BIC-213 | Shanghai East Hospital and Stemirna Therapeutics | China | III |
ARCoV | Academy of Military Science (AMS) and Suzhou Abogen | China | III |
ARCT-154 | Arcturus Therapeutics | USA | III |
LVRNA009 | AIM Vaccine and Liverna Therapeutics | China | III |
mRNA-1273.214 | Moderna | USA | III |
DS-5670a | Daiichi Sankyo Co., Ltd. | Japan | II/III |
HDT-301 | SENAI CIMATEC | Brazil | II/III |
mRNA-1273.211 | Moderna | USA | II/III |
mRNA-1273.529 | Moderna | USA | II/III |
mRNA GEMCOVAC-19 | Gennova Biopharmaceuticals Limited | India | II/III |
ChulaCov19 mRNA vaccine | Chulalongkorn University | Thailand | II |
MRT5500 | Sanofi Pasteur | France | II |
ARCT-021 | Arcturus Therapeutics | USA | II |
SYS6006 | CSPC ZhongQi Pharmaceutical Technology Co., Ltd. | China | II |
GLB-COV2-043 | GreenLight Biosciences, Inc. | USA | I/II |
EXG-5003 | Elixirgen Therapeutics, Inc | USA | I/II |
ARCT-165 | Arcturus Therapeutics | USA | I/II |
ARCT-021 | Arcturus Therapeutics | USA | I/II |
EG-COVID vaccine | EyeGene Inc. | South Korea | I/II |
AAHI-SC2 and AAHI-SC3 | ImmunityBio, Inc. | USA | I/II |
mRNA-1073 | Moderna | USA | I/II |
CoV2 SAM(LNP) vaccine | GlaxoSmithKline | UK | I |
LNP-nCoV saRNA | Imperial College London | UK | I |
mRNA-1283 | Moderna | USA | I |
LNP-nCOV saRNA-02 | MRC/UVRI and LSHTM Uganda Research Unit | UK | I |
HDT-301 vaccine | HDT Bio | USA | I |
VLPCOV-01 | VLP Therapeutics Japan GK | USA | I |
CV2CoV | CureVac AG | Germany | I |
MIPSCo-mRNA-RBD-1 | University of Melbourne | Australia | I |
Lyophilized Vaccine | Jiangsu Rec-Biotechnology Co., Ltd. | China | I |
Lyophilized Vaccine | Wuhan Recogen Biotechnology Co., Ltd. | China | I |
RQ3013 | Walvax Biotechnology; Shanghai RNACure Biopharma | China | I |
RVM-V001 | RVAC Medicines | Singapore | I |
ABO1009-DP | Suzhou Abogen Biosciences Co., Ltd. | China | I |
Self-Amplifying Vaccines | Gritstone bio, Inc. | USA | I |
CV0501 | GlaxoSmithKline | USA | I |
Component | Proportion (%) | Function | Modifications and Related-Functions | Reference |
---|---|---|---|---|
phospholipid | 10–20 | structural lipids | 3-phosphate group modification: improve transfection efficiency; increase the distribution in vivo | [78,79] |
cholesterol | 20–50 | structural lipids | C-24 alkyl derivatives: regulate the integrity of the membrane; impact on delivery efficiency and biodistribution | [80,81,82] |
PEG-lipid | ~1.5 | Prevent aggregation; stabilization | Covalent Coupling modification: improving the half-life of LNPs | [83,84,85,86] |
Ionizable lipid | 30–50 | Encapsulation; delivery | Introduction of multiple tertiary amine nitrogen atoms: higher delivery efficiency and safety | [80,87,89] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, F.; Wang, Y.; Bai, Y.; Liang, Z.; Mao, Q.; Liu, D.; Wu, X.; Xu, M. Research Advances on the Stability of mRNA Vaccines. Viruses 2023, 15, 668. https://doi.org/10.3390/v15030668
Cheng F, Wang Y, Bai Y, Liang Z, Mao Q, Liu D, Wu X, Xu M. Research Advances on the Stability of mRNA Vaccines. Viruses. 2023; 15(3):668. https://doi.org/10.3390/v15030668
Chicago/Turabian StyleCheng, Feiran, Yiping Wang, Yu Bai, Zhenglun Liang, Qunying Mao, Dong Liu, Xing Wu, and Miao Xu. 2023. "Research Advances on the Stability of mRNA Vaccines" Viruses 15, no. 3: 668. https://doi.org/10.3390/v15030668
APA StyleCheng, F., Wang, Y., Bai, Y., Liang, Z., Mao, Q., Liu, D., Wu, X., & Xu, M. (2023). Research Advances on the Stability of mRNA Vaccines. Viruses, 15(3), 668. https://doi.org/10.3390/v15030668